
Aurélien Géron

Hands-On
Machine Learning
with Scikit-Learn,
Keras & TensorFlow
Concepts, Tools, and Techniques
to Build Intelligent Systems

Third
Edition

TM

DATA SCIENCE / MACHINE LE ARNING

“An exceptional
resource to study
machine learning. You
will find clear-minded,
intuitive explanations,
and a wealth of
practical tips.”

—François Chollet
Author of Keras, author of

Deep Learning with Python

“This book is a great
introduction to the
theory and practice
of solving problems
with neural networks;
I recommend it to
anyone interested
in learning about
practical ML.”

—Pete Warden
Mobile Lead for TensorFlow

Hands-On Machine Learning
with Scikit-Learn, Keras, and TensorFlow

ISBN: 978-1-098-12597-4

US $79.99	 CAN $99.99

Through a recent series of breakthroughs, deep learning has
boosted the entire field of machine learning. Now, even program-
mers who know close to nothing about this technology can use
simple, efficient tools to implement programs capable of learning
from data. This bestselling book uses concrete examples, minimal
theory, and production-ready Python frameworks (Scikit-Learn,
Keras, and TensorFlow) to help you gain an intuitive understanding
of the concepts and tools for building intelligent systems.

With this updated third edition, author Aurélien Géron explores
a range of techniques, starting with simple linear regression and
progressing to deep neural networks. Numerous code examples
and exercises throughout the book help you apply what you’ve
learned. Programming experience is all you need to get started.

•	 Use Scikit-Learn to track an example ML project end to end

•	 Explore several models, including support vector machines,
decision trees, random forests, and ensemble methods

•	 Exploit unsupervised learning techniques such as
dimensionality reduction, clustering, and anomaly detection

•	 Dive into neural net architectures, including convolutional
nets, recurrent nets, generative adversarial networks,
autoencoders, diffusion models, and transformers

•	 Use TensorFlow and Keras to build and train neural nets for
computer vision, natural language processing, generative
models, and deep reinforcement learning

Aurélien Géron is a machine learning consultant. A former Googler,
he led YouTube’s video classification team from 2013 to 2016. He was
also a founder and CTO of Wifirst from 2002 to 2012, a leading wireless
ISP in France, and a founder and CTO of Polyconseil in 2001, a telecom
consulting firm.

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

978-1-098-12597-4

[LSI]

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
by Aurélien Géron

Copyright © 2023 Aurélien Géron. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield
Development Editors: Nicole Taché and
Michele Cronin
Production Editor: Beth Kelly
Copyeditor: Kim Cofer

Proofreader: Rachel Head
Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

March 2017: First Edition
September 2019: Second Edition
October 2022: Third Edition

Revision History for the Third Edition
2022-10-03: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781492032649 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Hands-On Machine Learning with
Scikit-Learn, Keras, and TensorFlow, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

https://oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9781492032649

Table of Contents

Preface. xv

Part I. The Fundamentals of Machine Learning

1. The Machine Learning Landscape. 3
What Is Machine Learning? 4
Why Use Machine Learning? 5
Examples of Applications 8
Types of Machine Learning Systems 9

Training Supervision 10
Batch Versus Online Learning 17
Instance-Based Versus Model-Based Learning 21

Main Challenges of Machine Learning 27
Insufficient Quantity of Training Data 27
Nonrepresentative Training Data 28
Poor-Quality Data 30
Irrelevant Features 30
Overfitting the Training Data 30
Underfitting the Training Data 33
Stepping Back 33

Testing and Validating 34
Hyperparameter Tuning and Model Selection 34
Data Mismatch 35

Exercises 37

iii

2. End-to-End Machine Learning Project. 39
Working with Real Data 39
Look at the Big Picture 41

Frame the Problem 41
Select a Performance Measure 43
Check the Assumptions 46

Get the Data 46
Running the Code Examples Using Google Colab 46
Saving Your Code Changes and Your Data 48
The Power and Danger of Interactivity 49
Book Code Versus Notebook Code 50
Download the Data 50
Take a Quick Look at the Data Structure 51
Create a Test Set 55

Explore and Visualize the Data to Gain Insights 60
Visualizing Geographical Data 61
Look for Correlations 63
Experiment with Attribute Combinations 66

Prepare the Data for Machine Learning Algorithms 67
Clean the Data 68
Handling Text and Categorical Attributes 71
Feature Scaling and Transformation 75
Custom Transformers 79
Transformation Pipelines 83

Select and Train a Model 88
Train and Evaluate on the Training Set 88
Better Evaluation Using Cross-Validation 89

Fine-Tune Your Model 91
Grid Search 91
Randomized Search 93
Ensemble Methods 95
Analyzing the Best Models and Their Errors 95
Evaluate Your System on the Test Set 96

Launch, Monitor, and Maintain Your System 97
Try It Out! 100
Exercises 101

3. Classification. 103
MNIST 103
Training a Binary Classifier 106
Performance Measures 107

iv | Table of Contents

Measuring Accuracy Using Cross-Validation 107
Confusion Matrices 108
Precision and Recall 110
The Precision/Recall Trade-off 111
The ROC Curve 115

Multiclass Classification 119
Error Analysis 122
Multilabel Classification 125
Multioutput Classification 127
Exercises 129

4. Training Models. 131
Linear Regression 132

The Normal Equation 134
Computational Complexity 137

Gradient Descent 138
Batch Gradient Descent 142
Stochastic Gradient Descent 145
Mini-Batch Gradient Descent 148

Polynomial Regression 149
Learning Curves 151
Regularized Linear Models 155

Ridge Regression 156
Lasso Regression 158
Elastic Net Regression 161
Early Stopping 162

Logistic Regression 164
Estimating Probabilities 164
Training and Cost Function 165
Decision Boundaries 167
Softmax Regression 170

Exercises 173

5. Support Vector Machines. 175
Linear SVM Classification 175

Soft Margin Classification 176
Nonlinear SVM Classification 178

Polynomial Kernel 180
Similarity Features 181
Gaussian RBF Kernel 181
SVM Classes and Computational Complexity 183

Table of Contents | v

SVM Regression 184
Under the Hood of Linear SVM Classifiers 186
The Dual Problem 189

Kernelized SVMs 190
Exercises 193

6. Decision Trees. 195
Training and Visualizing a Decision Tree 195
Making Predictions 197
Estimating Class Probabilities 199
The CART Training Algorithm 199
Computational Complexity 200
Gini Impurity or Entropy? 201
Regularization Hyperparameters 201
Regression 204
Sensitivity to Axis Orientation 206
Decision Trees Have a High Variance 207
Exercises 208

7. Ensemble Learning and Random Forests. 211
Voting Classifiers 212
Bagging and Pasting 215

Bagging and Pasting in Scikit-Learn 217
Out-of-Bag Evaluation 218
Random Patches and Random Subspaces 219

Random Forests 220
Extra-Trees 220
Feature Importance 221

Boosting 222
AdaBoost 222
Gradient Boosting 226
Histogram-Based Gradient Boosting 230

Stacking 232
Exercises 235

8. Dimensionality Reduction. 237
The Curse of Dimensionality 238
Main Approaches for Dimensionality Reduction 239

Projection 239
Manifold Learning 241

PCA 243

vi | Table of Contents

Preserving the Variance 243
Principal Components 244
Projecting Down to d Dimensions 245
Using Scikit-Learn 246
Explained Variance Ratio 246
Choosing the Right Number of Dimensions 247
PCA for Compression 249
Randomized PCA 250
Incremental PCA 250

Random Projection 252
LLE 254
Other Dimensionality Reduction Techniques 256
Exercises 257

9. Unsupervised Learning Techniques. 259
Clustering Algorithms: k-means and DBSCAN 260

k-means 263
Limits of k-means 272
Using Clustering for Image Segmentation 273
Using Clustering for Semi-Supervised Learning 275
DBSCAN 279
Other Clustering Algorithms 282

Gaussian Mixtures 283
Using Gaussian Mixtures for Anomaly Detection 288
Selecting the Number of Clusters 289
Bayesian Gaussian Mixture Models 292
Other Algorithms for Anomaly and Novelty Detection 293

Exercises 294

Part II. Neural Networks and Deep Learning

10. Introduction to Artificial Neural Networks with Keras. 299
From Biological to Artificial Neurons 300

Biological Neurons 301
Logical Computations with Neurons 303
The Perceptron 304
The Multilayer Perceptron and Backpropagation 309
Regression MLPs 313
Classification MLPs 315

Implementing MLPs with Keras 317

Table of Contents | vii

Building an Image Classifier Using the Sequential API 318
Building a Regression MLP Using the Sequential API 328
Building Complex Models Using the Functional API 329
Using the Subclassing API to Build Dynamic Models 336
Saving and Restoring a Model 337
Using Callbacks 338
Using TensorBoard for Visualization 340

Fine-Tuning Neural Network Hyperparameters 344
Number of Hidden Layers 349
Number of Neurons per Hidden Layer 350
Learning Rate, Batch Size, and Other Hyperparameters 351

Exercises 353

11. Training Deep Neural Networks. 357
The Vanishing/Exploding Gradients Problems 358

Glorot and He Initialization 359
Better Activation Functions 361
Batch Normalization 367
Gradient Clipping 372

Reusing Pretrained Layers 373
Transfer Learning with Keras 375
Unsupervised Pretraining 377
Pretraining on an Auxiliary Task 378

Faster Optimizers 379
Momentum 379
Nesterov Accelerated Gradient 381
AdaGrad 382
RMSProp 383
Adam 384
AdaMax 385
Nadam 386
AdamW 386

Learning Rate Scheduling 388
Avoiding Overfitting Through Regularization 392

ℓ1 and ℓ2 Regularization 393
Dropout 394
Monte Carlo (MC) Dropout 397
Max-Norm Regularization 399

Summary and Practical Guidelines 400
Exercises 402

viii | Table of Contents

12. Custom Models and Training with TensorFlow. 403
A Quick Tour of TensorFlow 403
Using TensorFlow like NumPy 407

Tensors and Operations 407
Tensors and NumPy 409
Type Conversions 409
Variables 410
Other Data Structures 410

Customizing Models and Training Algorithms 412
Custom Loss Functions 412
Saving and Loading Models That Contain Custom Components 413
Custom Activation Functions, Initializers, Regularizers, and Constraints 415
Custom Metrics 416
Custom Layers 419
Custom Models 422
Losses and Metrics Based on Model Internals 424
Computing Gradients Using Autodiff 426
Custom Training Loops 430

TensorFlow Functions and Graphs 433
AutoGraph and Tracing 435
TF Function Rules 437

Exercises 438

13. Loading and Preprocessing Data with TensorFlow. 441
The tf.data API 442

Chaining Transformations 443
Shuffling the Data 445
Interleaving Lines from Multiple Files 446
Preprocessing the Data 448
Putting Everything Together 449
Prefetching 450
Using the Dataset with Keras 452

The TFRecord Format 453
Compressed TFRecord Files 454
A Brief Introduction to Protocol Buffers 454
TensorFlow Protobufs 456
Loading and Parsing Examples 457
Handling Lists of Lists Using the SequenceExample Protobuf 459

Keras Preprocessing Layers 459
The Normalization Layer 460
The Discretization Layer 463

Table of Contents | ix

The CategoryEncoding Layer 463
The StringLookup Layer 465
The Hashing Layer 466
Encoding Categorical Features Using Embeddings 466
Text Preprocessing 471
Using Pretrained Language Model Components 473
Image Preprocessing Layers 474

The TensorFlow Datasets Project 475
Exercises 477

14. Deep Computer Vision Using Convolutional Neural Networks. 479
The Architecture of the Visual Cortex 480
Convolutional Layers 481

Filters 484
Stacking Multiple Feature Maps 485
Implementing Convolutional Layers with Keras 487
Memory Requirements 490

Pooling Layers 491
Implementing Pooling Layers with Keras 493
CNN Architectures 495

LeNet-5 498
AlexNet 499
GoogLeNet 502
VGGNet 505
ResNet 505
Xception 509
SENet 510
Other Noteworthy Architectures 512
Choosing the Right CNN Architecture 514

Implementing a ResNet-34 CNN Using Keras 515
Using Pretrained Models from Keras 516
Pretrained Models for Transfer Learning 518
Classification and Localization 521
Object Detection 523

Fully Convolutional Networks 525
You Only Look Once 527

Object Tracking 530
Semantic Segmentation 531
Exercises 535

x | Table of Contents

15. Processing Sequences Using RNNs and CNNs. 537
Recurrent Neurons and Layers 538

Memory Cells 540
Input and Output Sequences 541

Training RNNs 542
Forecasting a Time Series 543

The ARMA Model Family 549
Preparing the Data for Machine Learning Models 552
Forecasting Using a Linear Model 555
Forecasting Using a Simple RNN 556
Forecasting Using a Deep RNN 557
Forecasting Multivariate Time Series 559
Forecasting Several Time Steps Ahead 560
Forecasting Using a Sequence-to-Sequence Model 562

Handling Long Sequences 565
Fighting the Unstable Gradients Problem 565
Tackling the Short-Term Memory Problem 568

Exercises 576

16. Natural Language Processing with RNNs and Attention. 577
Generating Shakespearean Text Using a Character RNN 578

Creating the Training Dataset 579
Building and Training the Char-RNN Model 581
Generating Fake Shakespearean Text 582
Stateful RNN 584

Sentiment Analysis 587
Masking 590
Reusing Pretrained Embeddings and Language Models 593

An Encoder–Decoder Network for Neural Machine Translation 595
Bidirectional RNNs 601
Beam Search 603

Attention Mechanisms 604
Attention Is All You Need: The Original Transformer Architecture 609

An Avalanche of Transformer Models 620
Vision Transformers 624
Hugging Face’s Transformers Library 629
Exercises 633

17. Autoencoders, GANs, and Diffusion Models. 635
Efficient Data Representations 637
Performing PCA with an Undercomplete Linear Autoencoder 639

Table of Contents | xi

Stacked Autoencoders 640
Implementing a Stacked Autoencoder Using Keras 641
Visualizing the Reconstructions 642
Visualizing the Fashion MNIST Dataset 643
Unsupervised Pretraining Using Stacked Autoencoders 644
Tying Weights 645
Training One Autoencoder at a Time 646

Convolutional Autoencoders 648
Denoising Autoencoders 649
Sparse Autoencoders 651
Variational Autoencoders 654
Generating Fashion MNIST Images 658
Generative Adversarial Networks 659

The Difficulties of Training GANs 663
Deep Convolutional GANs 665
Progressive Growing of GANs 668
StyleGANs 671

Diffusion Models 673
Exercises 681

18. Reinforcement Learning. 683
Learning to Optimize Rewards 684
Policy Search 685
Introduction to OpenAI Gym 687
Neural Network Policies 691
Evaluating Actions: The Credit Assignment Problem 693
Policy Gradients 694
Markov Decision Processes 699
Temporal Difference Learning 703
Q-Learning 704

Exploration Policies 706
Approximate Q-Learning and Deep Q-Learning 707

Implementing Deep Q-Learning 708
Deep Q-Learning Variants 713

Fixed Q-value Targets 713
Double DQN 714
Prioritized Experience Replay 714
Dueling DQN 715

Overview of Some Popular RL Algorithms 716
Exercises 720

xii | Table of Contents

19. Training and Deploying TensorFlow Models at Scale. 721
Serving a TensorFlow Model 722

Using TensorFlow Serving 722
Creating a Prediction Service on Vertex AI 732
Running Batch Prediction Jobs on Vertex AI 739

Deploying a Model to a Mobile or Embedded Device 741
Running a Model in a Web Page 744
Using GPUs to Speed Up Computations 746

Getting Your Own GPU 747
Managing the GPU RAM 749
Placing Operations and Variables on Devices 752
Parallel Execution Across Multiple Devices 753

Training Models Across Multiple Devices 756
Model Parallelism 756
Data Parallelism 759
Training at Scale Using the Distribution Strategies API 765
Training a Model on a TensorFlow Cluster 766
Running Large Training Jobs on Vertex AI 770
Hyperparameter Tuning on Vertex AI 772

Exercises 776
Thank You! 777

A. Machine Learning Project Checklist. 779

B. Autodiff. 785

C. Special Data Structures. 793

D. TensorFlow Graphs. 801

Index. 811

Table of Contents | xiii

1 Geoffrey E. Hinton et al., “A Fast Learning Algorithm for Deep Belief Nets”, Neural Computation 18 (2006):
1527–1554.

2 Despite the fact that Yann LeCun’s deep convolutional neural networks had worked well for image recognition
since the 1990s, although they were not as general-purpose.

Preface

The Machine Learning Tsunami
In 2006, Geoffrey Hinton et al. published a paper1 showing how to train a deep neural
network capable of recognizing handwritten digits with state-of-the-art precision
(>98%). They branded this technique “deep learning”. A deep neural network is a
(very) simplified model of our cerebral cortex, composed of a stack of layers of
artificial neurons. Training a deep neural net was widely considered impossible at the
time,2 and most researchers had abandoned the idea in the late 1990s. This paper
revived the interest of the scientific community, and before long many new papers
demonstrated that deep learning was not only possible, but capable of mind-blowing
achievements that no other machine learning (ML) technique could hope to match
(with the help of tremendous computing power and great amounts of data). This
enthusiasm soon extended to many other areas of machine learning.

A decade later, machine learning had conquered the industry, and today it is at the
heart of much of the magic in high-tech products, ranking your web search results,
powering your smartphone’s speech recognition, recommending videos, and perhaps
even driving your car.

Machine Learning in Your Projects
So, naturally you are excited about machine learning and would love to join the party!

Perhaps you would like to give your homemade robot a brain of its own? Make it
recognize faces? Or learn to walk around?

xv

https://homl.info/136

Or maybe your company has tons of data (user logs, financial data, production data,
machine sensor data, hotline stats, HR reports, etc.), and more than likely you could
unearth some hidden gems if you just knew where to look. With machine learning,
you could accomplish the following and much more:

• Segment customers and find the best marketing strategy for each group.•
• Recommend products for each client based on what similar clients bought.•
• Detect which transactions are likely to be fraudulent.•
• Forecast next year’s revenue.•

Whatever the reason, you have decided to learn machine learning and implement it
in your projects. Great idea!

Objective and Approach
This book assumes that you know close to nothing about machine learning. Its goal
is to give you the concepts, tools, and intuition you need to implement programs
capable of learning from data.

We will cover a large number of techniques, from the simplest and most commonly
used (such as linear regression) to some of the deep learning techniques that regularly
win competitions. For this, we will be using production-ready Python frameworks:

• Scikit-Learn is very easy to use, yet it implements many machine learning•
algorithms efficiently, so it makes for a great entry point to learning machine
learning. It was created by David Cournapeau in 2007, and is now led by a team
of researchers at the French Institute for Research in Computer Science and
Automation (Inria).

• TensorFlow is a more complex library for distributed numerical computation.•
It makes it possible to train and run very large neural networks efficiently by dis‐
tributing the computations across potentially hundreds of multi-GPU (graphics
processing unit) servers. TensorFlow (TF) was created at Google and supports
many of its large-scale machine learning applications. It was open sourced in
November 2015, and version 2.0 was released in September 2019.

• Keras is a high-level deep learning API that makes it very simple to train and•
run neural networks. Keras comes bundled with TensorFlow, and it relies on
TensorFlow for all the intensive computations.

The book favors a hands-on approach, growing an intuitive understanding of
machine learning through concrete working examples and just a little bit of theory.

xvi | Preface

https://homl.info/usecases
https://scikit-learn.org
https://tensorflow.org
https://keras.io

While you can read this book without picking up your laptop, I
highly recommend you experiment with the code examples.

Code Examples
All the code examples in this book are open source and available online at https://git
hub.com/ageron/handson-ml3, as Jupyter notebooks. These are interactive documents
containing text, images, and executable code snippets (Python in our case). The
easiest and quickest way to get started is to run these notebooks using Google Colab:
this is a free service that allows you to run any Jupyter notebook directly online,
without having to install anything on your machine. All you need is a web browser
and a Google account.

In this book, I will assume that you are using Google Colab, but I
have also tested the notebooks on other online platforms such as
Kaggle and Binder, so you can use those if you prefer. Alternatively,
you can install the required libraries and tools (or the Docker
image for this book) and run the notebooks directly on your own
machine. See the instructions at https://homl.info/install.

This book is here to help you get your job done. If you wish to use additional content
beyond the code examples, and that use falls outside the scope of fair use guidelines,
(such as selling or distributing content from O’Reilly books, or incorporating a
significant amount of material from this book into your product’s documentation),
please reach out to us for permission, at permissions@oreilly.com.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Hands-On Machine Learning with
Scikit-Learn, Keras, and TensorFlow by Aurélien Géron. Copyright 2023 Aurélien
Géron, 978-1-098-12597-4.”

Prerequisites
This book assumes that you have some Python programming experience. If you don’t
know Python yet, https://learnpython.org is a great place to start. The official tutorial
on Python.org is also quite good.

This book also assumes that you are familiar with Python’s main scientific libraries—
in particular, NumPy, Pandas, and Matplotlib. If you have never used these libraries,
don’t worry; they’re easy to learn, and I’ve created a tutorial for each of them. You can
access them online at https://homl.info/tutorials.

Preface | xvii

https://github.com/ageron/handson-ml3
https://github.com/ageron/handson-ml3
https://homl.info/install
mailto:permissions@oreilly.com
https://learnpython.org
https://docs.python.org/3/tutorial
https://numpy.org
https://pandas.pydata.org
https://matplotlib.org
https://homl.info/tutorials

Moreover, if you want to fully understand how the machine learning algorithms work
(not just how to use them), then you should have at least a basic understanding of
a few math concepts, especially linear algebra. Specifically, you should know what
vectors and matrices are, and how to perform some simple operations like adding
vectors, or transposing and multiplying matrices. If you need a quick introduction to
linear algebra (it’s really not rocket science!), I provide a tutorial at https://homl.info/
tutorials. You will also find a tutorial on differential calculus, which may be helpful to
understand how neural networks are trained, but it’s not entirely essential to grasp the
important concepts. This book also uses other mathematical concepts occasionally,
such as exponentials and logarithms, a bit of probability theory, and some basic
statistics concepts, but nothing too advanced. If you need help on any of these,
please check out https://khanacademy.org, which offers many excellent and free math
courses online.

Roadmap
This book is organized in two parts. Part I, “The Fundamentals of
Machine Learning”, covers the following topics:

• What machine learning is, what problems it tries to solve, and the main cate‐•
gories and fundamental concepts of its systems

• The steps in a typical machine learning project•
• Learning by fitting a model to data•
• Optimizing a cost function•
• Handling, cleaning, and preparing data•
• Selecting and engineering features•
• Selecting a model and tuning hyperparameters using cross-validation•
• The challenges of machine learning, in particular underfitting and overfitting•

(the bias/variance trade-off)
• The most common learning algorithms: linear and polynomial regression, logis‐•

tic regression, k-nearest neighbors, support vector machines, decision trees, ran‐
dom forests, and ensemble methods

• Reducing the dimensionality of the training data to fight the “curse of•
dimensionality”

• Other unsupervised learning techniques, including clustering, density estima‐•
tion, and anomaly detection

Part II, “Neural Networks and Deep Learning”, covers the following topics:

• What neural nets are and what they’re good for•

xviii | Preface

https://homl.info/tutorials
https://homl.info/tutorials
https://khanacademy.org

• Building and training neural nets using TensorFlow and Keras•
• The most important neural net architectures: feedforward neural nets for tabular•

data, convolutional nets for computer vision, recurrent nets and long short-term
memory (LSTM) nets for sequence processing, encoder–decoders and trans‐
formers for natural language processing (and more!), autoencoders, generative
adversarial networks (GANs), and diffusion models for generative learning

• Techniques for training deep neural nets•
• How to build an agent (e.g., a bot in a game) that can learn good strategies•

through trial and error, using reinforcement learning
• Loading and preprocessing large amounts of data efficiently•
• Training and deploying TensorFlow models at scale•

The first part is based mostly on Scikit-Learn, while the second part uses TensorFlow
and Keras.

Don’t jump into deep waters too hastily: while deep learning is
no doubt one of the most exciting areas in machine learning, you
should master the fundamentals first. Moreover, most problems
can be solved quite well using simpler techniques such as random
forests and ensemble methods (discussed in Part I). deep learning
is best suited for complex problems such as image recognition,
speech recognition, or natural language processing, and it requires
a lot of data, computing power, and patience (unless you can lever‐
age a pretrained neural network, as you will see).

Changes Between the First and the Second Edition
If you have already read the first edition, here are the main changes between the first
and the second edition:

• All the code was migrated from TensorFlow 1.x to TensorFlow 2.x, and I replaced•
most of the low-level TensorFlow code (graphs, sessions, feature columns, esti‐
mators, and so on) with much simpler Keras code.

• The second edition introduced the Data API for loading and preprocessing large•
datasets, the distribution strategies API to train and deploy TF models at scale,
TF Serving and Google Cloud AI Platform to productionize models, and (briefly)
TF Transform, TFLite, TF Addons/Seq2Seq, TensorFlow.js, and TF Agents.

• It also introduced many additional ML topics, including a new chapter on unsu‐•
pervised learning, computer vision techniques for object detection and semantic
segmentation, handling sequences using convolutional neural networks (CNNs),

Preface | xix

natural language processing (NLP) using recurrent neural networks (RNNs),
CNNs and transformers, GANs, and more.

See https://homl.info/changes2 for more details.

Changes Between the Second and the Third Edition
If you read the second edition, here are the main changes between the second and the
third edition:

• All the code was updated to the latest library versions. In particular, this third•
edition introduces many new additions to Scikit-Learn (e.g., feature name track‐
ing, histogram-based gradient boosting, label propagation, and more). It also
introduces the Keras Tuner library for hyperparameter tuning, Hugging Face’s
Transformers library for natural language processing, and Keras’s new prepro‐
cessing and data augmentation layers.

• Several vision models were added (ResNeXt, DenseNet, MobileNet, CSPNet, and•
EfficientNet), as well as guidelines for choosing the right one.

• Chapter 15 now analyzes the Chicago bus and rail ridership data instead of•
generated time series, and it introduces the ARMA model and its variants.

• Chapter 16 on natural language processing now builds an English-to-Spanish•
translation model, first using an encoder–decoder RNN, then using a trans‐
former model. The chapter also covers language models such as Switch Trans‐
formers, DistilBERT, T5, and PaLM (with chain-of-thought prompting). In
addition, it introduces vision transformers (ViTs) and gives an overview of a
few transformer-based visual models, such as data-efficient image transformers
(DeiTs), Perceiver, and DINO, as well as a brief overview of some large multimo‐
dal models, including CLIP, DALL·E, Flamingo, and GATO.

• Chapter 17 on generative learning now introduces diffusion models, and shows•
how to implement a denoising diffusion probabilistic model (DDPM) from
scratch.

• Chapter 19 migrated from Google Cloud AI Platform to Google Vertex AI, and•
uses distributed Keras Tuner for large-scale hyperparameter search. The chapter
now includes TensorFlow.js code that you can experiment with online. It also
introduces additional distributed training techniques, including PipeDream and
Pathways.

• In order to allow for all the new content, some sections were moved online,•
including installation instructions, kernel principal component analysis (PCA),
mathematical details of Bayesian Gaussian mixtures, TF Agents, and former

xx | Preface

https://homl.info/changes2

appendices A (exercise solutions), C (support vector machine math), and E
(extra neural net architectures).

See https://homl.info/changes3 for more details.

Other Resources
Many excellent resources are available to learn about machine learning. For example,
Andrew Ng’s ML course on Coursera is amazing, although it requires a significant
time investment.

There are also many interesting websites about machine learning, including Scikit-
Learn’s exceptional User Guide. You may also enjoy Dataquest, which provides very
nice interactive tutorials, and ML blogs such as those listed on Quora.

There are many other introductory books about machine learning. In particular:

• Joel Grus’s Data Science from Scratch, 2nd edition (O’Reilly), presents the funda‐•
mentals of machine learning and implements some of the main algorithms in
pure Python (from scratch, as the name suggests).

• Stephen Marsland’s Machine Learning: An Algorithmic Perspective, 2nd edition•
(Chapman & Hall), is a great introduction to machine learning, covering a wide
range of topics in depth with code examples in Python (also from scratch, but
using NumPy).

• Sebastian Raschka’s Python Machine Learning, 3rd edition (Packt Publishing), is•
also a great introduction to machine learning and leverages Python open source
libraries (Pylearn 2 and Theano).

• François Chollet’s Deep Learning with Python, 2nd edition (Manning), is a very•
practical book that covers a large range of topics in a clear and concise way, as
you might expect from the author of the excellent Keras library. It favors code
examples over mathematical theory.

• Andriy Burkov’s The Hundred-Page Machine Learning Book (self-published)•
is very short but covers an impressive range of topics, introducing them in
approachable terms without shying away from the math equations.

• Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin’s Learning from•
Data (AMLBook) is a rather theoretical approach to ML that provides deep
insights, in particular on the bias/variance trade-off (see Chapter 4).

• Stuart Russell and Peter Norvig’s Artificial Intelligence: A Modern Approach, 4th•
edition (Pearson), is a great (and huge) book covering an incredible amount of
topics, including machine learning. It helps put ML into perspective.

Preface | xxi

https://homl.info/changes3
https://homl.info/ngcourse
https://homl.info/skdoc
https://dataquest.io
https://homl.info/1
https://homl.info/grusbook
https://themlbook.com

• Jeremy Howard and Sylvain Gugger’s Deep Learning for Coders with fastai and•
PyTorch (O’Reilly) provides a wonderfully clear and practical introduction to
deep learning using the fastai and PyTorch libraries.

Finally, joining ML competition websites such as Kaggle.com will allow you to prac‐
tice your skills on real-world problems, with help and insights from some of the best
ML professionals out there.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Punctuation
To avoid any confusion, punctutation appears outside of quotes throughout the
book. My apologies to the purists.

This element signifies a tip or suggestion.

This element signifies a general note.

xxii | Preface

https://kaggle.com/

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://homl.info/oreilly3.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

Preface | xxiii

https://oreilly.com
https://oreilly.com
https://homl.info/oreilly3
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Acknowledgments
Never in my wildest dreams did I imagine that the first and second editions of this
book would get such a large audience. I received so many messages from readers,
many asking questions, some kindly pointing out errata, and most sending me
encouraging words. I cannot express how grateful I am to all these readers for their
tremendous support. Thank you all so very much! Please do not hesitate to file issues
on GitHub if you find errors in the code examples (or just to ask questions), or to
submit errata if you find errors in the text. Some readers also shared how this book
helped them get their first job, or how it helped them solve a concrete problem they
were working on. I find such feedback incredibly motivating. If you find this book
helpful, I would love it if you could share your story with me, either privately (e.g., via
LinkedIn) or publicly (e.g., tweet me at @aureliengeron or write an Amazon review).

Huge thanks as well to all the wonderful people who offered their time and expertise
to review this third edition, correcting errors and making countless suggestions.
This edition is so much better thanks to them: Olzhas Akpambetov, George Bonner,
François Chollet, Siddha Gangju, Sam Goodman, Matt Harrison, Sasha Sobran, Lewis
Tunstall, Leandro von Werra, and my dear brother Sylvain. You are all amazing!

I am also very grateful to the many people who supported me along the way, by
answering my questions, suggesting improvements, and contributing to the code on
GitHub: in particular, Yannick Assogba, Ian Beauregard, Ulf Bissbort, Rick Chao,
Peretz Cohen, Kyle Gallatin, Hannes Hapke, Victor Khaustov, Soonson Kwon, Eric
Lebigot, Jason Mayes, Laurence Moroney, Sara Robinson, Joaquín Ruales, and Yue‐
feng Zhou.

This book wouldn’t exist without O’Reilly’s fantastic staff, in particular Nicole Taché,
who gave me insightful feedback and was always cheerful, encouraging, and helpful:
I could not dream of a better editor. Big thanks to Michele Cronin as well, who
cheered me on through the final chapters and managed to get me past the finish
line. Thanks to the whole production team, in particular Elizabeth Kelly and Kristen
Brown. Thanks as well to Kim Cofer for the thorough copyediting, and to Johnny
O’Toole, who managed the relationship with Amazon and answered many of my
questions. Thanks to Kate Dullea for greatly improving my illustrations. Thanks to
Marie Beaugureau, Ben Lorica, Mike Loukides, and Laurel Ruma for believing in
this project and helping me define its scope. Thanks to Matt Hacker and all of the
Atlas team for answering all my technical questions regarding formatting, AsciiDoc,
MathML, and LaTeX, and thanks to Nick Adams, Rebecca Demarest, Rachel Head,
Judith McConville, Helen Monroe, Karen Montgomery, Rachel Roumeliotis, and
everyone else at O’Reilly who contributed to this book.

I’ll never forget all the wonderful people who helped me with the first and second
editions of this book: friends, colleagues, experts, including many members of the

xxiv | Preface

https://homl.info/issues3
https://homl.info/issues3
https://homl.info/errata3
https://linkedin.com/in/aurelien-geron
https://homl.info/amazon3

TensorFlow team. The list is long: Olzhas Akpambetov, Karmel Allison, Martin
Andrews, David Andrzejewski, Paige Bailey, Lukas Biewald, Eugene Brevdo, William
Chargin, François Chollet, Clément Courbet, Robert Crowe, Mark Daoust, Daniel
“Wolff ” Dobson, Julien Dubois, Mathias Kende, Daniel Kitachewsky, Nick Felt,
Bruce Fontaine, Justin Francis, Goldie Gadde, Irene Giannoumis, Ingrid von Glehn,
Vincent Guilbeau, Sandeep Gupta, Priya Gupta, Kevin Haas, Eddy Hung, Konstan‐
tinos Katsiapis, Viacheslav Kovalevskyi, Jon Krohn, Allen Lavoie, Karim Matrah,
Grégoire Mesnil, Clemens Mewald, Dan Moldovan, Dominic Monn, Sean Morgan,
Tom O’Malley, James Pack, Alexander Pak, Haesun Park, Alexandre Passos, Ankur
Patel, Josh Patterson, André Susano Pinto, Anthony Platanios, Anosh Raj, Oscar
Ramirez, Anna Revinskaya, Saurabh Saxena, Salim Sémaoune, Ryan Sepassi, Vitor
Sessak, Jiri Simsa, Iain Smears, Xiaodan Song, Christina Sorokin, Michel Tessier,
Wiktor Tomczak, Dustin Tran, Todd Wang, Pete Warden, Rich Washington, Martin
Wicke, Edd Wilder-James, Sam Witteveen, Jason Zaman, Yuefeng Zhou, and my
brother Sylvain.

Last but not least, I am infinitely grateful to my beloved wife, Emmanuelle, and to
our three wonderful children, Alexandre, Rémi, and Gabrielle, for encouraging me to
work hard on this book. Their insatiable curiosity was priceless: explaining some of
the most difficult concepts in this book to my wife and children helped me clarify my
thoughts and directly improved many parts of it. Plus, they keep bringing me cookies
and coffee, who could ask for more?

Preface | xxv

PART I

The Fundamentals of
Machine Learning

CHAPTER 1

The Machine Learning Landscape

Not so long ago, if you had picked up your phone and asked it the way home,
it would have ignored you—and people would have questioned your sanity. But
machine learning is no longer science fiction: billions of people use it every day. And
the truth is it has actually been around for decades in some specialized applications,
such as optical character recognition (OCR). The first ML application that really
became mainstream, improving the lives of hundreds of millions of people, took over
the world back in the 1990s: the spam filter. It’s not exactly a self-aware robot, but it
does technically qualify as machine learning: it has actually learned so well that you
seldom need to flag an email as spam anymore. It was followed by hundreds of ML
applications that now quietly power hundreds of products and features that you use
regularly: voice prompts, automatic translation, image search, product recommenda‐
tions, and many more.

Where does machine learning start and where does it end? What exactly does it mean
for a machine to learn something? If I download a copy of all Wikipedia articles, has
my computer really learned something? Is it suddenly smarter? In this chapter I will
start by clarifying what machine learning is and why you may want to use it.

Then, before we set out to explore the machine learning continent, we will take a
look at the map and learn about the main regions and the most notable landmarks:
supervised versus unsupervised learning and their variants, online versus batch learn‐
ing, instance-based versus model-based learning. Then we will look at the workflow
of a typical ML project, discuss the main challenges you may face, and cover how to
evaluate and fine-tune a machine learning system.

This chapter introduces a lot of fundamental concepts (and jargon) that every data
scientist should know by heart. It will be a high-level overview (it’s the only chapter
without much code), all rather simple, but my goal is to ensure everything is crystal

3

clear to you before we continue on to the rest of the book. So grab a coffee and let’s
get started!

If you are already familiar with machine learning basics, you may
want to skip directly to Chapter 2. If you are not sure, try to answer
all the questions listed at the end of the chapter before moving on.

What Is Machine Learning?
Machine learning is the science (and art) of programming computers so they can
learn from data.

Here is a slightly more general definition:

[Machine learning is the] field of study that gives computers the ability to learn
without being explicitly programmed.

—Arthur Samuel, 1959

And a more engineering-oriented one:

A computer program is said to learn from experience E with respect to some task
T and some performance measure P, if its performance on T, as measured by P,
improves with experience E.

—Tom Mitchell, 1997

Your spam filter is a machine learning program that, given examples of spam emails
(flagged by users) and examples of regular emails (nonspam, also called “ham”), can
learn to flag spam. The examples that the system uses to learn are called the training
set. Each training example is called a training instance (or sample). The part of a
machine learning system that learns and makes predictions is called a model. Neural
networks and random forests are examples of models.

In this case, the task T is to flag spam for new emails, the experience E is the training
data, and the performance measure P needs to be defined; for example, you can use
the ratio of correctly classified emails. This particular performance measure is called
accuracy, and it is often used in classification tasks.

If you just download a copy of all Wikipedia articles, your computer has a lot more
data, but it is not suddenly better at any task. This is not machine learning.

4 | Chapter 1: The Machine Learning Landscape

Why Use Machine Learning?
Consider how you would write a spam filter using traditional programming techni‐
ques (Figure 1-1):

1. First you would examine what spam typically looks like. You might notice that1.
some words or phrases (such as “4U”, “credit card”, “free”, and “amazing”) tend
to come up a lot in the subject line. Perhaps you would also notice a few other
patterns in the sender’s name, the email’s body, and other parts of the email.

2. You would write a detection algorithm for each of the patterns that you noticed,2.
and your program would flag emails as spam if a number of these patterns were
detected.

3. You would test your program and repeat steps 1 and 2 until it was good enough3.
to launch.

Figure 1-1. The traditional approach

Since the problem is difficult, your program will likely become a long list of complex
rules—pretty hard to maintain.

In contrast, a spam filter based on machine learning techniques automatically learns
which words and phrases are good predictors of spam by detecting unusually fre‐
quent patterns of words in the spam examples compared to the ham examples
(Figure 1-2). The program is much shorter, easier to maintain, and most likely more
accurate.

Why Use Machine Learning? | 5

Figure 1-2. The machine learning approach

What if spammers notice that all their emails containing “4U” are blocked? They
might start writing “For U” instead. A spam filter using traditional programming
techniques would need to be updated to flag “For U” emails. If spammers keep
working around your spam filter, you will need to keep writing new rules forever.

In contrast, a spam filter based on machine learning techniques automatically notices
that “For U” has become unusually frequent in spam flagged by users, and it starts
flagging them without your intervention (Figure 1-3).

Figure 1-3. Automatically adapting to change

Another area where machine learning shines is for problems that either are too com‐
plex for traditional approaches or have no known algorithm. For example, consider
speech recognition. Say you want to start simple and write a program capable of
distinguishing the words “one” and “two”. You might notice that the word “two” starts
with a high-pitch sound (“T”), so you could hardcode an algorithm that measures
high-pitch sound intensity and use that to distinguish ones and twos—but obviously

6 | Chapter 1: The Machine Learning Landscape

this technique will not scale to thousands of words spoken by millions of very
different people in noisy environments and in dozens of languages. The best solution
(at least today) is to write an algorithm that learns by itself, given many example
recordings for each word.

Finally, machine learning can help humans learn (Figure 1-4). ML models can be
inspected to see what they have learned (although for some models this can be
tricky). For instance, once a spam filter has been trained on enough spam, it can
easily be inspected to reveal the list of words and combinations of words that it
believes are the best predictors of spam. Sometimes this will reveal unsuspected
correlations or new trends, and thereby lead to a better understanding of the prob‐
lem. Digging into large amounts of data to discover hidden patterns is called data
mining, and machine learning excels at it.

Figure 1-4. Machine learning can help humans learn

To summarize, machine learning is great for:

• Problems for which existing solutions require a lot of fine-tuning or long lists of•
rules (a machine learning model can often simplify code and perform better than
the traditional approach)

• Complex problems for which using a traditional approach yields no good solu‐•
tion (the best machine learning techniques can perhaps find a solution)

• Fluctuating environments (a machine learning system can easily be retrained on•
new data, always keeping it up to date)

• Getting insights about complex problems and large amounts of data•

Why Use Machine Learning? | 7

Examples of Applications
Let’s look at some concrete examples of machine learning tasks, along with the
techniques that can tackle them:

Analyzing images of products on a production line to automatically classify them
This is image classification, typically performed using convolutional neural net‐
works (CNNs; see Chapter 14) or sometimes transformers (see Chapter 16).

Detecting tumors in brain scans
This is semantic image segmentation, where each pixel in the image is classified
(as we want to determine the exact location and shape of tumors), typically using
CNNs or transformers.

Automatically classifying news articles
This is natural language processing (NLP), and more specifically text classifica‐
tion, which can be tackled using recurrent neural networks (RNNs) and CNNs,
but transformers work even better (see Chapter 16).

Automatically flagging offensive comments on discussion forums
This is also text classification, using the same NLP tools.

Summarizing long documents automatically
This is a branch of NLP called text summarization, again using the same tools.

Creating a chatbot or a personal assistant
This involves many NLP components, including natural language understanding
(NLU) and question-answering modules.

Forecasting your company’s revenue next year, based on many performance metrics
This is a regression task (i.e., predicting values) that may be tackled using any
regression model, such as a linear regression or polynomial regression model
(see Chapter 4), a regression support vector machine (see Chapter 5), a regres‐
sion random forest (see Chapter 7), or an artificial neural network (see Chap‐
ter 10). If you want to take into account sequences of past performance metrics,
you may want to use RNNs, CNNs, or transformers (see Chapters 15 and 16).

Making your app react to voice commands
This is speech recognition, which requires processing audio samples: since they
are long and complex sequences, they are typically processed using RNNs, CNNs,
or transformers (see Chapters 15 and 16).

Detecting credit card fraud
This is anomaly detection, which can be tackled using isolation forests, Gaussian
mixture models (see Chapter 9), or autoencoders (see Chapter 17).

8 | Chapter 1: The Machine Learning Landscape

Segmenting clients based on their purchases so that you can design a different marketing
strategy for each segment

This is clustering, which can be achieved using k-means, DBSCAN, and more
(see Chapter 9).

Representing a complex, high-dimensional dataset in a clear and insightful diagram
This is data visualization, often involving dimensionality reduction techniques
(see Chapter 8).

Recommending a product that a client may be interested in, based on past purchases
This is a recommender system. One approach is to feed past purchases (and
other information about the client) to an artificial neural network (see Chap‐
ter 10), and get it to output the most likely next purchase. This neural net would
typically be trained on past sequences of purchases across all clients.

Building an intelligent bot for a game
This is often tackled using reinforcement learning (RL; see Chapter 18), which is
a branch of machine learning that trains agents (such as bots) to pick the actions
that will maximize their rewards over time (e.g., a bot may get a reward every
time the player loses some life points), within a given environment (such as the
game). The famous AlphaGo program that beat the world champion at the game
of Go was built using RL.

This list could go on and on, but hopefully it gives you a sense of the incredible
breadth and complexity of the tasks that machine learning can tackle, and the types of
techniques that you would use for each task.

Types of Machine Learning Systems
There are so many different types of machine learning systems that it is useful to
classify them in broad categories, based on the following criteria:

• How they are supervised during training (supervised, unsupervised, semi-•
supervised, self-supervised, and others)

• Whether or not they can learn incrementally on the fly (online versus batch•
learning)

• Whether they work by simply comparing new data points to known data points,•
or instead by detecting patterns in the training data and building a predictive
model, much like scientists do (instance-based versus model-based learning)

These criteria are not exclusive; you can combine them in any way you like. For
example, a state-of-the-art spam filter may learn on the fly using a deep neural net‐
work model trained using human-provided examples of spam and ham; this makes it
an online, model-based, supervised learning system.

Types of Machine Learning Systems | 9

1 Fun fact: this odd-sounding name is a statistics term introduced by Francis Galton while he was studying the
fact that the children of tall people tend to be shorter than their parents. Since the children were shorter, he
called this regression to the mean. This name was then applied to the methods he used to analyze correlations
between variables.

Let’s look at each of these criteria a bit more closely.

Training Supervision
ML systems can be classified according to the amount and type of supervision they
get during training. There are many categories, but we’ll discuss the main ones:
supervised learning, unsupervised learning, self-supervised learning, semi-supervised
learning, and reinforcement learning.

Supervised learning
In supervised learning, the training set you feed to the algorithm includes the desired
solutions, called labels (Figure 1-5).

Figure 1-5. A labeled training set for spam classification (an example of supervised
learning)

A typical supervised learning task is classification. The spam filter is a good example
of this: it is trained with many example emails along with their class (spam or ham),
and it must learn how to classify new emails.

Another typical task is to predict a target numeric value, such as the price of a
car, given a set of features (mileage, age, brand, etc.). This sort of task is called
regression (Figure 1-6).1 To train the system, you need to give it many examples of
cars, including both their features and their targets (i.e., their prices).

Note that some regression models can be used for classification as well, and vice
versa. For example, logistic regression is commonly used for classification, as it can

10 | Chapter 1: The Machine Learning Landscape

output a value that corresponds to the probability of belonging to a given class (e.g.,
20% chance of being spam).

Figure 1-6. A regression problem: predict a value, given an input feature (there are
usually multiple input features, and sometimes multiple output values)

The words target and label are generally treated as synonyms in
supervised learning, but target is more common in regression tasks
and label is more common in classification tasks. Moreover, fea‐
tures are sometimes called predictors or attributes. These terms may
refer to individual samples (e.g., “this car’s mileage feature is equal
to 15,000”) or to all samples (e.g., “the mileage feature is strongly
correlated with price”).

Unsupervised learning
In unsupervised learning, as you might guess, the training data is unlabeled (Fig‐
ure 1-7). The system tries to learn without a teacher.

For example, say you have a lot of data about your blog’s visitors. You may want
to run a clustering algorithm to try to detect groups of similar visitors (Figure 1-8).
At no point do you tell the algorithm which group a visitor belongs to: it finds
those connections without your help. For example, it might notice that 40% of your
visitors are teenagers who love comic books and generally read your blog after school,
while 20% are adults who enjoy sci-fi and who visit during the weekends. If you
use a hierarchical clustering algorithm, it may also subdivide each group into smaller
groups. This may help you target your posts for each group.

Types of Machine Learning Systems | 11

Figure 1-7. An unlabeled training set for unsupervised learning

Figure 1-8. Clustering

Visualization algorithms are also good examples of unsupervised learning: you feed
them a lot of complex and unlabeled data, and they output a 2D or 3D representation
of your data that can easily be plotted (Figure 1-9). These algorithms try to preserve
as much structure as they can (e.g., trying to keep separate clusters in the input space
from overlapping in the visualization) so that you can understand how the data is
organized and perhaps identify unsuspected patterns.

A related task is dimensionality reduction, in which the goal is to simplify the data
without losing too much information. One way to do this is to merge several correla‐
ted features into one. For example, a car’s mileage may be strongly correlated with its
age, so the dimensionality reduction algorithm will merge them into one feature that
represents the car’s wear and tear. This is called feature extraction.

12 | Chapter 1: The Machine Learning Landscape

2 Notice how animals are rather well separated from vehicles and how horses are close to deer but far
from birds. Figure reproduced with permission from Richard Socher et al., “Zero-Shot Learning Through
Cross-Modal Transfer”, Proceedings of the 26th International Conference on Neural Information Processing
Systems 1 (2013): 935–943.

Figure 1-9. Example of a t-SNE visualization highlighting semantic clusters2

It is often a good idea to try to reduce the number of dimensions
in your training data using a dimensionality reduction algorithm
before you feed it to another machine learning algorithm (such as
a supervised learning algorithm). It will run much faster, the data
will take up less disk and memory space, and in some cases it may
also perform better.

Yet another important unsupervised task is anomaly detection—for example, detect‐
ing unusual credit card transactions to prevent fraud, catching manufacturing defects,
or automatically removing outliers from a dataset before feeding it to another learn‐
ing algorithm. The system is shown mostly normal instances during training, so it
learns to recognize them; then, when it sees a new instance, it can tell whether it looks
like a normal one or whether it is likely an anomaly (see Figure 1-10). A very similar
task is novelty detection: it aims to detect new instances that look different from all
instances in the training set. This requires having a very “clean” training set, devoid
of any instance that you would like the algorithm to detect. For example, if you have
thousands of pictures of dogs, and 1% of these pictures represent Chihuahuas, then a

Types of Machine Learning Systems | 13

novelty detection algorithm should not treat new pictures of Chihuahuas as novelties.
On the other hand, anomaly detection algorithms may consider these dogs as so rare
and so different from other dogs that they would likely classify them as anomalies (no
offense to Chihuahuas).

Figure 1-10. Anomaly detection

Finally, another common unsupervised task is association rule learning, in which the
goal is to dig into large amounts of data and discover interesting relations between
attributes. For example, suppose you own a supermarket. Running an association rule
on your sales logs may reveal that people who purchase barbecue sauce and potato
chips also tend to buy steak. Thus, you may want to place these items close to one
another.

Semi-supervised learning
Since labeling data is usually time-consuming and costly, you will often have plenty
of unlabeled instances, and few labeled instances. Some algorithms can deal with data
that’s partially labeled. This is called semi-supervised learning (Figure 1-11).

Figure 1-11. Semi-supervised learning with two classes (triangles and squares): the
unlabeled examples (circles) help classify a new instance (the cross) into the triangle class
rather than the square class, even though it is closer to the labeled squares

14 | Chapter 1: The Machine Learning Landscape

3 That’s when the system works perfectly. In practice it often creates a few clusters per person, and sometimes
mixes up two people who look alike, so you may need to provide a few labels per person and manually clean
up some clusters.

Some photo-hosting services, such as Google Photos, are good examples of this. Once
you upload all your family photos to the service, it automatically recognizes that the
same person A shows up in photos 1, 5, and 11, while another person B shows up in
photos 2, 5, and 7. This is the unsupervised part of the algorithm (clustering). Now
all the system needs is for you to tell it who these people are. Just add one label per
person3 and it is able to name everyone in every photo, which is useful for searching
photos.

Most semi-supervised learning algorithms are combinations of unsupervised and
supervised algorithms. For example, a clustering algorithm may be used to group
similar instances together, and then every unlabeled instance can be labeled with the
most common label in its cluster. Once the whole dataset is labeled, it is possible to
use any supervised learning algorithm.

Self-supervised learning
Another approach to machine learning involves actually generating a fully labeled
dataset from a fully unlabeled one. Again, once the whole dataset is labeled, any
supervised learning algorithm can be used. This approach is called self-supervised
learning.

For example, if you have a large dataset of unlabeled images, you can randomly mask
a small part of each image and then train a model to recover the original image
(Figure 1-12). During training, the masked images are used as the inputs to the
model, and the original images are used as the labels.

Figure 1-12. Self-supervised learning example: input (left) and target (right)

Types of Machine Learning Systems | 15

The resulting model may be quite useful in itself—for example, to repair damaged
images or to erase unwanted objects from pictures. But more often than not, a model
trained using self-supervised learning is not the final goal. You’ll usually want to
tweak and fine-tune the model for a slightly different task—one that you actually care
about.

For example, suppose that what you really want is to have a pet classification model:
given a picture of any pet, it will tell you what species it belongs to. If you have a
large dataset of unlabeled photos of pets, you can start by training an image-repairing
model using self-supervised learning. Once it’s performing well, it should be able
to distinguish different pet species: when it repairs an image of a cat whose face is
masked, it must know not to add a dog’s face. Assuming your model’s architecture
allows it (and most neural network architectures do), it is then possible to tweak
the model so that it predicts pet species instead of repairing images. The final step
consists of fine-tuning the model on a labeled dataset: the model already knows what
cats, dogs, and other pet species look like, so this step is only needed so the model
can learn the mapping between the species it already knows and the labels we expect
from it.

Transferring knowledge from one task to another is called transfer
learning, and it’s one of the most important techniques in machine
learning today, especially when using deep neural networks (i.e.,
neural networks composed of many layers of neurons). We will
discuss this in detail in Part II.

Some people consider self-supervised learning to be a part of unsupervised learning,
since it deals with fully unlabeled datasets. But self-supervised learning uses (gener‐
ated) labels during training, so in that regard it’s closer to supervised learning. And
the term “unsupervised learning” is generally used when dealing with tasks like
clustering, dimensionality reduction, or anomaly detection, whereas self-supervised
learning focuses on the same tasks as supervised learning: mainly classification and
regression. In short, it’s best to treat self-supervised learning as its own category.

Reinforcement learning
Reinforcement learning is a very different beast. The learning system, called an agent
in this context, can observe the environment, select and perform actions, and get
rewards in return (or penalties in the form of negative rewards, as shown in Fig‐
ure 1-13). It must then learn by itself what is the best strategy, called a policy, to get
the most reward over time. A policy defines what action the agent should choose
when it is in a given situation.

16 | Chapter 1: The Machine Learning Landscape

Figure 1-13. Reinforcement learning

For example, many robots implement reinforcement learning algorithms to learn
how to walk. DeepMind’s AlphaGo program is also a good example of reinforcement
learning: it made the headlines in May 2017 when it beat Ke Jie, the number one
ranked player in the world at the time, at the game of Go. It learned its winning policy
by analyzing millions of games, and then playing many games against itself. Note that
learning was turned off during the games against the champion; AlphaGo was just
applying the policy it had learned. As you will see in the next section, this is called
offline learning.

Batch Versus Online Learning
Another criterion used to classify machine learning systems is whether or not the
system can learn incrementally from a stream of incoming data.

Types of Machine Learning Systems | 17

Batch learning
In batch learning, the system is incapable of learning incrementally: it must be trained
using all the available data. This will generally take a lot of time and computing
resources, so it is typically done offline. First the system is trained, and then it is
launched into production and runs without learning anymore; it just applies what it
has learned. This is called offline learning.

Unfortunately, a model’s performance tends to decay slowly over time, simply because
the world continues to evolve while the model remains unchanged. This phenom‐
enon is often called model rot or data drift. The solution is to regularly retrain the
model on up-to-date data. How often you need to do that depends on the use case: if
the model classifies pictures of cats and dogs, its performance will decay very slowly,
but if the model deals with fast-evolving systems, for example making predictions on
the financial market, then it is likely to decay quite fast.

Even a model trained to classify pictures of cats and dogs may need
to be retrained regularly, not because cats and dogs will mutate
overnight, but because cameras keep changing, along with image
formats, sharpness, brightness, and size ratios. Moreover, people
may love different breeds next year, or they may decide to dress
their pets with tiny hats—who knows?

If you want a batch learning system to know about new data (such as a new type of
spam), you need to train a new version of the system from scratch on the full dataset
(not just the new data, but also the old data), then replace the old model with the new
one. Fortunately, the whole process of training, evaluating, and launching a machine
learning system can be automated fairly easily (as we saw in Figure 1-3), so even a
batch learning system can adapt to change. Simply update the data and train a new
version of the system from scratch as often as needed.

This solution is simple and often works fine, but training using the full set of data
can take many hours, so you would typically train a new system only every 24 hours
or even just weekly. If your system needs to adapt to rapidly changing data (e.g., to
predict stock prices), then you need a more reactive solution.

Also, training on the full set of data requires a lot of computing resources (CPU,
memory space, disk space, disk I/O, network I/O, etc.). If you have a lot of data and
you automate your system to train from scratch every day, it will end up costing you
a lot of money. If the amount of data is huge, it may even be impossible to use a batch
learning algorithm.

18 | Chapter 1: The Machine Learning Landscape

Finally, if your system needs to be able to learn autonomously and it has limited
resources (e.g., a smartphone application or a rover on Mars), then carrying around
large amounts of training data and taking up a lot of resources to train for hours
every day is a showstopper.

A better option in all these cases is to use algorithms that are capable of learning
incrementally.

Online learning
In online learning, you train the system incrementally by feeding it data instances
sequentially, either individually or in small groups called mini-batches. Each learning
step is fast and cheap, so the system can learn about new data on the fly, as it arrives
(see Figure 1-14).

Figure 1-14. In online learning, a model is trained and launched into production, and
then it keeps learning as new data comes in

Online learning is useful for systems that need to adapt to change extremely rapidly
(e.g., to detect new patterns in the stock market). It is also a good option if you have
limited computing resources; for example, if the model is trained on a mobile device.

Additionally, online learning algorithms can be used to train models on huge datasets
that cannot fit in one machine’s main memory (this is called out-of-core learning).
The algorithm loads part of the data, runs a training step on that data, and repeats the
process until it has run on all of the data (see Figure 1-15).

Types of Machine Learning Systems | 19

Figure 1-15. Using online learning to handle huge datasets

One important parameter of online learning systems is how fast they should adapt
to changing data: this is called the learning rate. If you set a high learning rate, then
your system will rapidly adapt to new data, but it will also tend to quickly forget the
old data (and you don’t want a spam filter to flag only the latest kinds of spam it was
shown). Conversely, if you set a low learning rate, the system will have more inertia;
that is, it will learn more slowly, but it will also be less sensitive to noise in the new
data or to sequences of nonrepresentative data points (outliers).

Out-of-core learning is usually done offline (i.e., not on the live
system), so online learning can be a confusing name. Think of it as
incremental learning.

A big challenge with online learning is that if bad data is fed to the system, the
system’s performance will decline, possibly quickly (depending on the data quality
and learning rate). If it’s a live system, your clients will notice. For example, bad data
could come from a bug (e.g., a malfunctioning sensor on a robot), or it could come
from someone trying to game the system (e.g., spamming a search engine to try to
rank high in search results). To reduce this risk, you need to monitor your system
closely and promptly switch learning off (and possibly revert to a previously working
state) if you detect a drop in performance. You may also want to monitor the input
data and react to abnormal data; for example, using an anomaly detection algorithm
(see Chapter 9).

20 | Chapter 1: The Machine Learning Landscape

Instance-Based Versus Model-Based Learning
One more way to categorize machine learning systems is by how they generalize.
Most machine learning tasks are about making predictions. This means that given a
number of training examples, the system needs to be able to make good predictions
for (generalize to) examples it has never seen before. Having a good performance
measure on the training data is good, but insufficient; the true goal is to perform well
on new instances.

There are two main approaches to generalization: instance-based learning and
model-based learning.

Instance-based learning
Possibly the most trivial form of learning is simply to learn by heart. If you were to
create a spam filter this way, it would just flag all emails that are identical to emails
that have already been flagged by users—not the worst solution, but certainly not the
best.

Instead of just flagging emails that are identical to known spam emails, your spam
filter could be programmed to also flag emails that are very similar to known spam
emails. This requires a measure of similarity between two emails. A (very basic)
similarity measure between two emails could be to count the number of words they
have in common. The system would flag an email as spam if it has many words in
common with a known spam email.

This is called instance-based learning: the system learns the examples by heart, then
generalizes to new cases by using a similarity measure to compare them to the
learned examples (or a subset of them). For example, in Figure 1-16 the new instance
would be classified as a triangle because the majority of the most similar instances
belong to that class.

Figure 1-16. Instance-based learning

Types of Machine Learning Systems | 21

Model-based learning and a typical machine learning workflow
Another way to generalize from a set of examples is to build a model of these
examples and then use that model to make predictions. This is called model-based
learning (Figure 1-17).

Figure 1-17. Model-based learning

For example, suppose you want to know if money makes people happy, so you
download the Better Life Index data from the OECD’s website and World Bank stats
about gross domestic product (GDP) per capita. Then you join the tables and sort by
GDP per capita. Table 1-1 shows an excerpt of what you get.

Table 1-1. Does money make people happier?

Country GDP per capita (USD) Life satisfaction
Turkey 28,384 5.5

Hungary 31,008 5.6

France 42,026 6.5

United States 60,236 6.9

New Zealand 42,404 7.3

Australia 48,698 7.3

Denmark 55,938 7.6

Let’s plot the data for these countries (Figure 1-18).

22 | Chapter 1: The Machine Learning Landscape

https://www.oecdbetterlifeindex.org
https://ourworldindata.org

4 By convention, the Greek letter θ (theta) is frequently used to represent model parameters.

Figure 1-18. Do you see a trend here?

There does seem to be a trend here! Although the data is noisy (i.e., partly random),
it looks like life satisfaction goes up more or less linearly as the country’s GDP per
capita increases. So you decide to model life satisfaction as a linear function of GDP
per capita. This step is called model selection: you selected a linear model of life
satisfaction with just one attribute, GDP per capita (Equation 1-1).

Equation 1-1. A simple linear model

life_satisfaction = θ0 + θ1 × GDP_per_capita

This model has two model parameters, θ0 and θ1.4 By tweaking these parameters, you
can make your model represent any linear function, as shown in Figure 1-19.

Figure 1-19. A few possible linear models

Types of Machine Learning Systems | 23

Before you can use your model, you need to define the parameter values θ0 and θ1.
How can you know which values will make your model perform best? To answer this
question, you need to specify a performance measure. You can either define a utility
function (or fitness function) that measures how good your model is, or you can define
a cost function that measures how bad it is. For linear regression problems, people
typically use a cost function that measures the distance between the linear model’s
predictions and the training examples; the objective is to minimize this distance.

This is where the linear regression algorithm comes in: you feed it your training
examples, and it finds the parameters that make the linear model fit best to your data.
This is called training the model. In our case, the algorithm finds that the optimal
parameter values are θ0 = 3.75 and θ1 = 6.78 × 10–5.

Confusingly, the word “model” can refer to a type of model (e.g.,
linear regression), to a fully specified model architecture (e.g., linear
regression with one input and one output), or to the final trained
model ready to be used for predictions (e.g., linear regression with
one input and one output, using θ0 = 3.75 and θ1 = 6.78 × 10–5).
Model selection consists in choosing the type of model and fully
specifying its architecture. Training a model means running an
algorithm to find the model parameters that will make it best fit the
training data, and hopefully make good predictions on new data.

Now the model fits the training data as closely as possible (for a linear model), as you
can see in Figure 1-20.

Figure 1-20. The linear model that fits the training data best

24 | Chapter 1: The Machine Learning Landscape

5 It’s OK if you don’t understand all the code yet; I will present Scikit-Learn in the following chapters.

You are finally ready to run the model to make predictions. For example, say you
want to know how happy Cypriots are, and the OECD data does not have the
answer. Fortunately, you can use your model to make a good prediction: you look up
Cyprus’s GDP per capita, find $37,655, and then apply your model and find that life
satisfaction is likely to be somewhere around 3.75 + 37,655 × 6.78 × 10–5 = 6.30.

To whet your appetite, Example 1-1 shows the Python code that loads the data,
separates the inputs X from the labels y, creates a scatterplot for visualization, and
then trains a linear model and makes a prediction.5

Example 1-1. Training and running a linear model using Scikit-Learn

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression

Download and prepare the data
data_root = "https://github.com/ageron/data/raw/main/"
lifesat = pd.read_csv(data_root + "lifesat/lifesat.csv")
X = lifesat[["GDP per capita (USD)"]].values
y = lifesat[["Life satisfaction"]].values

Visualize the data
lifesat.plot(kind='scatter', grid=True,
 x="GDP per capita (USD)", y="Life satisfaction")
plt.axis([23_500, 62_500, 4, 9])
plt.show()

Select a linear model
model = LinearRegression()

Train the model
model.fit(X, y)

Make a prediction for Cyprus
X_new = [[37_655.2]] # Cyprus' GDP per capita in 2020
print(model.predict(X_new)) # output: [[6.30165767]]

Types of Machine Learning Systems | 25

If you had used an instance-based learning algorithm instead, you
would have found that Israel has the closest GDP per capita to that
of Cyprus ($38,341), and since the OECD data tells us that Israelis’
life satisfaction is 7.2, you would have predicted a life satisfaction
of 7.2 for Cyprus. If you zoom out a bit and look at the two
next-closest countries, you will find Lithuania and Slovenia, both
with a life satisfaction of 5.9. Averaging these three values, you get
6.33, which is pretty close to your model-based prediction. This
simple algorithm is called k-nearest neighbors regression (in this
example, k = 3).
Replacing the linear regression model with k-nearest neighbors
regression in the previous code is as easy as replacing these lines:

from sklearn.linear_model import LinearRegression
model = LinearRegression()

with these two:
from sklearn.neighbors import KNeighborsRegressor
model = KNeighborsRegressor(n_neighbors=3)

If all went well, your model will make good predictions. If not, you may need to
use more attributes (employment rate, health, air pollution, etc.), get more or better-
quality training data, or perhaps select a more powerful model (e.g., a polynomial
regression model).

In summary:

• You studied the data.•
• You selected a model.•
• You trained it on the training data (i.e., the learning algorithm searched for the•

model parameter values that minimize a cost function).
• Finally, you applied the model to make predictions on new cases (this is called•

inference), hoping that this model will generalize well.

This is what a typical machine learning project looks like. In Chapter 2 you will
experience this firsthand by going through a project end to end.

We have covered a lot of ground so far: you now know what machine learning is
really about, why it is useful, what some of the most common categories of ML
systems are, and what a typical project workflow looks like. Now let’s look at what can
go wrong in learning and prevent you from making accurate predictions.

26 | Chapter 1: The Machine Learning Landscape

6 For example, knowing whether to write “to”, “two”, or “too”, depending on the context.
7 Peter Norvig et al., “The Unreasonable Effectiveness of Data”, IEEE Intelligent Systems 24, no. 2 (2009): 8–12.

Main Challenges of Machine Learning
In short, since your main task is to select a model and train it on some data, the two
things that can go wrong are “bad model” and “bad data”. Let’s start with examples of
bad data.

Insufficient Quantity of Training Data
For a toddler to learn what an apple is, all it takes is for you to point to an apple and
say “apple” (possibly repeating this procedure a few times). Now the child is able to
recognize apples in all sorts of colors and shapes. Genius.

Machine learning is not quite there yet; it takes a lot of data for most machine
learning algorithms to work properly. Even for very simple problems you typically
need thousands of examples, and for complex problems such as image or speech
recognition you may need millions of examples (unless you can reuse parts of an
existing model).

The Unreasonable Effectiveness of Data
In a famous paper published in 2001, Microsoft researchers Michele Banko and Eric
Brill showed that very different machine learning algorithms, including fairly simple
ones, performed almost identically well on a complex problem of natural language
disambiguation6 once they were given enough data (as you can see in Figure 1-21).

As the authors put it, “these results suggest that we may want to reconsider the trade-
off between spending time and money on algorithm development versus spending it
on corpus development”.

The idea that data matters more than algorithms for complex problems was further
popularized by Peter Norvig et al. in a paper titled “The Unreasonable Effectiveness of
Data”, published in 2009.7 It should be noted, however, that small and medium-sized
datasets are still very common, and it is not always easy or cheap to get extra training
data—so don’t abandon algorithms just yet.

Main Challenges of Machine Learning | 27

https://homl.info/6
https://homl.info/7
https://homl.info/7

8 Figure reproduced with permission from Michele Banko and Eric Brill, “Scaling to Very Very Large Corpora
for Natural Language Disambiguation”, Proceedings of the 39th Annual Meeting of the Association for Computa‐
tional Linguistics (2001): 26–33.

Figure 1-21. The importance of data versus algorithms8

Nonrepresentative Training Data
In order to generalize well, it is crucial that your training data be representative of
the new cases you want to generalize to. This is true whether you use instance-based
learning or model-based learning.

For example, the set of countries you used earlier for training the linear model was
not perfectly representative; it did not contain any country with a GDP per capita
lower than $23,500 or higher than $62,500. Figure 1-22 shows what the data looks
like when you add such countries.

If you train a linear model on this data, you get the solid line, while the old model is
represented by the dotted line. As you can see, not only does adding a few missing
countries significantly alter the model, but it makes it clear that such a simple linear
model is probably never going to work well. It seems that very rich countries are not
happier than moderately rich countries (in fact, they seem slightly unhappier!), and
conversely some poor countries seem happier than many rich countries.

By using a nonrepresentative training set, you trained a model that is unlikely to
make accurate predictions, especially for very poor and very rich countries.

28 | Chapter 1: The Machine Learning Landscape

Figure 1-22. A more representative training sample

It is crucial to use a training set that is representative of the cases you want to
generalize to. This is often harder than it sounds: if the sample is too small, you
will have sampling noise (i.e., nonrepresentative data as a result of chance), but even
very large samples can be nonrepresentative if the sampling method is flawed. This is
called sampling bias.

Examples of Sampling Bias
Perhaps the most famous example of sampling bias happened during the US presi‐
dential election in 1936, which pitted Landon against Roosevelt: the Literary Digest
conducted a very large poll, sending mail to about 10 million people. It got 2.4 million
answers, and predicted with high confidence that Landon would get 57% of the votes.
Instead, Roosevelt won with 62% of the votes. The flaw was in the Literary Digest’s
sampling method:

• First, to obtain the addresses to send the polls to, the Literary Digest used tele‐•
phone directories, lists of magazine subscribers, club membership lists, and the
like. All of these lists tended to favor wealthier people, who were more likely to
vote Republican (hence Landon).

• Second, less than 25% of the people who were polled answered. Again this•
introduced a sampling bias, by potentially ruling out people who didn’t care
much about politics, people who didn’t like the Literary Digest, and other key
groups. This is a special type of sampling bias called nonresponse bias.

Here is another example: say you want to build a system to recognize funk music
videos. One way to build your training set is to search for “funk music” on YouTube
and use the resulting videos. But this assumes that YouTube’s search engine returns
a set of videos that are representative of all the funk music videos on YouTube. In
reality, the search results are likely to be biased toward popular artists (and if you live

Main Challenges of Machine Learning | 29

in Brazil you will get a lot of “funk carioca” videos, which sound nothing like James
Brown). On the other hand, how else can you get a large training set?

Poor-Quality Data
Obviously, if your training data is full of errors, outliers, and noise (e.g., due to poor-
quality measurements), it will make it harder for the system to detect the underlying
patterns, so your system is less likely to perform well. It is often well worth the effort
to spend time cleaning up your training data. The truth is, most data scientists spend
a significant part of their time doing just that. The following are a couple examples of
when you’d want to clean up training data:

• If some instances are clearly outliers, it may help to simply discard them or try to•
fix the errors manually.

• If some instances are missing a few features (e.g., 5% of your customers did not•
specify their age), you must decide whether you want to ignore this attribute
altogether, ignore these instances, fill in the missing values (e.g., with the median
age), or train one model with the feature and one model without it.

Irrelevant Features
As the saying goes: garbage in, garbage out. Your system will only be capable of
learning if the training data contains enough relevant features and not too many
irrelevant ones. A critical part of the success of a machine learning project is coming
up with a good set of features to train on. This process, called feature engineering,
involves the following steps:

• Feature selection (selecting the most useful features to train on among existing•
features)

• Feature extraction (combining existing features to produce a more useful one—as•
we saw earlier, dimensionality reduction algorithms can help)

• Creating new features by gathering new data•

Now that we have looked at many examples of bad data, let’s look at a couple
examples of bad algorithms.

Overfitting the Training Data
Say you are visiting a foreign country and the taxi driver rips you off. You might be
tempted to say that all taxi drivers in that country are thieves. Overgeneralizing is
something that we humans do all too often, and unfortunately machines can fall into
the same trap if we are not careful. In machine learning this is called overfitting: it

30 | Chapter 1: The Machine Learning Landscape

means that the model performs well on the training data, but it does not generalize
well.

Figure 1-23 shows an example of a high-degree polynomial life satisfaction model
that strongly overfits the training data. Even though it performs much better on the
training data than the simple linear model, would you really trust its predictions?

Figure 1-23. Overfitting the training data

Complex models such as deep neural networks can detect subtle patterns in the
data, but if the training set is noisy, or if it is too small, which introduces sampling
noise, then the model is likely to detect patterns in the noise itself (as in the taxi
driver example). Obviously these patterns will not generalize to new instances. For
example, say you feed your life satisfaction model many more attributes, including
uninformative ones such as the country’s name. In that case, a complex model may
detect patterns like the fact that all countries in the training data with a w in their
name have a life satisfaction greater than 7: New Zealand (7.3), Norway (7.6), Sweden
(7.3), and Switzerland (7.5). How confident are you that the w-satisfaction rule
generalizes to Rwanda or Zimbabwe? Obviously this pattern occurred in the training
data by pure chance, but the model has no way to tell whether a pattern is real or
simply the result of noise in the data.

Overfitting happens when the model is too complex relative to
the amount and noisiness of the training data. Here are possible
solutions:

• Simplify the model by selecting one with fewer parameters•
(e.g., a linear model rather than a high-degree polynomial
model), by reducing the number of attributes in the training
data, or by constraining the model.

• Gather more training data.•
• Reduce the noise in the training data (e.g., fix data errors and•

remove outliers).

Main Challenges of Machine Learning | 31

Constraining a model to make it simpler and reduce the risk of overfitting is called
regularization. For example, the linear model we defined earlier has two parameters,
θ0 and θ1. This gives the learning algorithm two degrees of freedom to adapt the model
to the training data: it can tweak both the height (θ0) and the slope (θ1) of the line. If
we forced θ1 = 0, the algorithm would have only one degree of freedom and would
have a much harder time fitting the data properly: all it could do is move the line
up or down to get as close as possible to the training instances, so it would end up
around the mean. A very simple model indeed! If we allow the algorithm to modify
θ1 but we force it to keep it small, then the learning algorithm will effectively have
somewhere in between one and two degrees of freedom. It will produce a model that’s
simpler than one with two degrees of freedom, but more complex than one with just
one. You want to find the right balance between fitting the training data perfectly and
keeping the model simple enough to ensure that it will generalize well.

Figure 1-24 shows three models. The dotted line represents the original model that
was trained on the countries represented as circles (without the countries represented
as squares), the solid line is our second model trained with all countries (circles and
squares), and the dashed line is a model trained with the same data as the first model
but with a regularization constraint. You can see that regularization forced the model
to have a smaller slope: this model does not fit the training data (circles) as well as
the first model, but it actually generalizes better to new examples that it did not see
during training (squares).

Figure 1-24. Regularization reduces the risk of overfitting

The amount of regularization to apply during learning can be controlled by a hyper‐
parameter. A hyperparameter is a parameter of a learning algorithm (not of the
model). As such, it is not affected by the learning algorithm itself; it must be set
prior to training and remains constant during training. If you set the regularization
hyperparameter to a very large value, you will get an almost flat model (a slope close
to zero); the learning algorithm will almost certainly not overfit the training data, but
it will be less likely to find a good solution. Tuning hyperparameters is an important

32 | Chapter 1: The Machine Learning Landscape

part of building a machine learning system (you will see a detailed example in the
next chapter).

Underfitting the Training Data
As you might guess, underfitting is the opposite of overfitting: it occurs when your
model is too simple to learn the underlying structure of the data. For example, a
linear model of life satisfaction is prone to underfit; reality is just more complex
than the model, so its predictions are bound to be inaccurate, even on the training
examples.

Here are the main options for fixing this problem:

• Select a more powerful model, with more parameters.•
• Feed better features to the learning algorithm (feature engineering).•
• Reduce the constraints on the model (for example by reducing the regularization•

hyperparameter).

Stepping Back
By now you know a lot about machine learning. However, we went through so many
concepts that you may be feeling a little lost, so let’s step back and look at the big
picture:

• Machine learning is about making machines get better at some task by learning•
from data, instead of having to explicitly code rules.

• There are many different types of ML systems: supervised or not, batch or online,•
instance-based or model-based.

• In an ML project you gather data in a training set, and you feed the training set to•
a learning algorithm. If the algorithm is model-based, it tunes some parameters
to fit the model to the training set (i.e., to make good predictions on the training
set itself), and then hopefully it will be able to make good predictions on new
cases as well. If the algorithm is instance-based, it just learns the examples by
heart and generalizes to new instances by using a similarity measure to compare
them to the learned instances.

• The system will not perform well if your training set is too small, or if the data•
is not representative, is noisy, or is polluted with irrelevant features (garbage in,
garbage out). Lastly, your model needs to be neither too simple (in which case it
will underfit) nor too complex (in which case it will overfit).

There’s just one last important topic to cover: once you have trained a model, you
don’t want to just “hope” it generalizes to new cases. You want to evaluate it and
fine-tune it if necessary. Let’s see how to do that.

Main Challenges of Machine Learning | 33

Testing and Validating
The only way to know how well a model will generalize to new cases is to actually
try it out on new cases. One way to do that is to put your model in production and
monitor how well it performs. This works well, but if your model is horribly bad,
your users will complain—not the best idea.

A better option is to split your data into two sets: the training set and the test set.
As these names imply, you train your model using the training set, and you test it
using the test set. The error rate on new cases is called the generalization error (or
out-of-sample error), and by evaluating your model on the test set, you get an estimate
of this error. This value tells you how well your model will perform on instances it
has never seen before.

If the training error is low (i.e., your model makes few mistakes on the training
set) but the generalization error is high, it means that your model is overfitting the
training data.

It is common to use 80% of the data for training and hold out 20%
for testing. However, this depends on the size of the dataset: if it
contains 10 million instances, then holding out 1% means your test
set will contain 100,000 instances, probably more than enough to
get a good estimate of the generalization error.

Hyperparameter Tuning and Model Selection
Evaluating a model is simple enough: just use a test set. But suppose you are hesitat‐
ing between two types of models (say, a linear model and a polynomial model): how
can you decide between them? One option is to train both and compare how well
they generalize using the test set.

Now suppose that the linear model generalizes better, but you want to apply some
regularization to avoid overfitting. The question is, how do you choose the value of
the regularization hyperparameter? One option is to train 100 different models using
100 different values for this hyperparameter. Suppose you find the best hyperparame‐
ter value that produces a model with the lowest generalization error—say, just 5%
error. You launch this model into production, but unfortunately it does not perform
as well as expected and produces 15% errors. What just happened?

The problem is that you measured the generalization error multiple times on the test
set, and you adapted the model and hyperparameters to produce the best model for
that particular set. This means the model is unlikely to perform as well on new data.

A common solution to this problem is called holdout validation (Figure 1-25): you
simply hold out part of the training set to evaluate several candidate models and

34 | Chapter 1: The Machine Learning Landscape

select the best one. The new held-out set is called the validation set (or the devel‐
opment set, or dev set). More specifically, you train multiple models with various
hyperparameters on the reduced training set (i.e., the full training set minus the
validation set), and you select the model that performs best on the validation set.
After this holdout validation process, you train the best model on the full training set
(including the validation set), and this gives you the final model. Lastly, you evaluate
this final model on the test set to get an estimate of the generalization error.

Figure 1-25. Model selection using holdout validation

This solution usually works quite well. However, if the validation set is too small,
then the model evaluations will be imprecise: you may end up selecting a suboptimal
model by mistake. Conversely, if the validation set is too large, then the remaining
training set will be much smaller than the full training set. Why is this bad? Well,
since the final model will be trained on the full training set, it is not ideal to compare
candidate models trained on a much smaller training set. It would be like selecting
the fastest sprinter to participate in a marathon. One way to solve this problem is
to perform repeated cross-validation, using many small validation sets. Each model
is evaluated once per validation set after it is trained on the rest of the data. By
averaging out all the evaluations of a model, you get a much more accurate measure
of its performance. There is a drawback, however: the training time is multiplied by
the number of validation sets.

Data Mismatch
In some cases, it’s easy to get a large amount of data for training, but this data
probably won’t be perfectly representative of the data that will be used in production.
For example, suppose you want to create a mobile app to take pictures of flowers and
automatically determine their species. You can easily download millions of pictures

Testing and Validating | 35

of flowers on the web, but they won’t be perfectly representative of the pictures that
will actually be taken using the app on a mobile device. Perhaps you only have 1,000
representative pictures (i.e., actually taken with the app).

In this case, the most important rule to remember is that both the validation set and
the test set must be as representative as possible of the data you expect to use in
production, so they should be composed exclusively of representative pictures: you
can shuffle them and put half in the validation set and half in the test set (making
sure that no duplicates or near-duplicates end up in both sets). After training your
model on the web pictures, if you observe that the performance of the model on the
validation set is disappointing, you will not know whether this is because your model
has overfit the training set, or whether this is just due to the mismatch between the
web pictures and the mobile app pictures.

One solution is to hold out some of the training pictures (from the web) in yet
another set that Andrew Ng dubbed the train-dev set (Figure 1-26). After the model
is trained (on the training set, not on the train-dev set), you can evaluate it on the
train-dev set. If the model performs poorly, then it must have overfit the training set,
so you should try to simplify or regularize the model, get more training data, and
clean up the training data. But if it performs well on the train-dev set, then you can
evaluate the model on the dev set. If it performs poorly, then the problem must be
coming from the data mismatch. You can try to tackle this problem by preprocessing
the web images to make them look more like the pictures that will be taken by the
mobile app, and then retraining the model. Once you have a model that performs
well on both the train-dev set and the dev set, you can evaluate it one last time on the
test set to know how well it is likely to perform in production.

Figure 1-26. When real data is scarce (right), you may use similar abundant data (left)
for training and hold out some of it in a train-dev set to evaluate overfitting; the real
data is then used to evaluate data mismatch (dev set) and to evaluate the final model’s
performance (test set)

36 | Chapter 1: The Machine Learning Landscape

9 David Wolpert, “The Lack of A Priori Distinctions Between Learning Algorithms”, Neural Computation 8, no.
7 (1996): 1341–1390.

No Free Lunch Theorem
A model is a simplified representation of the data. The simplifications are meant to
discard the superfluous details that are unlikely to generalize to new instances. When
you select a particular type of model, you are implicitly making assumptions about
the data. For example, if you choose a linear model, you are implicitly assuming that
the data is fundamentally linear and that the distance between the instances and the
straight line is just noise, which can safely be ignored.

In a famous 1996 paper,9 David Wolpert demonstrated that if you make absolutely
no assumption about the data, then there is no reason to prefer one model over any
other. This is called the No Free Lunch (NFL) theorem. For some datasets the best
model is a linear model, while for other datasets it is a neural network. There is no
model that is a priori guaranteed to work better (hence the name of the theorem).
The only way to know for sure which model is best is to evaluate them all. Since
this is not possible, in practice you make some reasonable assumptions about the
data and evaluate only a few reasonable models. For example, for simple tasks you
may evaluate linear models with various levels of regularization, and for a complex
problem you may evaluate various neural networks.

Exercises
In this chapter we have covered some of the most important concepts in machine
learning. In the next chapters we will dive deeper and write more code, but before we
do, make sure you can answer the following questions:

1. How would you define machine learning?1.
2. Can you name four types of applications where it shines?2.
3. What is a labeled training set?3.
4. What are the two most common supervised tasks?4.
5. Can you name four common unsupervised tasks?5.
6. What type of algorithm would you use to allow a robot to walk in various6.

unknown terrains?
7. What type of algorithm would you use to segment your customers into multiple7.

groups?
8. Would you frame the problem of spam detection as a supervised learning prob‐8.

lem or an unsupervised learning problem?

Exercises | 37

https://homl.info/8

9. What is an online learning system?9.
10. What is out-of-core learning?10.
11. What type of algorithm relies on a similarity measure to make predictions?11.
12. What is the difference between a model parameter and a model hyperparameter?12.
13. What do model-based algorithms search for? What is the most common strategy13.

they use to succeed? How do they make predictions?
14. Can you name four of the main challenges in machine learning?14.
15. If your model performs great on the training data but generalizes poorly to new15.

instances, what is happening? Can you name three possible solutions?
16. What is a test set, and why would you want to use it?16.
17. What is the purpose of a validation set?17.
18. What is the train-dev set, when do you need it, and how do you use it?18.
19. What can go wrong if you tune hyperparameters using the test set?19.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

38 | Chapter 1: The Machine Learning Landscape

https://homl.info/colab3

CHAPTER 2

End-to-End Machine Learning Project

In this chapter you will work through an example project end to end, pretending to
be a recently hired data scientist at a real estate company. This example is fictitious;
the goal is to illustrate the main steps of a machine learning project, not to learn
anything about the real estate business. Here are the main steps we will walk through:

1. Look at the big picture.1.
2. Get the data.2.
3. Explore and visualize the data to gain insights.3.
4. Prepare the data for machine learning algorithms.4.
5. Select a model and train it.5.
6. Fine-tune your model.6.
7. Present your solution.7.
8. Launch, monitor, and maintain your system.8.

Working with Real Data
When you are learning about machine learning, it is best to experiment with real-
world data, not artificial datasets. Fortunately, there are thousands of open datasets to
choose from, ranging across all sorts of domains. Here are a few places you can look
to get data:

• Popular open data repositories:•
— OpenML.org—
— Kaggle.com—

39

https://openml.org
https://kaggle.com/datasets

1 The original dataset appeared in R. Kelley Pace and Ronald Barry, “Sparse Spatial Autoregressions”, Statistics
& Probability Letters 33, no. 3 (1997): 291–297.

— PapersWithCode.com—
— UC Irvine Machine Learning Repository—
— Amazon’s AWS datasets—
— TensorFlow datasets—

• Meta portals (they list open data repositories):•
— DataPortals.org—
— OpenDataMonitor.eu—

• Other pages listing many popular open data repositories:•
— Wikipedia’s list of machine learning datasets—
— Quora.com—
— The datasets subreddit—

In this chapter we’ll use the California Housing Prices dataset from the StatLib
repository1 (see Figure 2-1). This dataset is based on data from the 1990 California
census. It is not exactly recent (a nice house in the Bay Area was still affordable at the
time), but it has many qualities for learning, so we will pretend it is recent data. For
teaching purposes I’ve added a categorical attribute and removed a few features.

Figure 2-1. California housing prices

40 | Chapter 2: End-to-End Machine Learning Project

https://paperswithcode.com/datasets
https://archive.ics.uci.edu/ml
https://registry.opendata.aws
https://tensorflow.org/datasets
https://dataportals.org
https://opendatamonitor.eu
https://homl.info/9
https://homl.info/10
https://reddit.com/r/datasets

2 A piece of information fed to a machine learning system is often called a signal, in reference to Claude
Shannon’s information theory, which he developed at Bell Labs to improve telecommunications. His theory:
you want a high signal-to-noise ratio.

Look at the Big Picture
Welcome to the Machine Learning Housing Corporation! Your first task is to use
California census data to build a model of housing prices in the state. This data
includes metrics such as the population, median income, and median housing price
for each block group in California. Block groups are the smallest geographical unit
for which the US Census Bureau publishes sample data (a block group typically has a
population of 600 to 3,000 people). I will call them “districts” for short.

Your model should learn from this data and be able to predict the median housing
price in any district, given all the other metrics.

Since you are a well-organized data scientist, the first thing you
should do is pull out your machine learning project checklist. You
can start with the one in Appendix A; it should work reasonably
well for most machine learning projects, but make sure to adapt
it to your needs. In this chapter we will go through many check‐
list items, but we will also skip a few, either because they are
self-explanatory or because they will be discussed in later chapters.

Frame the Problem
The first question to ask your boss is what exactly the business objective is. Building a
model is probably not the end goal. How does the company expect to use and benefit
from this model? Knowing the objective is important because it will determine
how you frame the problem, which algorithms you will select, which performance
measure you will use to evaluate your model, and how much effort you will spend
tweaking it.

Your boss answers that your model’s output (a prediction of a district’s median
housing price) will be fed to another machine learning system (see Figure 2-2), along
with many other signals.2 This downstream system will determine whether it is worth
investing in a given area. Getting this right is critical, as it directly affects revenue.

The next question to ask your boss is what the current solution looks like (if
any). The current situation will often give you a reference for performance, as
well as insights on how to solve the problem. Your boss answers that the district
housing prices are currently estimated manually by experts: a team gathers up-to-date
information about a district, and when they cannot get the median housing price,
they estimate it using complex rules.

Look at the Big Picture | 41

Figure 2-2. A machine learning pipeline for real estate investments

This is costly and time-consuming, and their estimates are not great; in cases where
they manage to find out the actual median housing price, they often realize that their
estimates were off by more than 30%. This is why the company thinks that it would
be useful to train a model to predict a district’s median housing price, given other
data about that district. The census data looks like a great dataset to exploit for this
purpose, since it includes the median housing prices of thousands of districts, as well
as other data.

Pipelines
A sequence of data processing components is called a data pipeline. Pipelines are very
common in machine learning systems, since there is a lot of data to manipulate and
many data transformations to apply.

Components typically run asynchronously. Each component pulls in a large amount
of data, processes it, and spits out the result in another data store. Then, some time
later, the next component in the pipeline pulls in this data and spits out its own
output. Each component is fairly self-contained: the interface between components
is simply the data store. This makes the system simple to grasp (with the help of a
data flow graph), and different teams can focus on different components. Moreover,
if a component breaks down, the downstream components can often continue to
run normally (at least for a while) by just using the last output from the broken
component. This makes the architecture quite robust.

On the other hand, a broken component can go unnoticed for some time if proper
monitoring is not implemented. The data gets stale and the overall system’s perfor‐
mance drops.

42 | Chapter 2: End-to-End Machine Learning Project

With all this information, you are now ready to start designing your system. First,
determine what kind of training supervision the model will need: is it a supervised,
unsupervised, semi-supervised, self-supervised, or reinforcement learning task? And
is it a classification task, a regression task, or something else? Should you use batch
learning or online learning techniques? Before you read on, pause and try to answer
these questions for yourself.

Have you found the answers? Let’s see. This is clearly a typical supervised learning
task, since the model can be trained with labeled examples (each instance comes
with the expected output, i.e., the district’s median housing price). It is a typical
regression task, since the model will be asked to predict a value. More specifically,
this is a multiple regression problem, since the system will use multiple features to
make a prediction (the district’s population, the median income, etc.). It is also
a univariate regression problem, since we are only trying to predict a single value for
each district. If we were trying to predict multiple values per district, it would be a
multivariate regression problem. Finally, there is no continuous flow of data coming
into the system, there is no particular need to adjust to changing data rapidly, and the
data is small enough to fit in memory, so plain batch learning should do just fine.

If the data were huge, you could either split your batch learning
work across multiple servers (using the MapReduce technique) or
use an online learning technique.

Select a Performance Measure
Your next step is to select a performance measure. A typical performance measure
for regression problems is the root mean square error (RMSE). It gives an idea of how
much error the system typically makes in its predictions, with a higher weight given
to large errors. Equation 2-1 shows the mathematical formula to compute the RMSE.

Equation 2-1. Root mean square error (RMSE)

RMSE X,ℎ = 1
m

∑
i = 1

m
ℎ x i − y i 2

Look at the Big Picture | 43

3 Recall that the transpose operator flips a column vector into a row vector (and vice versa).

Notations
This equation introduces several very common machine learning notations that I will
use throughout this book:

• m is the number of instances in the dataset you are measuring the RMSE on.•
— For example, if you are evaluating the RMSE on a validation set of 2,000—

districts, then m = 2,000.
• x(i) is a vector of all the feature values (excluding the label) of the ith instance in•

the dataset, and y(i) is its label (the desired output value for that instance).
— For example, if the first district in the dataset is located at longitude –118.29°,—

latitude 33.91°, and it has 1,416 inhabitants with a median income of $38,372,
and the median house value is $156,400 (ignoring other features for now),
then:

x 1 =

−118.29
33.91
1,416

38,372

and:

y 1 = 156,400

• X is a matrix containing all the feature values (excluding labels) of all instances•
in the dataset. There is one row per instance, and the ith row is equal to the
transpose of x(i), noted (x(i))⊺.3

— For example, if the first district is as just described, then the matrix X looks—
like this:

X =

x 1 ⊺

x 2 ⊺

⋮

x 1999 ⊺

x 2000 ⊺

=
−118.29 33.91 1,416 38,372
⋮ ⋮ ⋮ ⋮

44 | Chapter 2: End-to-End Machine Learning Project

• h is your system’s prediction function, also called a hypothesis. When your system•
is given an instance’s feature vector x(i), it outputs a predicted value ŷ(i) = h(x(i))
for that instance (ŷ is pronounced “y-hat”).
— For example, if your system predicts that the median housing price in the first—

district is $158,400, then ŷ(1) = h(x(1)) = 158,400. The prediction error for this
district is ŷ(1) – y(1) = 2,000.

• RMSE(X,h) is the cost function measured on the set of examples using your•
hypothesis h.

We use lowercase italic font for scalar values (such as m or y(i)) and function names
(such as h), lowercase bold font for vectors (such as x(i)), and uppercase bold font for
matrices (such as X).

Although the RMSE is generally the preferred performance measure for regression
tasks, in some contexts you may prefer to use another function. For example, if there
are many outlier districts. In that case, you may consider using the mean absolute
error (MAE, also called the average absolute deviation), shown in Equation 2-2:

Equation 2-2. Mean absolute error (MAE)

MAE X,ℎ = 1
m

∑
i = 1

m
ℎ x i − y i

Both the RMSE and the MAE are ways to measure the distance between two vectors:
the vector of predictions and the vector of target values. Various distance measures,
or norms, are possible:

• Computing the root of a sum of squares (RMSE) corresponds to the Euclidean•
norm: this is the notion of distance we are all familiar with. It is also called the ℓ2
norm, noted ∥ · ∥2 (or just ∥ · ∥).

• Computing the sum of absolutes (MAE) corresponds to the ℓ1 norm, noted ∥ · ∥1.•
This is sometimes called the Manhattan norm because it measures the distance
between two points in a city if you can only travel along orthogonal city blocks.

• More generally, the ℓk norm of a vector v containing n elements is defined as•
∥v∥k = (|v1|k + |v2|k + ... + |vn|k)1/k. ℓ0 gives the number of nonzero elements in the
vector, and ℓ∞ gives the maximum absolute value in the vector.

The higher the norm index, the more it focuses on large values and neglects small
ones. This is why the RMSE is more sensitive to outliers than the MAE. But when
outliers are exponentially rare (like in a bell-shaped curve), the RMSE performs very
well and is generally preferred.

Look at the Big Picture | 45

Check the Assumptions
Lastly, it is good practice to list and verify the assumptions that have been made so
far (by you or others); this can help you catch serious issues early on. For example,
the district prices that your system outputs are going to be fed into a downstream
machine learning system, and you assume that these prices are going to be used as
such. But what if the downstream system converts the prices into categories (e.g.,
“cheap”, “medium”, or “expensive”) and then uses those categories instead of the prices
themselves? In this case, getting the price perfectly right is not important at all; your
system just needs to get the category right. If that’s so, then the problem should have
been framed as a classification task, not a regression task. You don’t want to find this
out after working on a regression system for months.

Fortunately, after talking with the team in charge of the downstream system, you are
confident that they do indeed need the actual prices, not just categories. Great! You’re
all set, the lights are green, and you can start coding now!

Get the Data
It’s time to get your hands dirty. Don’t hesitate to pick up your laptop and walk
through the code examples. As I mentioned in the preface, all the code examples
in this book are open source and available online as Jupyter notebooks, which are
interactive documents containing text, images, and executable code snippets (Python
in our case). In this book I will assume you are running these notebooks on Google
Colab, a free service that lets you run any Jupyter notebook directly online, without
having to install anything on your machine. If you want to use another online plat‐
form (e.g., Kaggle) or if you want to install everything locally on your own machine,
please see the instructions on the book’s GitHub page.

Running the Code Examples Using Google Colab
First, open a web browser and visit https://homl.info/colab3: this will lead you to
Google Colab, and it will display the list of Jupyter notebooks for this book (see
Figure 2-3). You will find one notebook per chapter, plus a few extra notebooks and
tutorials for NumPy, Matplotlib, Pandas, linear algebra, and differential calculus. For
example, if you click 02_end_to_end_machine_learning_project.ipynb, the notebook
from Chapter 2 will open up in Google Colab (see Figure 2-4).

A Jupyter notebook is composed of a list of cells. Each cell contains either executable
code or text. Try double-clicking the first text cell (which contains the sentence
“Welcome to Machine Learning Housing Corp.!”). This will open the cell for editing.
Notice that Jupyter notebooks use Markdown syntax for formatting (e.g., **bold**,
italics, # Title, [url](link text), and so on). Try modifying this text, then
press Shift-Enter to see the result.

46 | Chapter 2: End-to-End Machine Learning Project

https://github.com/ageron/handson-ml3
https://homl.info/colab3

Figure 2-3. List of notebooks in Google Colab

Figure 2-4. Your notebook in Google Colab

Get the Data | 47

Next, create a new code cell by selecting Insert → “Code cell” from the menu.
Alternatively, you can click the + Code button in the toolbar, or hover your mouse
over the bottom of a cell until you see + Code and + Text appear, then click + Code.
In the new code cell, type some Python code, such as print("Hello World"), then
press Shift-Enter to run this code (or click the ▷ button on the left side of the cell).

If you’re not logged in to your Google account, you’ll be asked to log in now (if you
don’t already have a Google account, you’ll need to create one). Once you are logged
in, when you try to run the code you’ll see a security warning telling you that this
notebook was not authored by Google. A malicious person could create a notebook
that tries to trick you into entering your Google credentials so they can access your
personal data, so before you run a notebook, always make sure you trust its author
(or double-check what each code cell will do before running it). Assuming you trust
me (or you plan to check every code cell), you can now click “Run anyway”.

Colab will then allocate a new runtime for you: this is a free virtual machine located
on Google’s servers that contains a bunch of tools and Python libraries, including
everything you’ll need for most chapters (in some chapters, you’ll need to run a
command to install additional libraries). This will take a few seconds. Next, Colab
will automatically connect to this runtime and use it to execute your new code cell.
Importantly, the code runs on the runtime, not on your machine. The code’s output
will be displayed under the cell. Congrats, you’ve run some Python code on Colab!

To insert a new code cell, you can also type Ctrl-M (or Cmd-M
on macOS) followed by A (to insert above the active cell) or B (to
insert below). There are many other keyboard shortcuts available:
you can view and edit them by typing Ctrl-M (or Cmd-M) then
H. If you choose to run the notebooks on Kaggle or on your own
machine using JupyterLab or an IDE such as Visual Studio Code
with the Jupyter extension, you will see some minor differences—
runtimes are called kernels, the user interface and keyboard short‐
cuts are slightly different, etc.—but switching from one Jupyter
environment to another is not too hard.

Saving Your Code Changes and Your Data
You can make changes to a Colab notebook, and they will persist for as long as
you keep your browser tab open. But once you close it, the changes will be lost.
To avoid this, make sure you save a copy of the notebook to your Google Drive by
selecting File → “Save a copy in Drive”. Alternatively, you can download the notebook
to your computer by selecting File → Download → “Download .ipynb”. Then you can
later visit https://colab.research.google.com and open the notebook again (either from
Google Drive or by uploading it from your computer).

48 | Chapter 2: End-to-End Machine Learning Project

https://colab.research.google.com

Google Colab is meant only for interactive use: you can play
around in the notebooks and tweak the code as you like, but you
cannot let the notebooks run unattended for a long period of time,
or else the runtime will be shut down and all of its data will be lost.

If the notebook generates data that you care about, make sure you download this
data before the runtime shuts down. To do this, click the Files icon (see step 1 in
Figure 2-5), find the file you want to download, click the vertical dots next to it (step
2), and click Download (step 3). Alternatively, you can mount your Google Drive on
the runtime, allowing the notebook to read and write files directly to Google Drive as
if it were a local directory. For this, click the Files icon (step 1), then click the Google
Drive icon (circled in Figure 2-5) and follow the on-screen instructions.

Figure 2-5. Downloading a file from a Google Colab runtime (steps 1 to 3), or mounting
your Google Drive (circled icon)

By default, your Google Drive will be mounted at /content/drive/MyDrive.
If you want to back up a data file, simply copy it to this directory by
running !cp /content/my_great_model /content/drive/MyDrive. Any command
starting with a bang (!) is treated as a shell command, not as Python code: cp is
the Linux shell command to copy a file from one path to another. Note that Colab
runtimes run on Linux (specifically, Ubuntu).

The Power and Danger of Interactivity
Jupyter notebooks are interactive, and that’s a great thing: you can run each cell one
by one, stop at any point, insert a cell, play with the code, go back and run the same
cell again, etc., and I highly encourage you to do so. If you just run the cells one by
one without ever playing around with them, you won’t learn as fast. However, this
flexibility comes at a price: it’s very easy to run cells in the wrong order, or to forget to

Get the Data | 49

run a cell. If this happens, the subsequent code cells are likely to fail. For example, the
very first code cell in each notebook contains setup code (such as imports), so make
sure you run it first, or else nothing will work.

If you ever run into a weird error, try restarting the runtime (by
selecting Runtime → “Restart runtime” from the menu) and then
run all the cells again from the beginning of the notebook. This
often solves the problem. If not, it’s likely that one of the changes
you made broke the notebook: just revert to the original notebook
and try again. If it still fails, please file an issue on GitHub.

Book Code Versus Notebook Code
You may sometimes notice some little differences between the code in this book and
the code in the notebooks. This may happen for several reasons:

• A library may have changed slightly by the time you read these lines, or perhaps•
despite my best efforts I made an error in the book. Sadly, I cannot magically fix
the code in your copy of this book (unless you are reading an electronic copy and
you can download the latest version), but I can fix the notebooks. So, if you run
into an error after copying code from this book, please look for the fixed code in
the notebooks: I will strive to keep them error-free and up-to-date with the latest
library versions.

• The notebooks contain some extra code to beautify the figures (adding labels,•
setting font sizes, etc.) and to save them in high resolution for this book. You can
safely ignore this extra code if you want.

I optimized the code for readability and simplicity: I made it as linear and flat as
possible, defining very few functions or classes. The goal is to ensure that the code
you are running is generally right in front of you, and not nested within several layers
of abstractions that you have to search through. This also makes it easier for you to
play with the code. For simplicity, there’s limited error handling, and I placed some
of the least common imports right where they are needed (instead of placing them at
the top of the file, as is recommended by the PEP 8 Python style guide). That said,
your production code will not be very different: just a bit more modular, and with
additional tests and error handling.

OK! Once you’re comfortable with Colab, you’re ready to download the data.

Download the Data
In typical environments your data would be available in a relational database or
some other common data store, and spread across multiple tables/documents/files.

50 | Chapter 2: End-to-End Machine Learning Project

4 You might also need to check legal constraints, such as private fields that should never be copied to unsafe
data stores.

To access it, you would first need to get your credentials and access authorizations4

and familiarize yourself with the data schema. In this project, however, things are
much simpler: you will just download a single compressed file, housing.tgz, which
contains a comma-separated values (CSV) file called housing.csv with all the data.

Rather than manually downloading and decompressing the data, it’s usually prefera‐
ble to write a function that does it for you. This is useful in particular if the data
changes regularly: you can write a small script that uses the function to fetch the
latest data (or you can set up a scheduled job to do that automatically at regular
intervals). Automating the process of fetching the data is also useful if you need to
install the dataset on multiple machines.

Here is the function to fetch and load the data:

from pathlib import Path
import pandas as pd
import tarfile
import urllib.request

def load_housing_data():
 tarball_path = Path("datasets/housing.tgz")
 if not tarball_path.is_file():
 Path("datasets").mkdir(parents=True, exist_ok=True)
 url = "https://github.com/ageron/data/raw/main/housing.tgz"
 urllib.request.urlretrieve(url, tarball_path)
 with tarfile.open(tarball_path) as housing_tarball:
 housing_tarball.extractall(path="datasets")
 return pd.read_csv(Path("datasets/housing/housing.csv"))

housing = load_housing_data()

When load_housing_data() is called, it looks for the datasets/housing.tgz file. If it
does not find it, it creates the datasets directory inside the current directory (which
is /content by default, in Colab), downloads the housing.tgz file from the ageron/data
GitHub repository, and extracts its content into the datasets directory; this creates the
datasets/housing directory with the housing.csv file inside it. Lastly, the function loads
this CSV file into a Pandas DataFrame object containing all the data, and returns it.

Take a Quick Look at the Data Structure
You start by looking at the top five rows of data using the DataFrame’s head()
method (see Figure 2-6).

Get the Data | 51

Figure 2-6. Top five rows in the dataset

Each row represents one district. There are 10 attributes (they are not all
shown in the screenshot): longitude, latitude, housing_median_age, total_rooms,
total_bedrooms, population, households, median_income, median_house_value,
and ocean_proximity.

The info() method is useful to get a quick description of the data, in particular the
total number of rows, each attribute’s type, and the number of non-null values:

>>> housing.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 longitude 20640 non-null float64
 1 latitude 20640 non-null float64
 2 housing_median_age 20640 non-null float64
 3 total_rooms 20640 non-null float64
 4 total_bedrooms 20433 non-null float64
 5 population 20640 non-null float64
 6 households 20640 non-null float64
 7 median_income 20640 non-null float64
 8 median_house_value 20640 non-null float64
 9 ocean_proximity 20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB

In this book, when a code example contains a mix of code and
outputs, as is the case here, it is formatted like in the Python
interpreter, for better readability: the code lines are prefixed with
>>> (or ... for indented blocks), and the outputs have no prefix.

There are 20,640 instances in the dataset, which means that it is fairly small by
machine learning standards, but it’s perfect to get started. You notice that the

52 | Chapter 2: End-to-End Machine Learning Project

5 The standard deviation is generally denoted σ (the Greek letter sigma), and it is the square root of the
variance, which is the average of the squared deviation from the mean. When a feature has a bell-shaped
normal distribution (also called a Gaussian distribution), which is very common, the “68-95-99.7” rule applies:
about 68% of the values fall within 1σ of the mean, 95% within 2σ, and 99.7% within 3σ.

total_bedrooms attribute has only 20,433 non-null values, meaning that 207 districts
are missing this feature. You will need to take care of this later.

All attributes are numerical, except for ocean_proximity. Its type is object, so it
could hold any kind of Python object. But since you loaded this data from a CSV
file, you know that it must be a text attribute. When you looked at the top five
rows, you probably noticed that the values in the ocean_proximity column were
repetitive, which means that it is probably a categorical attribute. You can find out
what categories exist and how many districts belong to each category by using the
value_counts() method:

>>> housing["ocean_proximity"].value_counts()
<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5
Name: ocean_proximity, dtype: int64

Let’s look at the other fields. The describe() method shows a summary of the
numerical attributes (Figure 2-7).

Figure 2-7. Summary of each numerical attribute

The count, mean, min, and max rows are self-explanatory. Note that the null values
are ignored (so, for example, the count of total_bedrooms is 20,433, not 20,640).
The std row shows the standard deviation, which measures how dispersed the values
are.5 The 25%, 50%, and 75% rows show the corresponding percentiles: a percentile

Get the Data | 53

indicates the value below which a given percentage of observations in a group of
observations fall. For example, 25% of the districts have a housing_median_age lower
than 18, while 50% are lower than 29 and 75% are lower than 37. These are often
called the 25th percentile (or first quartile), the median, and the 75th percentile (or
third quartile).

Another quick way to get a feel of the type of data you are dealing with is to plot a
histogram for each numerical attribute. A histogram shows the number of instances
(on the vertical axis) that have a given value range (on the horizontal axis). You can
either plot this one attribute at a time, or you can call the hist() method on the
whole dataset (as shown in the following code example), and it will plot a histogram
for each numerical attribute (see Figure 2-8):

import matplotlib.pyplot as plt

housing.hist(bins=50, figsize=(12, 8))
plt.show()

Figure 2-8. A histogram for each numerical attribute

54 | Chapter 2: End-to-End Machine Learning Project

Looking at these histograms, you notice a few things:

• First, the median income attribute does not look like it is expressed in US dollars•
(USD). After checking with the team that collected the data, you are told that
the data has been scaled and capped at 15 (actually, 15.0001) for higher median
incomes, and at 0.5 (actually, 0.4999) for lower median incomes. The numbers
represent roughly tens of thousands of dollars (e.g., 3 actually means about
$30,000). Working with preprocessed attributes is common in machine learning,
and it is not necessarily a problem, but you should try to understand how the
data was computed.

• The housing median age and the median house value were also capped. The•
latter may be a serious problem since it is your target attribute (your labels). Your
machine learning algorithms may learn that prices never go beyond that limit.
You need to check with your client team (the team that will use your system’s
output) to see if this is a problem or not. If they tell you that they need precise
predictions even beyond $500,000, then you have two options:
— Collect proper labels for the districts whose labels were capped.—
— Remove those districts from the training set (and also from the test set,—

since your system should not be evaluated poorly if it predicts values beyond
$500,000).

• These attributes have very different scales. We will discuss this later in this•
chapter, when we explore feature scaling.

• Finally, many histograms are skewed right: they extend much farther to the•
right of the median than to the left. This may make it a bit harder for some
machine learning algorithms to detect patterns. Later, you’ll try transforming
these attributes to have more symmetrical and bell-shaped distributions.

You should now have a better understanding of the kind of data you’re dealing with.

Wait! Before you look at the data any further, you need to create a
test set, put it aside, and never look at it.

Create a Test Set
It may seem strange to voluntarily set aside part of the data at this stage. After all,
you have only taken a quick glance at the data, and surely you should learn a whole
lot more about it before you decide what algorithms to use, right? This is true,
but your brain is an amazing pattern detection system, which also means that it is
highly prone to overfitting: if you look at the test set, you may stumble upon some

Get the Data | 55

6 You will often see people set the random seed to 42. This number has no special property, other than being the
Answer to the Ultimate Question of Life, the Universe, and Everything.

seemingly interesting pattern in the test data that leads you to select a particular kind
of machine learning model. When you estimate the generalization error using the test
set, your estimate will be too optimistic, and you will launch a system that will not
perform as well as expected. This is called data snooping bias.

Creating a test set is theoretically simple; pick some instances randomly, typically
20% of the dataset (or less if your dataset is very large), and set them aside:

import numpy as np

def shuffle_and_split_data(data, test_ratio):
 shuffled_indices = np.random.permutation(len(data))
 test_set_size = int(len(data) * test_ratio)
 test_indices = shuffled_indices[:test_set_size]
 train_indices = shuffled_indices[test_set_size:]
 return data.iloc[train_indices], data.iloc[test_indices]

You can then use this function like this:

>>> train_set, test_set = shuffle_and_split_data(housing, 0.2)
>>> len(train_set)
16512
>>> len(test_set)
4128

Well, this works, but it is not perfect: if you run the program again, it will generate a
different test set! Over time, you (or your machine learning algorithms) will get to see
the whole dataset, which is what you want to avoid.

One solution is to save the test set on the first run and then load it in subsequent
runs. Another option is to set the random number generator’s seed (e.g., with
np.random.seed(42))6 before calling np.random.permutation() so that it always
generates the same shuffled indices.

However, both these solutions will break the next time you fetch an updated dataset.
To have a stable train/test split even after updating the dataset, a common solution is
to use each instance’s identifier to decide whether or not it should go in the test set
(assuming instances have unique and immutable identifiers). For example, you could
compute a hash of each instance’s identifier and put that instance in the test set if the
hash is lower than or equal to 20% of the maximum hash value. This ensures that the
test set will remain consistent across multiple runs, even if you refresh the dataset.
The new test set will contain 20% of the new instances, but it will not contain any
instance that was previously in the training set.

56 | Chapter 2: End-to-End Machine Learning Project

7 The location information is actually quite coarse, and as a result many districts will have the exact same ID, so
they will end up in the same set (test or train). This introduces some unfortunate sampling bias.

Here is a possible implementation:

from zlib import crc32

def is_id_in_test_set(identifier, test_ratio):
 return crc32(np.int64(identifier)) < test_ratio * 2**32

def split_data_with_id_hash(data, test_ratio, id_column):
 ids = data[id_column]
 in_test_set = ids.apply(lambda id_: is_id_in_test_set(id_, test_ratio))
 return data.loc[~in_test_set], data.loc[in_test_set]

Unfortunately, the housing dataset does not have an identifier column. The simplest
solution is to use the row index as the ID:

housing_with_id = housing.reset_index() # adds an `index` column
train_set, test_set = split_data_with_id_hash(housing_with_id, 0.2, "index")

If you use the row index as a unique identifier, you need to make sure that new data
gets appended to the end of the dataset and that no row ever gets deleted. If this is not
possible, then you can try to use the most stable features to build a unique identifier.
For example, a district’s latitude and longitude are guaranteed to be stable for a few
million years, so you could combine them into an ID like so:7

housing_with_id["id"] = housing["longitude"] * 1000 + housing["latitude"]
train_set, test_set = split_data_with_id_hash(housing_with_id, 0.2, "id")

Scikit-Learn provides a few functions to split datasets into multiple subsets in various
ways. The simplest function is train_test_split(), which does pretty much the
same thing as the shuffle_and_split_data() function we defined earlier, with a
couple of additional features. First, there is a random_state parameter that allows
you to set the random generator seed. Second, you can pass it multiple datasets with
an identical number of rows, and it will split them on the same indices (this is very
useful, for example, if you have a separate DataFrame for labels):

from sklearn.model_selection import train_test_split

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)

So far we have considered purely random sampling methods. This is generally fine if
your dataset is large enough (especially relative to the number of attributes), but if it
is not, you run the risk of introducing a significant sampling bias. When employees
at a survey company decides to call 1,000 people to ask them a few questions, they
don’t just pick 1,000 people randomly in a phone book. They try to ensure that
these 1,000 people are representative of the whole population, with regard to the
questions they want to ask. For example, the US population is 51.1% females and

Get the Data | 57

48.9% males, so a well-conducted survey in the US would try to maintain this ratio in
the sample: 511 females and 489 males (at least if it seems possible that the answers
may vary across genders). This is called stratified sampling: the population is divided
into homogeneous subgroups called strata, and the right number of instances are
sampled from each stratum to guarantee that the test set is representative of the
overall population. If the people running the survey used purely random sampling,
there would be about a 10.7% chance of sampling a skewed test set with less than
48.5% female or more than 53.5% female participants. Either way, the survey results
would likely be quite biased.

Suppose you’ve chatted with some experts who told you that the median income is a
very important attribute to predict median housing prices. You may want to ensure
that the test set is representative of the various categories of incomes in the whole
dataset. Since the median income is a continuous numerical attribute, you first need
to create an income category attribute. Let’s look at the median income histogram
more closely (back in Figure 2-8): most median income values are clustered around
1.5 to 6 (i.e., $15,000–$60,000), but some median incomes go far beyond 6. It is
important to have a sufficient number of instances in your dataset for each stratum,
or else the estimate of a stratum’s importance may be biased. This means that you
should not have too many strata, and each stratum should be large enough. The
following code uses the pd.cut() function to create an income category attribute
with five categories (labeled from 1 to 5); category 1 ranges from 0 to 1.5 (i.e., less
than $15,000), category 2 from 1.5 to 3, and so on:

housing["income_cat"] = pd.cut(housing["median_income"],
 bins=[0., 1.5, 3.0, 4.5, 6., np.inf],
 labels=[1, 2, 3, 4, 5])

These income categories are represented in Figure 2-9:

housing["income_cat"].value_counts().sort_index().plot.bar(rot=0, grid=True)
plt.xlabel("Income category")
plt.ylabel("Number of districts")
plt.show()

Now you are ready to do stratified sampling based on the income category. Scikit-
Learn provides a number of splitter classes in the sklearn.model_selection package
that implement various strategies to split your dataset into a training set and a test set.
Each splitter has a split() method that returns an iterator over different training/
test splits of the same data.

58 | Chapter 2: End-to-End Machine Learning Project

Figure 2-9. Histogram of income categories

To be precise, the split() method yields the training and test indices, not the
data itself. Having multiple splits can be useful if you want to better estimate the
performance of your model, as you will see when we discuss cross-validation later in
this chapter. For example, the following code generates 10 different stratified splits of
the same dataset:

from sklearn.model_selection import StratifiedShuffleSplit

splitter = StratifiedShuffleSplit(n_splits=10, test_size=0.2, random_state=42)
strat_splits = []
for train_index, test_index in splitter.split(housing, housing["income_cat"]):
 strat_train_set_n = housing.iloc[train_index]
 strat_test_set_n = housing.iloc[test_index]
 strat_splits.append([strat_train_set_n, strat_test_set_n])

For now, you can just use the first split:

strat_train_set, strat_test_set = strat_splits[0]

Or, since stratified sampling is fairly common, there’s a shorter way to get a single
split using the train_test_split() function with the stratify argument:

strat_train_set, strat_test_set = train_test_split(
 housing, test_size=0.2, stratify=housing["income_cat"], random_state=42)

Get the Data | 59

Let’s see if this worked as expected. You can start by looking at the income category
proportions in the test set:

>>> strat_test_set["income_cat"].value_counts() / len(strat_test_set)
3 0.350533
2 0.318798
4 0.176357
5 0.114341
1 0.039971
Name: income_cat, dtype: float64

With similar code you can measure the income category proportions in the full data‐
set. Figure 2-10 compares the income category proportions in the overall dataset, in
the test set generated with stratified sampling, and in a test set generated using purely
random sampling. As you can see, the test set generated using stratified sampling has
income category proportions almost identical to those in the full dataset, whereas the
test set generated using purely random sampling is skewed.

Figure 2-10. Sampling bias comparison of stratified versus purely random sampling

You won’t use the income_cat column again, so you might as well drop it, reverting
the data back to its original state:

for set_ in (strat_train_set, strat_test_set):
 set_.drop("income_cat", axis=1, inplace=True)

We spent quite a bit of time on test set generation for a good reason: this is an often
neglected but critical part of a machine learning project. Moreover, many of these
ideas will be useful later when we discuss cross-validation. Now it’s time to move on
to the next stage: exploring the data.

Explore and Visualize the Data to Gain Insights
So far you have only taken a quick glance at the data to get a general understanding of
the kind of data you are manipulating. Now the goal is to go into a little more depth.

First, make sure you have put the test set aside and you are only exploring the train‐
ing set. Also, if the training set is very large, you may want to sample an exploration

60 | Chapter 2: End-to-End Machine Learning Project

set, to make manipulations easy and fast during the exploration phase. In this case,
the training set is quite small, so you can just work directly on the full set. Since
you’re going to experiment with various transformations of the full training set, you
should make a copy of the original so you can revert to it afterwards:

housing = strat_train_set.copy()

Visualizing Geographical Data
Because the dataset includes geographical information (latitude and longitude), it is a
good idea to create a scatterplot of all the districts to visualize the data (Figure 2-11):

housing.plot(kind="scatter", x="longitude", y="latitude", grid=True)
plt.show()

Figure 2-11. A geographical scatterplot of the data

This looks like California all right, but other than that it is hard to see any particular
pattern. Setting the alpha option to 0.2 makes it much easier to visualize the places
where there is a high density of data points (Figure 2-12):

housing.plot(kind="scatter", x="longitude", y="latitude", grid=True, alpha=0.2)
plt.show()

Now that’s much better: you can clearly see the high-density areas, namely the Bay
Area and around Los Angeles and San Diego, plus a long line of fairly high-density
areas in the Central Valley (in particular, around Sacramento and Fresno).

Our brains are very good at spotting patterns in pictures, but you may need to play
around with visualization parameters to make the patterns stand out.

Explore and Visualize the Data to Gain Insights | 61

8 If you are reading this in grayscale, grab a red pen and scribble over most of the coastline from the Bay Area
down to San Diego (as you might expect). You can add a patch of yellow around Sacramento as well.

Figure 2-12. A better visualization that highlights high-density areas

Next, you look at the housing prices (Figure 2-13). The radius of each circle repre‐
sents the district’s population (option s), and the color represents the price (option
c). Here you use a predefined color map (option cmap) called jet, which ranges from
blue (low values) to red (high prices):8

housing.plot(kind="scatter", x="longitude", y="latitude", grid=True,
 s=housing["population"] / 100, label="population",
 c="median_house_value", cmap="jet", colorbar=True,
 legend=True, sharex=False, figsize=(10, 7))
plt.show()

This image tells you that the housing prices are very much related to the location
(e.g., close to the ocean) and to the population density, as you probably knew already.
A clustering algorithm should be useful for detecting the main cluster and for adding
new features that measure the proximity to the cluster centers. The ocean proximity
attribute may be useful as well, although in Northern California the housing prices in
coastal districts are not too high, so it is not a simple rule.

62 | Chapter 2: End-to-End Machine Learning Project

Figure 2-13. California housing prices: red is expensive, blue is cheap, larger circles
indicate areas with a larger population

Look for Correlations
Since the dataset is not too large, you can easily compute the standard correlation
coefficient (also called Pearson’s r) between every pair of attributes using the corr()
method:

corr_matrix = housing.corr()

Now you can look at how much each attribute correlates with the median house
value:

>>> corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value 1.000000
median_income 0.688380
total_rooms 0.137455
housing_median_age 0.102175
households 0.071426
total_bedrooms 0.054635
population -0.020153
longitude -0.050859
latitude -0.139584
Name: median_house_value, dtype: float64

Explore and Visualize the Data to Gain Insights | 63

The correlation coefficient ranges from –1 to 1. When it is close to 1, it means that
there is a strong positive correlation; for example, the median house value tends to
go up when the median income goes up. When the coefficient is close to –1, it means
that there is a strong negative correlation; you can see a small negative correlation
between the latitude and the median house value (i.e., prices have a slight tendency
to go down when you go north). Finally, coefficients close to 0 mean that there is no
linear correlation.

Another way to check for correlation between attributes is to use the Pandas
scatter_matrix() function, which plots every numerical attribute against every
other numerical attribute. Since there are now 11 numerical attributes, you would
get 112 = 121 plots, which would not fit on a page—so you decide to focus on a
few promising attributes that seem most correlated with the median housing value
(Figure 2-14):

from pandas.plotting import scatter_matrix

attributes = ["median_house_value", "median_income", "total_rooms",
 "housing_median_age"]
scatter_matrix(housing[attributes], figsize=(12, 8))
plt.show()

Figure 2-14. This scatter matrix plots every numerical attribute against every other
numerical attribute, plus a histogram of each numerical attribute’s values on the main
diagonal (top left to bottom right)

64 | Chapter 2: End-to-End Machine Learning Project

The main diagonal would be full of straight lines if Pandas plotted each variable
against itself, which would not be very useful. So instead, the Pandas displays a histo‐
gram of each attribute (other options are available; see the Pandas documentation for
more details).

Looking at the correlation scatterplots, it seems like the most promising attribute
to predict the median house value is the median income, so you zoom in on their
scatterplot (Figure 2-15):

housing.plot(kind="scatter", x="median_income", y="median_house_value",
 alpha=0.1, grid=True)
plt.show()

Figure 2-15. Median income versus median house value

This plot reveals a few things. First, the correlation is indeed quite strong; you can
clearly see the upward trend, and the points are not too dispersed. Second, the price
cap you noticed earlier is clearly visible as a horizontal line at $500,000. But the
plot also reveals other less obvious straight lines: a horizontal line around $450,000,
another around $350,000, perhaps one around $280,000, and a few more below that.
You may want to try removing the corresponding districts to prevent your algorithms
from learning to reproduce these data quirks.

Explore and Visualize the Data to Gain Insights | 65

The correlation coefficient only measures linear correlations (“as x
goes up, y generally goes up/down”). It may completely miss out on
nonlinear relationships (e.g., “as x approaches 0, y generally goes
up”). Figure 2-16 shows a variety of datasets along with their corre‐
lation coefficient. Note how all the plots of the bottom row have a
correlation coefficient equal to 0, despite the fact that their axes are
clearly not independent: these are examples of nonlinear relation‐
ships. Also, the second row shows examples where the correlation
coefficient is equal to 1 or –1; notice that this has nothing to do
with the slope. For example, your height in inches has a correlation
coefficient of 1 with your height in feet or in nanometers.

Figure 2-16. Standard correlation coefficient of various datasets (source: Wikipedia;
public domain image)

Experiment with Attribute Combinations
Hopefully the previous sections gave you an idea of a few ways you can explore
the data and gain insights. You identified a few data quirks that you may want to
clean up before feeding the data to a machine learning algorithm, and you found
interesting correlations between attributes, in particular with the target attribute. You
also noticed that some attributes have a skewed-right distribution, so you may want
to transform them (e.g., by computing their logarithm or square root). Of course,
your mileage will vary considerably with each project, but the general ideas are
similar.

One last thing you may want to do before preparing the data for machine learning
algorithms is to try out various attribute combinations. For example, the total num‐
ber of rooms in a district is not very useful if you don’t know how many households
there are. What you really want is the number of rooms per household. Similarly,
the total number of bedrooms by itself is not very useful: you probably want to

66 | Chapter 2: End-to-End Machine Learning Project

compare it to the number of rooms. And the population per household also seems
like an interesting attribute combination to look at. You create these new attributes as
follows:

housing["rooms_per_house"] = housing["total_rooms"] / housing["households"]
housing["bedrooms_ratio"] = housing["total_bedrooms"] / housing["total_rooms"]
housing["people_per_house"] = housing["population"] / housing["households"]

And then you look at the correlation matrix again:

>>> corr_matrix = housing.corr()
>>> corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value 1.000000
median_income 0.688380
rooms_per_house 0.143663
total_rooms 0.137455
housing_median_age 0.102175
households 0.071426
total_bedrooms 0.054635
population -0.020153
people_per_house -0.038224
longitude -0.050859
latitude -0.139584
bedrooms_ratio -0.256397
Name: median_house_value, dtype: float64

Hey, not bad! The new bedrooms_ratio attribute is much more correlated with the
median house value than the total number of rooms or bedrooms. Apparently houses
with a lower bedroom/room ratio tend to be more expensive. The number of rooms
per household is also more informative than the total number of rooms in a district—
obviously the larger the houses, the more expensive they are.

This round of exploration does not have to be absolutely thorough; the point is to
start off on the right foot and quickly gain insights that will help you get a first
reasonably good prototype. But this is an iterative process: once you get a prototype
up and running, you can analyze its output to gain more insights and come back to
this exploration step.

Prepare the Data for Machine Learning Algorithms
It’s time to prepare the data for your machine learning algorithms. Instead of doing
this manually, you should write functions for this purpose, for several good reasons:

• This will allow you to reproduce these transformations easily on any dataset (e.g.,•
the next time you get a fresh dataset).

• You will gradually build a library of transformation functions that you can reuse•
in future projects.

Prepare the Data for Machine Learning Algorithms | 67

• You can use these functions in your live system to transform the new data before•
feeding it to your algorithms.

• This will make it possible for you to easily try various transformations and see•
which combination of transformations works best.

But first, revert to a clean training set (by copying strat_train_set once again). You
should also separate the predictors and the labels, since you don’t necessarily want
to apply the same transformations to the predictors and the target values (note that
drop() creates a copy of the data and does not affect strat_train_set):

housing = strat_train_set.drop("median_house_value", axis=1)
housing_labels = strat_train_set["median_house_value"].copy()

Clean the Data
Most machine learning algorithms cannot work with missing features, so you’ll need
to take care of these. For example, you noticed earlier that the total_bedrooms
attribute has some missing values. You have three options to fix this:

1. Get rid of the corresponding districts.1.
2. Get rid of the whole attribute.2.
3. Set the missing values to some value (zero, the mean, the median, etc.). This is3.

called imputation.

You can accomplish these easily using the Pandas DataFrame’s dropna(), drop(), and
fillna() methods:

housing.dropna(subset=["total_bedrooms"], inplace=True) # option 1

housing.drop("total_bedrooms", axis=1) # option 2

median = housing["total_bedrooms"].median() # option 3
housing["total_bedrooms"].fillna(median, inplace=True)

You decide to go for option 3 since it is the least destructive, but instead of the
preceding code, you will use a handy Scikit-Learn class: SimpleImputer. The benefit
is that it will store the median value of each feature: this will make it possible to
impute missing values not only on the training set, but also on the validation set,
the test set, and any new data fed to the model. To use it, first you need to create a
SimpleImputer instance, specifying that you want to replace each attribute’s missing
values with the median of that attribute:

from sklearn.impute import SimpleImputer

imputer = SimpleImputer(strategy="median")

68 | Chapter 2: End-to-End Machine Learning Project

Since the median can only be computed on numerical attributes, you then need to
create a copy of the data with only the numerical attributes (this will exclude the text
attribute ocean_proximity):

housing_num = housing.select_dtypes(include=[np.number])

Now you can fit the imputer instance to the training data using the fit() method:

imputer.fit(housing_num)

The imputer has simply computed the median of each attribute and stored the result
in its statistics_ instance variable. Only the total_bedrooms attribute had missing
values, but you cannot be sure that there won’t be any missing values in new data
after the system goes live, so it is safer to apply the imputer to all the numerical
attributes:

>>> imputer.statistics_
array([-118.51 , 34.26 , 29. , 2125. , 434. , 1167. , 408. , 3.5385])
>>> housing_num.median().values
array([-118.51 , 34.26 , 29. , 2125. , 434. , 1167. , 408. , 3.5385])

Now you can use this “trained” imputer to transform the training set by replacing
missing values with the learned medians:

X = imputer.transform(housing_num)

Missing values can also be replaced with the mean value (strategy="mean"), or
with the most frequent value (strategy="most_frequent"), or with a constant
value (strategy="constant", fill_value=…). The last two strategies support non-
numerical data.

There are also more powerful imputers available in the
sklearn.impute package (both for numerical features only):

• KNNImputer replaces each missing value with the mean of the•
k-nearest neighbors’ values for that feature. The distance is
based on all the available features.

• IterativeImputer trains a regression model per feature to•
predict the missing values based on all the other available
features. It then trains the model again on the updated data,
and repeats the process several times, improving the models
and the replacement values at each iteration.

Prepare the Data for Machine Learning Algorithms | 69

9 For more details on the design principles, see Lars Buitinck et al., “API Design for Machine Learning Software:
Experiences from the Scikit-Learn Project”, arXiv preprint arXiv:1309.0238 (2013).

10 Some predictors also provide methods to measure the confidence of their predictions.

Scikit-Learn Design
Scikit-Learn’s API is remarkably well designed. These are the main design principles:9

Consistency
All objects share a consistent and simple interface:

Estimators
Any object that can estimate some parameters based on a dataset is called
an estimator (e.g., a SimpleImputer is an estimator). The estimation itself is
performed by the fit() method, and it takes a dataset as a parameter, or two
for supervised learning algorithms—the second dataset contains the labels.
Any other parameter needed to guide the estimation process is considered a
hyperparameter (such as a SimpleImputer’s strategy), and it must be set as
an instance variable (generally via a constructor parameter).

Transformers
Some estimators (such as a SimpleImputer) can also transform a dataset;
these are called transformers. Once again, the API is simple: the transforma‐
tion is performed by the transform() method with the dataset to transform
as a parameter. It returns the transformed dataset. This transformation gen‐
erally relies on the learned parameters, as is the case for a SimpleImputer.
All transformers also have a convenience method called fit_transform(),
which is equivalent to calling fit() and then transform() (but sometimes
fit_transform() is optimized and runs much faster).

Predictors
Finally, some estimators, given a dataset, are capable of making predictions;
they are called predictors. For example, the LinearRegression model in
the previous chapter was a predictor: given a country’s GDP per capita, it
predicted life satisfaction. A predictor has a predict() method that takes a
dataset of new instances and returns a dataset of corresponding predictions.
It also has a score() method that measures the quality of the predictions,
given a test set (and the corresponding labels, in the case of supervised
learning algorithms).10

Inspection
All the estimator’s hyperparameters are accessible directly via public instance
variables (e.g., imputer.strategy), and all the estimator’s learned parameters
are accessible via public instance variables with an underscore suffix (e.g.,
imputer.statistics_).

70 | Chapter 2: End-to-End Machine Learning Project

https://homl.info/11

11 By the time you read these lines, it may be possible to make all transformers output Pandas DataFrames when
they receive a DataFrame as input: Pandas in, Pandas out. There will likely be a global configuration option
for this: sklearn.set_config(pandas_in_out=True).

Nonproliferation of classes
Datasets are represented as NumPy arrays or SciPy sparse matrices, instead of
homemade classes. Hyperparameters are just regular Python strings or numbers.

Composition
Existing building blocks are reused as much as possible. For example, it is easy to
create a Pipeline estimator from an arbitrary sequence of transformers followed
by a final estimator, as you will see.

Sensible defaults
Scikit-Learn provides reasonable default values for most parameters, making it
easy to quickly create a baseline working system.

Scikit-Learn transformers output NumPy arrays (or sometimes SciPy sparse matri‐
ces) even when they are fed Pandas DataFrames as input.11 So, the output of
imputer.transform(housing_num) is a NumPy array: X has neither column names
nor index. Luckily, it’s not too hard to wrap X in a DataFrame and recover the column
names and index from housing_num:

housing_tr = pd.DataFrame(X, columns=housing_num.columns,
 index=housing_num.index)

Handling Text and Categorical Attributes
So far we have only dealt with numerical attributes, but your data may also contain
text attributes. In this dataset, there is just one: the ocean_proximity attribute. Let’s
look at its value for the first few instances:

>>> housing_cat = housing[["ocean_proximity"]]
>>> housing_cat.head(8)
 ocean_proximity
13096 NEAR BAY
14973 <1H OCEAN
3785 INLAND
14689 INLAND
20507 NEAR OCEAN
1286 INLAND
18078 <1H OCEAN
4396 NEAR BAY

It’s not arbitrary text: there are a limited number of possible values, each of which
represents a category. So this attribute is a categorical attribute. Most machine

Prepare the Data for Machine Learning Algorithms | 71

learning algorithms prefer to work with numbers, so let’s convert these categories
from text to numbers. For this, we can use Scikit-Learn’s OrdinalEncoder class:

from sklearn.preprocessing import OrdinalEncoder

ordinal_encoder = OrdinalEncoder()
housing_cat_encoded = ordinal_encoder.fit_transform(housing_cat)

Here’s what the first few encoded values in housing_cat_encoded look like:

>>> housing_cat_encoded[:8]
array([[3.],
 [0.],
 [1.],
 [1.],
 [4.],
 [1.],
 [0.],
 [3.]])

You can get the list of categories using the categories_ instance variable. It is a list
containing a 1D array of categories for each categorical attribute (in this case, a list
containing a single array since there is just one categorical attribute):

>>> ordinal_encoder.categories_
[array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
 dtype=object)]

One issue with this representation is that ML algorithms will assume that two nearby
values are more similar than two distant values. This may be fine in some cases
(e.g., for ordered categories such as “bad”, “average”, “good”, and “excellent”), but it is
obviously not the case for the ocean_proximity column (for example, categories 0
and 4 are clearly more similar than categories 0 and 1). To fix this issue, a common
solution is to create one binary attribute per category: one attribute equal to 1 when
the category is "<1H OCEAN" (and 0 otherwise), another attribute equal to 1 when the
category is "INLAND" (and 0 otherwise), and so on. This is called one-hot encoding,
because only one attribute will be equal to 1 (hot), while the others will be 0 (cold).
The new attributes are sometimes called dummy attributes. Scikit-Learn provides a
OneHotEncoder class to convert categorical values into one-hot vectors:

from sklearn.preprocessing import OneHotEncoder

cat_encoder = OneHotEncoder()
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)

72 | Chapter 2: End-to-End Machine Learning Project

12 See SciPy’s documentation for more details.

By default, the output of a OneHotEncoder is a SciPy sparse matrix, instead of a
NumPy array:

>>> housing_cat_1hot
<16512x5 sparse matrix of type '<class 'numpy.float64'>'
 with 16512 stored elements in Compressed Sparse Row format>

A sparse matrix is a very efficient representation for matrices that contain mostly
zeros. Indeed, internally it only stores the nonzero values and their positions. When
a categorical attribute has hundreds or thousands of categories, one-hot encoding it
results in a very large matrix full of 0s except for a single 1 per row. In this case, a
sparse matrix is exactly what you need: it will save plenty of memory and speed up
computations. You can use a sparse matrix mostly like a normal 2D array,12 but if you
want to convert it to a (dense) NumPy array, just call the toarray() method:

>>> housing_cat_1hot.toarray()
array([[0., 0., 0., 1., 0.],
 [1., 0., 0., 0., 0.],
 [0., 1., 0., 0., 0.],
 ...,
 [0., 0., 0., 0., 1.],
 [1., 0., 0., 0., 0.],
 [0., 0., 0., 0., 1.]])

Alternatively, you can set sparse=False when creating the OneHotEncoder, in which
case the transform() method will return a regular (dense) NumPy array directly.

As with the OrdinalEncoder, you can get the list of categories using the encoder’s
categories_ instance variable:

>>> cat_encoder.categories_
[array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
 dtype=object)]

Pandas has a function called get_dummies(), which also converts each categorical
feature into a one-hot representation, with one binary feature per category:

>>> df_test = pd.DataFrame({"ocean_proximity": ["INLAND", "NEAR BAY"]})
>>> pd.get_dummies(df_test)
 ocean_proximity_INLAND ocean_proximity_NEAR BAY
0 1 0
1 0 1

It looks nice and simple, so why not use it instead of OneHotEncoder? Well, the
advantage of OneHotEncoder is that it remembers which categories it was trained
on. This is very important because once your model is in production, it should be
fed exactly the same features as during training: no more, no less. Look what our

Prepare the Data for Machine Learning Algorithms | 73

trained cat_encoder outputs when we make it transform the same df_test (using
transform(), not fit_transform()):

>>> cat_encoder.transform(df_test)
array([[0., 1., 0., 0., 0.],
 [0., 0., 0., 1., 0.]])

See the difference? get_dummies() saw only two categories, so it output two columns,
whereas OneHotEncoder output one column per learned category, in the right order.
Moreover, if you feed get_dummies() a DataFrame containing an unknown category
(e.g., "<2H OCEAN"), it will happily generate a column for it:

>>> df_test_unknown = pd.DataFrame({"ocean_proximity": ["<2H OCEAN", "ISLAND"]})
>>> pd.get_dummies(df_test_unknown)
 ocean_proximity_<2H OCEAN ocean_proximity_ISLAND
0 1 0
1 0 1

But OneHotEncoder is smarter: it will detect the unknown category and raise
an exception. If you prefer, you can set the handle_unknown hyperparameter to
"ignore", in which case it will just represent the unknown category with zeros:

>>> cat_encoder.handle_unknown = "ignore"
>>> cat_encoder.transform(df_test_unknown)
array([[0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.]])

If a categorical attribute has a large number of possible categories
(e.g., country code, profession, species), then one-hot encoding
will result in a large number of input features. This may slow
down training and degrade performance. If this happens, you may
want to replace the categorical input with useful numerical fea‐
tures related to the categories: for example, you could replace the
ocean_proximity feature with the distance to the ocean (similarly,
a country code could be replaced with the country’s population and
GDP per capita). Alternatively, you can use one of the encoders
provided by the category_encoders package on GitHub. Or, when
dealing with neural networks, you can replace each category with
a learnable, low-dimensional vector called an embedding. This is
an example of representation learning (see Chapters 13 and 17 for
more details).

74 | Chapter 2: End-to-End Machine Learning Project

https://github.com/scikit-learn-contrib/category_encoders

When you fit any Scikit-Learn estimator using a DataFrame, the estimator stores the
column names in the feature_names_in_ attribute. Scikit-Learn then ensures that
any DataFrame fed to this estimator after that (e.g., to transform() or predict())
has the same column names. Transformers also provide a get_feature_names_out()
method that you can use to build a DataFrame around the transformer’s output:

>>> cat_encoder.feature_names_in_
array(['ocean_proximity'], dtype=object)
>>> cat_encoder.get_feature_names_out()
array(['ocean_proximity_<1H OCEAN', 'ocean_proximity_INLAND',
 'ocean_proximity_ISLAND', 'ocean_proximity_NEAR BAY',
 'ocean_proximity_NEAR OCEAN'], dtype=object)
>>> df_output = pd.DataFrame(cat_encoder.transform(df_test_unknown),
... columns=cat_encoder.get_feature_names_out(),
... index=df_test_unknown.index)
...

Feature Scaling and Transformation
One of the most important transformations you need to apply to your data is feature
scaling. With few exceptions, machine learning algorithms don’t perform well when
the input numerical attributes have very different scales. This is the case for the
housing data: the total number of rooms ranges from about 6 to 39,320, while the
median incomes only range from 0 to 15. Without any scaling, most models will be
biased toward ignoring the median income and focusing more on the number of
rooms.

There are two common ways to get all attributes to have the same scale: min-max
scaling and standardization.

As with all estimators, it is important to fit the scalers to the train‐
ing data only: never use fit() or fit_transform() for anything
else than the training set. Once you have a trained scaler, you can
then use it to transform() any other set, including the validation
set, the test set, and new data. Note that while the training set
values will always be scaled to the specified range, if new data
contains outliers, these may end up scaled outside the range. If you
want to avoid this, just set the clip hyperparameter to True.

Prepare the Data for Machine Learning Algorithms | 75

Min-max scaling (many people call this normalization) is the simplest: for each
attribute, the values are shifted and rescaled so that they end up ranging from
0 to 1. This is performed by subtracting the min value and dividing by the dif‐
ference between the min and the max. Scikit-Learn provides a transformer called
MinMaxScaler for this. It has a feature_range hyperparameter that lets you change
the range if, for some reason, you don’t want 0–1 (e.g., neural networks work best
with zero-mean inputs, so a range of –1 to 1 is preferable). It’s quite easy to use:

from sklearn.preprocessing import MinMaxScaler

min_max_scaler = MinMaxScaler(feature_range=(-1, 1))
housing_num_min_max_scaled = min_max_scaler.fit_transform(housing_num)

Standardization is different: first it subtracts the mean value (so standardized values
have a zero mean), then it divides the result by the standard deviation (so standard‐
ized values have a standard deviation equal to 1). Unlike min-max scaling, standardi‐
zation does not restrict values to a specific range. However, standardization is much
less affected by outliers. For example, suppose a district has a median income equal
to 100 (by mistake), instead of the usual 0–15. Min-max scaling to the 0–1 range
would map this outlier down to 1 and it would crush all the other values down to
0–0.15, whereas standardization would not be much affected. Scikit-Learn provides a
transformer called StandardScaler for standardization:

from sklearn.preprocessing import StandardScaler

std_scaler = StandardScaler()
housing_num_std_scaled = std_scaler.fit_transform(housing_num)

If you want to scale a sparse matrix without converting it to a dense
matrix first, you can use a StandardScaler with its with_mean
hyperparameter set to False: it will only divide the data by the
standard deviation, without subtracting the mean (as this would
break sparsity).

When a feature’s distribution has a heavy tail (i.e., when values far from the mean
are not exponentially rare), both min-max scaling and standardization will squash
most values into a small range. Machine learning models generally don’t like this
at all, as you will see in Chapter 4. So before you scale the feature, you should first
transform it to shrink the heavy tail, and if possible to make the distribution roughly
symmetrical. For example, a common way to do this for positive features with a heavy
tail to the right is to replace the feature with its square root (or raise the feature to
a power between 0 and 1). If the feature has a really long and heavy tail, such as a
power law distribution, then replacing the feature with its logarithm may help. For
example, the population feature roughly follows a power law: districts with 10,000
inhabitants are only 10 times less frequent than districts with 1,000 inhabitants, not

76 | Chapter 2: End-to-End Machine Learning Project

exponentially less frequent. Figure 2-17 shows how much better this feature looks
when you compute its log: it’s very close to a Gaussian distribution (i.e., bell-shaped).

Figure 2-17. Transforming a feature to make it closer to a Gaussian distribution

Another approach to handle heavy-tailed features consists in bucketizing the feature.
This means chopping its distribution into roughly equal-sized buckets, and replacing
each feature value with the index of the bucket it belongs to, much like we did to
create the income_cat feature (although we only used it for stratified sampling).
For example, you could replace each value with its percentile. Bucketizing with
equal-sized buckets results in a feature with an almost uniform distribution, so there’s
no need for further scaling, or you can just divide by the number of buckets to force
the values to the 0–1 range.

When a feature has a multimodal distribution (i.e., with two or more clear peaks,
called modes), such as the housing_median_age feature, it can also be helpful to
bucketize it, but this time treating the bucket IDs as categories, rather than as numeri‐
cal values. This means that the bucket indices must be encoded, for example using a
OneHotEncoder (so you usually don’t want to use too many buckets). This approach
will allow the regression model to more easily learn different rules for different ranges
of this feature value. For example, perhaps houses built around 35 years ago have
a peculiar style that fell out of fashion, and therefore they’re cheaper than their age
alone would suggest.

Another approach to transforming multimodal distributions is to add a feature for
each of the modes (at least the main ones), representing the similarity between the
housing median age and that particular mode. The similarity measure is typically
computed using a radial basis function (RBF)—any function that depends only on the
distance between the input value and a fixed point. The most commonly used RBF is
the Gaussian RBF, whose output value decays exponentially as the input value moves
away from the fixed point. For example, the Gaussian RBF similarity between the
housing age x and 35 is given by the equation exp(–γ(x – 35)²). The hyperparameter
γ (gamma) determines how quickly the similarity measure decays as x moves away
from 35. Using Scikit-Learn’s rbf_kernel() function, you can create a new Gaussian
RBF feature measuring the similarity between the housing median age and 35:

Prepare the Data for Machine Learning Algorithms | 77

from sklearn.metrics.pairwise import rbf_kernel

age_simil_35 = rbf_kernel(housing[["housing_median_age"]], [[35]], gamma=0.1)

Figure 2-18 shows this new feature as a function of the housing median age (solid
line). It also shows what the feature would look like if you used a smaller gamma value.
As the chart shows, the new age similarity feature peaks at 35, right around the spike
in the housing median age distribution: if this particular age group is well correlated
with lower prices, there’s a good chance that this new feature will help.

Figure 2-18. Gaussian RBF feature measuring the similarity between the housing
median age and 35

So far we’ve only looked at the input features, but the target values may also need
to be transformed. For example, if the target distribution has a heavy tail, you may
choose to replace the target with its logarithm. But if you do, the regression model
will now predict the log of the median house value, not the median house value itself.
You will need to compute the exponential of the model’s prediction if you want the
predicted median house value.

Luckily, most of Scikit-Learn’s transformers have an inverse_transform() method,
making it easy to compute the inverse of their transformations. For example, the
following code example shows how to scale the labels using a StandardScaler (just
like we did for inputs), then train a simple linear regression model on the resulting
scaled labels and use it to make predictions on some new data, which we transform
back to the original scale using the trained scaler’s inverse_transform() method.
Note that we convert the labels from a Pandas Series to a DataFrame, since the

78 | Chapter 2: End-to-End Machine Learning Project

StandardScaler expects 2D inputs. Also, in this example we just train the model on a
single raw input feature (median income), for simplicity:

from sklearn.linear_model import LinearRegression

target_scaler = StandardScaler()
scaled_labels = target_scaler.fit_transform(housing_labels.to_frame())

model = LinearRegression()
model.fit(housing[["median_income"]], scaled_labels)
some_new_data = housing[["median_income"]].iloc[:5] # pretend this is new data

scaled_predictions = model.predict(some_new_data)
predictions = target_scaler.inverse_transform(scaled_predictions)

This works fine, but a simpler option is to use a TransformedTargetRegressor. We
just need to construct it, giving it the regression model and the label transformer,
then fit it on the training set, using the original unscaled labels. It will automatically
use the transformer to scale the labels and train the regression model on the resulting
scaled labels, just like we did previously. Then, when we want to make a prediction, it
will call the regression model’s predict() method and use the scaler’s inverse_trans
form() method to produce the prediction:

from sklearn.compose import TransformedTargetRegressor

model = TransformedTargetRegressor(LinearRegression(),
 transformer=StandardScaler())
model.fit(housing[["median_income"]], housing_labels)
predictions = model.predict(some_new_data)

Custom Transformers
Although Scikit-Learn provides many useful transformers, you will need to write
your own for tasks such as custom transformations, cleanup operations, or combin‐
ing specific attributes.

For transformations that don’t require any training, you can just write a function
that takes a NumPy array as input and outputs the transformed array. For example,
as discussed in the previous section, it’s often a good idea to transform features
with heavy-tailed distributions by replacing them with their logarithm (assuming the
feature is positive and the tail is on the right). Let’s create a log-transformer and apply
it to the population feature:

from sklearn.preprocessing import FunctionTransformer

log_transformer = FunctionTransformer(np.log, inverse_func=np.exp)
log_pop = log_transformer.transform(housing[["population"]])

Prepare the Data for Machine Learning Algorithms | 79

The inverse_func argument is optional. It lets you specify an inverse transform
function, e.g., if you plan to use your transformer in a TransformedTargetRegressor.

Your transformation function can take hyperparameters as additional arguments. For
example, here’s how to create a transformer that computes the same Gaussian RBF
similarity measure as earlier:

rbf_transformer = FunctionTransformer(rbf_kernel,
 kw_args=dict(Y=[[35.]], gamma=0.1))
age_simil_35 = rbf_transformer.transform(housing[["housing_median_age"]])

Note that there’s no inverse function for the RBF kernel, since there are always two
values at a given distance from a fixed point (except at distance 0). Also note that
rbf_kernel() does not treat the features separately. If you pass it an array with
two features, it will measure the 2D distance (Euclidean) to measure similarity. For
example, here’s how to add a feature that will measure the geographic similarity
between each district and San Francisco:

sf_coords = 37.7749, -122.41
sf_transformer = FunctionTransformer(rbf_kernel,
 kw_args=dict(Y=[sf_coords], gamma=0.1))
sf_simil = sf_transformer.transform(housing[["latitude", "longitude"]])

Custom transformers are also useful to combine features. For example, here’s a
FunctionTransformer that computes the ratio between the input features 0 and 1:

>>> ratio_transformer = FunctionTransformer(lambda X: X[:, [0]] / X[:, [1]])
>>> ratio_transformer.transform(np.array([[1., 2.], [3., 4.]]))
array([[0.5],
 [0.75]])

FunctionTransformer is very handy, but what if you would like your transformer to
be trainable, learning some parameters in the fit() method and using them later
in the transform() method? For this, you need to write a custom class. Scikit-Learn
relies on duck typing, so this class does not have to inherit from any particular base
class. All it needs is three methods: fit() (which must return self), transform(),
and fit_transform().

You can get fit_transform() for free by simply adding TransformerMixin as a base
class: the default implementation will just call fit() and then transform(). If you
add BaseEstimator as a base class (and avoid using *args and **kwargs in your
constructor), you will also get two extra methods: get_params() and set_params().
These will be useful for automatic hyperparameter tuning.

For example, here’s a custom transformer that acts much like the StandardScaler:

80 | Chapter 2: End-to-End Machine Learning Project

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.utils.validation import check_array, check_is_fitted

class StandardScalerClone(BaseEstimator, TransformerMixin):
 def __init__(self, with_mean=True): # no *args or **kwargs!
 self.with_mean = with_mean

 def fit(self, X, y=None): # y is required even though we don't use it
 X = check_array(X) # checks that X is an array with finite float values
 self.mean_ = X.mean(axis=0)
 self.scale_ = X.std(axis=0)
 self.n_features_in_ = X.shape[1] # every estimator stores this in fit()
 return self # always return self!

 def transform(self, X):
 check_is_fitted(self) # looks for learned attributes (with trailing _)
 X = check_array(X)
 assert self.n_features_in_ == X.shape[1]
 if self.with_mean:
 X = X - self.mean_
 return X / self.scale_

Here are a few things to note:

• The sklearn.utils.validation package contains several functions we can use•
to validate the inputs. For simplicity, we will skip such tests in the rest of this
book, but production code should have them.

• Scikit-Learn pipelines require the fit() method to have two arguments X and y,•
which is why we need the y=None argument even though we don’t use y.

• All Scikit-Learn estimators set n_features_in_ in the fit() method, and they•
ensure that the data passed to transform() or predict() has this number of
features.

• The fit() method must return self.•
• This implementation is not 100% complete: all estimators should set•
feature_names_in_ in the fit() method when they are passed a DataFrame.
Moreover, all transformers should provide a get_feature_names_out() method,
as well as an inverse_transform() method when their transformation can be
reversed. See the last exercise at the end of this chapter for more details.

A custom transformer can (and often does) use other estimators in its implementa‐
tion. For example, the following code demonstrates custom transformer that uses a
KMeans clusterer in the fit() method to identify the main clusters in the training
data, and then uses rbf_kernel() in the transform() method to measure how
similar each sample is to each cluster center:

Prepare the Data for Machine Learning Algorithms | 81

from sklearn.cluster import KMeans

class ClusterSimilarity(BaseEstimator, TransformerMixin):
 def __init__(self, n_clusters=10, gamma=1.0, random_state=None):
 self.n_clusters = n_clusters
 self.gamma = gamma
 self.random_state = random_state

 def fit(self, X, y=None, sample_weight=None):
 self.kmeans_ = KMeans(self.n_clusters, random_state=self.random_state)
 self.kmeans_.fit(X, sample_weight=sample_weight)
 return self # always return self!

 def transform(self, X):
 return rbf_kernel(X, self.kmeans_.cluster_centers_, gamma=self.gamma)

 def get_feature_names_out(self, names=None):
 return [f"Cluster {i} similarity" for i in range(self.n_clusters)]

You can check whether your custom estimator respects Scikit-
Learn’s API by passing an instance to check_estimator() from
the sklearn.utils.estimator_checks package. For the full API,
check out https://scikit-learn.org/stable/developers.

As you will see in Chapter 9, k-means is a clustering algorithm that locates clusters in
the data. How many it searches for is controlled by the n_clusters hyperparameter.
After training, the cluster centers are available via the cluster_centers_ attribute.
The fit() method of KMeans supports an optional argument sample_weight, which
lets the user specify the relative weights of the samples. k-means is a stochastic
algorithm, meaning that it relies on randomness to locate the clusters, so if you
want reproducible results, you must set the random_state parameter. As you can see,
despite the complexity of the task, the code is fairly straightforward. Now let’s use this
custom transformer:

cluster_simil = ClusterSimilarity(n_clusters=10, gamma=1., random_state=42)
similarities = cluster_simil.fit_transform(housing[["latitude", "longitude"]],
 sample_weight=housing_labels)

This code creates a ClusterSimilarity transformer, setting the number of clusters to
10. Then it calls fit_transform() with the latitude and longitude of every district in
the training set, weighting each district by its median house value. The transformer
uses k-means to locate the clusters, then measures the Gaussian RBF similarity
between each district and all 10 cluster centers. The result is a matrix with one row
per district, and one column per cluster. Let’s look at the first three rows, rounding to
two decimal places:

82 | Chapter 2: End-to-End Machine Learning Project

https://scikit-learn.org/stable/developers

>>> similarities[:3].round(2)
array([[0. , 0.14, 0. , 0. , 0. , 0.08, 0. , 0.99, 0. , 0.6],
 [0.63, 0. , 0.99, 0. , 0. , 0. , 0.04, 0. , 0.11, 0.],
 [0. , 0.29, 0. , 0. , 0.01, 0.44, 0. , 0.7 , 0. , 0.3]])

Figure 2-19 shows the 10 cluster centers found by k-means. The districts are colored
according to their geographic similarity to their closest cluster center. As you can see,
most clusters are located in highly populated and expensive areas.

Figure 2-19. Gaussian RBF similarity to the nearest cluster center

Transformation Pipelines
As you can see, there are many data transformation steps that need to be executed
in the right order. Fortunately, Scikit-Learn provides the Pipeline class to help with
such sequences of transformations. Here is a small pipeline for numerical attributes,
which will first impute then scale the input features:

from sklearn.pipeline import Pipeline

num_pipeline = Pipeline([
 ("impute", SimpleImputer(strategy="median")),
 ("standardize", StandardScaler()),
])

Prepare the Data for Machine Learning Algorithms | 83

The Pipeline constructor takes a list of name/estimator pairs (2-tuples) defining a
sequence of steps. The names can be anything you like, as long as they are unique
and don’t contain double underscores (__). They will be useful later, when we discuss
hyperparameter tuning. The estimators must all be transformers (i.e., they must
have a fit_transform() method), except for the last one, which can be anything: a
transformer, a predictor, or any other type of estimator.

In a Jupyter notebook, if you import sklearn and run sklearn.
set_config(display="diagram"), all Scikit-Learn estimators will
be rendered as interactive diagrams. This is particularly useful for
visualizing pipelines. To visualize num_pipeline, run a cell with
num_pipeline as the last line. Clicking an estimator will show more
details.

If you don’t want to name the transformers, you can use the make_pipeline() func‐
tion instead; it takes transformers as positional arguments and creates a Pipeline
using the names of the transformers’ classes, in lowercase and without underscores
(e.g., "simpleimputer"):

from sklearn.pipeline import make_pipeline

num_pipeline = make_pipeline(SimpleImputer(strategy="median"), StandardScaler())

If multiple transformers have the same name, an index is appended to their names
(e.g., "foo-1", "foo-2", etc.).

When you call the pipeline’s fit() method, it calls fit_transform() sequentially on
all the transformers, passing the output of each call as the parameter to the next call
until it reaches the final estimator, for which it just calls the fit() method.

The pipeline exposes the same methods as the final estimator. In this example the
last estimator is a StandardScaler, which is a transformer, so the pipeline also acts
like a transformer. If you call the pipeline’s transform() method, it will sequentially
apply all the transformations to the data. If the last estimator were a predictor instead
of a transformer, then the pipeline would have a predict() method rather than a
transform() method. Calling it would sequentially apply all the transformations to
the data and pass the result to the predictor’s predict() method.

Let’s call the pipeline’s fit_transform() method and look at the output’s first two
rows, rounded to two decimal places:

>>> housing_num_prepared = num_pipeline.fit_transform(housing_num)
>>> housing_num_prepared[:2].round(2)
array([[-1.42, 1.01, 1.86, 0.31, 1.37, 0.14, 1.39, -0.94],
 [0.6 , -0.7 , 0.91, -0.31, -0.44, -0.69, -0.37, 1.17]])

84 | Chapter 2: End-to-End Machine Learning Project

As you saw earlier, if you want to recover a nice DataFrame, you can use the pipeline’s
get_feature_names_out() method:

df_housing_num_prepared = pd.DataFrame(
 housing_num_prepared, columns=num_pipeline.get_feature_names_out(),
 index=housing_num.index)

Pipelines support indexing; for example, pipeline[1] returns the second estimator
in the pipeline, and pipeline[:-1] returns a Pipeline object containing all but the
last estimator. You can also access the estimators via the steps attribute, which is a
list of name/estimator pairs, or via the named_steps dictionary attribute, which maps
the names to the estimators. For example, num_pipeline["simpleimputer"] returns
the estimator named "simpleimputer".

So far, we have handled the categorical columns and the numerical columns sepa‐
rately. It would be more convenient to have a single transformer capable of handling
all columns, applying the appropriate transformations to each column. For this,
you can use a ColumnTransformer. For example, the following ColumnTransformer
will apply num_pipeline (the one we just defined) to the numerical attributes and
cat_pipeline to the categorical attribute:

from sklearn.compose import ColumnTransformer

num_attribs = ["longitude", "latitude", "housing_median_age", "total_rooms",
 "total_bedrooms", "population", "households", "median_income"]
cat_attribs = ["ocean_proximity"]

cat_pipeline = make_pipeline(
 SimpleImputer(strategy="most_frequent"),
 OneHotEncoder(handle_unknown="ignore"))

preprocessing = ColumnTransformer([
 ("num", num_pipeline, num_attribs),
 ("cat", cat_pipeline, cat_attribs),
])

First we import the ColumnTransformer class, then we define the list of numeri‐
cal and categorical column names and construct a simple pipeline for categorical
attributes. Lastly, we construct a ColumnTransformer. Its constructor requires a list of
triplets (3-tuples), each containing a name (which must be unique and not contain
double underscores), a transformer, and a list of names (or indices) of columns that
the transformer should be applied to.

Prepare the Data for Machine Learning Algorithms | 85

Instead of using a transformer, you can specify the string "drop"
if you want the columns to be dropped, or you can specify
"passthrough" if you want the columns to be left untouched. By
default, the remaining columns (i.e., the ones that were not listed)
will be dropped, but you can set the remainder hyperparameter to
any transformer (or to "passthrough") if you want these columns
to be handled differently.

Since listing all the column names is not very convenient, Scikit-Learn provides
a make_column_selector() function that returns a selector function you can use
to automatically select all the features of a given type, such as numerical or cate‐
gorical. You can pass this selector function to the ColumnTransformer instead of
column names or indices. Moreover, if you don’t care about naming the transform‐
ers, you can use make_column_transformer(), which chooses the names for you,
just like make_pipeline() does. For example, the following code creates the same
ColumnTransformer as earlier, except the transformers are automatically named
"pipeline-1" and "pipeline-2" instead of "num" and "cat":

from sklearn.compose import make_column_selector, make_column_transformer

preprocessing = make_column_transformer(
 (num_pipeline, make_column_selector(dtype_include=np.number)),
 (cat_pipeline, make_column_selector(dtype_include=object)),
)

Now we’re ready to apply this ColumnTransformer to the housing data:

housing_prepared = preprocessing.fit_transform(housing)

Great! We have a preprocessing pipeline that takes the entire training dataset and
applies each transformer to the appropriate columns, then concatenates the trans‐
formed columns horizontally (transformers must never change the number of rows).
Once again this returns a NumPy array, but you can get the column names using
preprocessing.get_feature_names_out() and wrap the data in a nice DataFrame
as we did before.

The OneHotEncoder returns a sparse matrix and the num_pipeline
returns a dense matrix. When there is such a mix of sparse and
dense matrices, the ColumnTransformer estimates the density of the
final matrix (i.e., the ratio of nonzero cells), and it returns a sparse
matrix if the density is lower than a given threshold (by default,
sparse_threshold=0.3). In this example, it returns a dense matrix.

Your project is going really well and you’re almost ready to train some models! You
now want to create a single pipeline that will perform all the transformations you’ve
experimented with up to now. Let’s recap what the pipeline will do and why:

86 | Chapter 2: End-to-End Machine Learning Project

• Missing values in numerical features will be imputed by replacing them with•
the median, as most ML algorithms don’t expect missing values. In categorical
features, missing values will be replaced by the most frequent category.

• The categorical feature will be one-hot encoded, as most ML algorithms only•
accept numerical inputs.

• A few ratio features will be computed and added: bedrooms_ratio,•
rooms_per_house, and people_per_house. Hopefully these will better correlate
with the median house value, and thereby help the ML models.

• A few cluster similarity features will also be added. These will likely be more•
useful to the model than latitude and longitude.

• Features with a long tail will be replaced by their logarithm, as most models•
prefer features with roughly uniform or Gaussian distributions.

• All numerical features will be standardized, as most ML algorithms prefer when•
all features have roughly the same scale.

The code that builds the pipeline to do all of this should look familiar to you by now:

def column_ratio(X):
 return X[:, [0]] / X[:, [1]]

def ratio_name(function_transformer, feature_names_in):
 return ["ratio"] # feature names out

def ratio_pipeline():
 return make_pipeline(
 SimpleImputer(strategy="median"),
 FunctionTransformer(column_ratio, feature_names_out=ratio_name),
 StandardScaler())

log_pipeline = make_pipeline(
 SimpleImputer(strategy="median"),
 FunctionTransformer(np.log, feature_names_out="one-to-one"),
 StandardScaler())
cluster_simil = ClusterSimilarity(n_clusters=10, gamma=1., random_state=42)
default_num_pipeline = make_pipeline(SimpleImputer(strategy="median"),
 StandardScaler())
preprocessing = ColumnTransformer([
 ("bedrooms", ratio_pipeline(), ["total_bedrooms", "total_rooms"]),
 ("rooms_per_house", ratio_pipeline(), ["total_rooms", "households"]),
 ("people_per_house", ratio_pipeline(), ["population", "households"]),
 ("log", log_pipeline, ["total_bedrooms", "total_rooms", "population",
 "households", "median_income"]),
 ("geo", cluster_simil, ["latitude", "longitude"]),
 ("cat", cat_pipeline, make_column_selector(dtype_include=object)),
],
 remainder=default_num_pipeline) # one column remaining: housing_median_age

Prepare the Data for Machine Learning Algorithms | 87

If you run this ColumnTransformer, it performs all the transformations and outputs a
NumPy array with 24 features:

>>> housing_prepared = preprocessing.fit_transform(housing)
>>> housing_prepared.shape
(16512, 24)
>>> preprocessing.get_feature_names_out()
array(['bedrooms__ratio', 'rooms_per_house__ratio',
 'people_per_house__ratio', 'log__total_bedrooms',
 'log__total_rooms', 'log__population', 'log__households',
 'log__median_income', 'geo__Cluster 0 similarity', [...],
 'geo__Cluster 9 similarity', 'cat__ocean_proximity_<1H OCEAN',
 'cat__ocean_proximity_INLAND', 'cat__ocean_proximity_ISLAND',
 'cat__ocean_proximity_NEAR BAY', 'cat__ocean_proximity_NEAR OCEAN',
 'remainder__housing_median_age'], dtype=object)

Select and Train a Model
At last! You framed the problem, you got the data and explored it, you sampled a
training set and a test set, and you wrote a preprocessing pipeline to automatically
clean up and prepare your data for machine learning algorithms. You are now ready
to select and train a machine learning model.

Train and Evaluate on the Training Set
The good news is that thanks to all these previous steps, things are now going to be
easy! You decide to train a very basic linear regression model to get started:

from sklearn.linear_model import LinearRegression

lin_reg = make_pipeline(preprocessing, LinearRegression())
lin_reg.fit(housing, housing_labels)

Done! You now have a working linear regression model. You try it out on the training
set, looking at the first five predictions and comparing them to the labels:

>>> housing_predictions = lin_reg.predict(housing)
>>> housing_predictions[:5].round(-2) # -2 = rounded to the nearest hundred
array([243700., 372400., 128800., 94400., 328300.])
>>> housing_labels.iloc[:5].values
array([458300., 483800., 101700., 96100., 361800.])

Well, it works, but not always: the first prediction is way off (by over $200,000!),
while the other predictions are better: two are off by about 25%, and two are off
by less than 10%. Remember that you chose to use the RMSE as your performance
measure, so you want to measure this regression model’s RMSE on the whole training
set using Scikit-Learn’s mean_squared_error() function, with the squared argument
set to False:

88 | Chapter 2: End-to-End Machine Learning Project

>>> from sklearn.metrics import mean_squared_error
>>> lin_rmse = mean_squared_error(housing_labels, housing_predictions,
... squared=False)
...
>>> lin_rmse
68687.89176589991

This is better than nothing, but clearly not a great score: the median_housing_values
of most districts range between $120,000 and $265,000, so a typical prediction error
of $68,628 is really not very satisfying. This is an example of a model underfitting the
training data. When this happens it can mean that the features do not provide enough
information to make good predictions, or that the model is not powerful enough.
As we saw in the previous chapter, the main ways to fix underfitting are to select a
more powerful model, to feed the training algorithm with better features, or to reduce
the constraints on the model. This model is not regularized, which rules out the last
option. You could try to add more features, but first you want to try a more complex
model to see how it does.

You decide to try a DecisionTreeRegressor, as this is a fairly powerful model capable
of finding complex nonlinear relationships in the data (decision trees are presented in
more detail in Chapter 6):

from sklearn.tree import DecisionTreeRegressor

tree_reg = make_pipeline(preprocessing, DecisionTreeRegressor(random_state=42))
tree_reg.fit(housing, housing_labels)

Now that the model is trained, you evaluate it on the training set:

>>> housing_predictions = tree_reg.predict(housing)
>>> tree_rmse = mean_squared_error(housing_labels, housing_predictions,
... squared=False)
...
>>> tree_rmse
0.0

Wait, what!? No error at all? Could this model really be absolutely perfect? Of course,
it is much more likely that the model has badly overfit the data. How can you be sure?
As you saw earlier, you don’t want to touch the test set until you are ready to launch a
model you are confident about, so you need to use part of the training set for training
and part of it for model validation.

Better Evaluation Using Cross-Validation
One way to evaluate the decision tree model would be to use the train_

test_split() function to split the training set into a smaller training set and a
validation set, then train your models against the smaller training set and evaluate
them against the validation set. It’s a bit of effort, but nothing too difficult, and it
would work fairly well.

Select and Train a Model | 89

A great alternative is to use Scikit-Learn’s k_-fold cross-validation feature. The follow‐
ing code randomly splits the training set into 10 nonoverlapping subsets called folds,
then it trains and evaluates the decision tree model 10 times, picking a different fold
for evaluation every time and using the other 9 folds for training. The result is an
array containing the 10 evaluation scores:

from sklearn.model_selection import cross_val_score

tree_rmses = -cross_val_score(tree_reg, housing, housing_labels,
 scoring="neg_root_mean_squared_error", cv=10)

Scikit-Learn’s cross-validation features expect a utility function
(greater is better) rather than a cost function (lower is better), so
the scoring function is actually the opposite of the RMSE. It’s a
negative value, so you need to switch the sign of the output to get
the RMSE scores.

Let’s look at the results:

>>> pd.Series(tree_rmses).describe()
count 10.000000
mean 66868.027288
std 2060.966425
min 63649.536493
25% 65338.078316
50% 66801.953094
75% 68229.934454
max 70094.778246
dtype: float64

Now the decision tree doesn’t look as good as it did earlier. In fact, it seems to
perform almost as poorly as the linear regression model! Notice that cross-validation
allows you to get not only an estimate of the performance of your model, but also a
measure of how precise this estimate is (i.e., its standard deviation). The decision tree
has an RMSE of about 66,868, with a standard deviation of about 2,061. You would
not have this information if you just used one validation set. But cross-validation
comes at the cost of training the model several times, so it is not always feasible.

If you compute the same metric for the linear regression model, you will find that
the mean RMSE is 69,858 and the standard deviation is 4,182. So the decision tree
model seems to perform very slightly better than the linear model, but the difference
is minimal due to severe overfitting. We know there’s an overfitting problem because
the training error is low (actually zero) while the validation error is high.

Let’s try one last model now: the RandomForestRegressor. As you will see in Chap‐
ter 7, random forests work by training many decision trees on random subsets of
the features, then averaging out their predictions. Such models composed of many
other models are called ensembles: they are capable of boosting the performance of

90 | Chapter 2: End-to-End Machine Learning Project

the underlying model (in this case, decision trees). The code is much the same as
earlier:

from sklearn.ensemble import RandomForestRegressor

forest_reg = make_pipeline(preprocessing,
 RandomForestRegressor(random_state=42))
forest_rmses = -cross_val_score(forest_reg, housing, housing_labels,
 scoring="neg_root_mean_squared_error", cv=10)

Let’s look at the scores:

>>> pd.Series(forest_rmses).describe()
count 10.000000
mean 47019.561281
std 1033.957120
min 45458.112527
25% 46464.031184
50% 46967.596354
75% 47325.694987
max 49243.765795
dtype: float64

Wow, this is much better: random forests really look very promising for this task!
However, if you train a RandomForest and measure the RMSE on the training set,
you will find roughly 17,474: that’s much lower, meaning that there’s still quite a
lot of overfitting going on. Possible solutions are to simplify the model, constrain
it (i.e., regularize it), or get a lot more training data. Before you dive much deeper
into random forests, however, you should try out many other models from various
categories of machine learning algorithms (e.g., several support vector machines with
different kernels, and possibly a neural network), without spending too much time
tweaking the hyperparameters. The goal is to shortlist a few (two to five) promising
models.

Fine-Tune Your Model
Let’s assume that you now have a shortlist of promising models. You now need to
fine-tune them. Let’s look at a few ways you can do that.

Grid Search
One option would be to fiddle with the hyperparameters manually, until you find a
great combination of hyperparameter values. This would be very tedious work, and
you may not have time to explore many combinations.

Instead, you can use Scikit-Learn’s GridSearchCV class to search for you. All you need
to do is tell it which hyperparameters you want it to experiment with and what values
to try out, and it will use cross-validation to evaluate all the possible combinations

Fine-Tune Your Model | 91

of hyperparameter values. For example, the following code searches for the best
combination of hyperparameter values for the RandomForestRegressor:

from sklearn.model_selection import GridSearchCV

full_pipeline = Pipeline([
 ("preprocessing", preprocessing),
 ("random_forest", RandomForestRegressor(random_state=42)),
])
param_grid = [
 {'preprocessing__geo__n_clusters': [5, 8, 10],
 'random_forest__max_features': [4, 6, 8]},
 {'preprocessing__geo__n_clusters': [10, 15],
 'random_forest__max_features': [6, 8, 10]},
]
grid_search = GridSearchCV(full_pipeline, param_grid, cv=3,
 scoring='neg_root_mean_squared_error')
grid_search.fit(housing, housing_labels)

Notice that you can refer to any hyperparameter of any estimator in a pipeline,
even if this estimator is nested deep inside several pipelines and column transform‐
ers. For example, when Scikit-Learn sees "preprocessing__geo__n_clusters", it
splits this string at the double underscores, then it looks for an estimator named
"preprocessing" in the pipeline and finds the preprocessing ColumnTransformer.
Next, it looks for a transformer named "geo" inside this ColumnTransformer and
finds the ClusterSimilarity transformer we used on the latitude and longitude
attributes. Then it finds this transformer’s n_clusters hyperparameter. Similarly,
random_forest__max_features refers to the max_features hyperparameter of the
estimator named "random_forest", which is of course the RandomForest model (the
max_features hyperparameter will be explained in Chapter 7).

Wrapping preprocessing steps in a Scikit-Learn pipeline allows you
to tune the preprocessing hyperparameters along with the model
hyperparameters. This is a good thing since they often interact.
For example, perhaps increasing n_clusters requires increasing
max_features as well. If fitting the pipeline transformers is com‐
putationally expensive, you can set the pipeline’s memory hyperpara‐
meter to the path of a caching directory: when you first fit the
pipeline, Scikit-Learn will save the fitted transformers to this direc‐
tory. If you then fit the pipeline again with the same hyperparame‐
ters, Scikit-Learn will just load the cached transformers.

There are two dictionaries in this param_grid, so GridSearchCV will first evaluate
all 3 × 3 = 9 combinations of n_clusters and max_features hyperparameter values
specified in the first dict, then it will try all 2 × 3 = 6 combinations of hyperparame‐
ter values in the second dict. So in total the grid search will explore 9 + 6 = 15

92 | Chapter 2: End-to-End Machine Learning Project

combinations of hyperparameter values, and it will train the pipeline 3 times per
combination, since we are using 3-fold cross validation. This means there will be a
grand total of 15 × 3 = 45 rounds of training! It may take a while, but when it is done
you can get the best combination of parameters like this:

>>> grid_search.best_params_
{'preprocessing__geo__n_clusters': 15, 'random_forest__max_features': 6}

In this example, the best model is obtained by setting n_clusters to 15 and setting
max_features to 8.

Since 15 is the maximum value that was evaluated for n_clusters,
you should probably try searching again with higher values; the
score may continue to improve.

You can access the best estimator using grid_search.best_estimator_. If
GridSearchCV is initialized with refit=True (which is the default), then once it finds
the best estimator using cross-validation, it retrains it on the whole training set. This
is usually a good idea, since feeding it more data will likely improve its performance.

The evaluation scores are available using grid_search.cv_results_. This is a dictio‐
nary, but if you wrap it in a DataFrame you get a nice list of all the test scores for
each combination of hyperparameters and for each cross-validation split, as well as
the mean test score across all splits:

>>> cv_res = pd.DataFrame(grid_search.cv_results_)
>>> cv_res.sort_values(by="mean_test_score", ascending=False, inplace=True)
>>> [...] # change column names to fit on this page, and show rmse = -score
>>> cv_res.head() # note: the 1st column is the row ID
 n_clusters max_features split0 split1 split2 mean_test_rmse
12 15 6 43460 43919 44748 44042
13 15 8 44132 44075 45010 44406
14 15 10 44374 44286 45316 44659
7 10 6 44683 44655 45657 44999
9 10 6 44683 44655 45657 44999

The mean test RMSE score for the best model is 44,042, which is better than the
score you got earlier using the default hyperparameter values (which was 47,019).
Congratulations, you have successfully fine-tuned your best model!

Randomized Search
The grid search approach is fine when you are exploring relatively few combinations,
like in the previous example, but RandomizedSearchCV is often preferable, especially
when the hyperparameter search space is large. This class can be used in much
the same way as the GridSearchCV class, but instead of trying out all possible

Fine-Tune Your Model | 93

combinations it evaluates a fixed number of combinations, selecting a random value
for each hyperparameter at every iteration. This may sound surprising, but this
approach has several benefits:

• If some of your hyperparameters are continuous (or discrete but with many•
possible values), and you let randomized search run for, say, 1,000 iterations, then
it will explore 1,000 different values for each of these hyperparameters, whereas
grid search would only explore the few values you listed for each one.

• Suppose a hyperparameter does not actually make much difference, but you don’t•
know it yet. If it has 10 possible values and you add it to your grid search, then
training will take 10 times longer. But if you add it to a random search, it will not
make any difference.

• If there are 6 hyperparameters to explore, each with 10 possible values, then grid•
search offers no other choice than training the model a million times, whereas
random search can always run for any number of iterations you choose.

For each hyperparameter, you must provide either a list of possible values, or a
probability distribution:

from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint

param_distribs = {'preprocessing__geo__n_clusters': randint(low=3, high=50),
 'random_forest__max_features': randint(low=2, high=20)}

rnd_search = RandomizedSearchCV(
 full_pipeline, param_distributions=param_distribs, n_iter=10, cv=3,
 scoring='neg_root_mean_squared_error', random_state=42)

rnd_search.fit(housing, housing_labels)

Scikit-Learn also has HalvingRandomSearchCV and HalvingGridSearchCV hyperpara‐
meter search classes. Their goal is to use the computational resources more efficiently,
either to train faster or to explore a larger hyperparameter space. Here’s how they
work: in the first round, many hyperparameter combinations (called “candidates”) are
generated using either the grid approach or the random approach. These candidates
are then used to train models that are evaluated using cross-validation, as usual.
However, training uses limited resources, which speeds up this first round consider‐
ably. By default, “limited resources” means that the models are trained on a small
part of the training set. However, other limitations are possible, such as reducing
the number of training iterations if the model has a hyperparameter to set it. Once
every candidate has been evaluated, only the best ones go on to the second round,
where they are allowed more resources to compete. After several rounds, the final
candidates are evaluated using full resources. This may save you some time tuning
hyperparameters.

94 | Chapter 2: End-to-End Machine Learning Project

Ensemble Methods
Another way to fine-tune your system is to try to combine the models that perform
best. The group (or “ensemble”) will often perform better than the best individual
model—just like random forests perform better than the individual decision trees
they rely on—especially if the individual models make very different types of errors.
For example, you could train and fine-tune a k-nearest neighbors model, then create
an ensemble model that just predicts the mean of the random forest prediction and
that model’s prediction. We will cover this topic in more detail in Chapter 7.

Analyzing the Best Models and Their Errors
You will often gain good insights on the problem by inspecting the best models. For
example, the RandomForestRegressor can indicate the relative importance of each
attribute for making accurate predictions:

>>> final_model = rnd_search.best_estimator_ # includes preprocessing
>>> feature_importances = final_model["random_forest"].feature_importances_
>>> feature_importances.round(2)
array([0.07, 0.05, 0.05, 0.01, 0.01, 0.01, 0.01, 0.19, [...], 0.01])

Let’s sort these importance scores in descending order and display them next to their
corresponding attribute names:

>>> sorted(zip(feature_importances,
... final_model["preprocessing"].get_feature_names_out()),
... reverse=True)
...
[(0.18694559869103852, 'log__median_income'),
 (0.0748194905715524, 'cat__ocean_proximity_INLAND'),
 (0.06926417748515576, 'bedrooms__ratio'),
 (0.05446998753775219, 'rooms_per_house__ratio'),
 (0.05262301809680712, 'people_per_house__ratio'),
 (0.03819415873915732, 'geo__Cluster 0 similarity'),
 [...]
 (0.00015061247730531558, 'cat__ocean_proximity_NEAR BAY'),
 (7.301686597099842e-05, 'cat__ocean_proximity_ISLAND')]

With this information, you may want to try dropping some of the less useful features
(e.g., apparently only one ocean_proximity category is really useful, so you could try
dropping the others).

The sklearn.feature_selection.SelectFromModel transformer
can automatically drop the least useful features for you: when you
fit it, it trains a model (typically a random forest), looks at its fea
ture_importances_ attribute, and selects the most useful features.
Then when you call transform(), it drops the other features.

Fine-Tune Your Model | 95

You should also look at the specific errors that your system makes, then try to
understand why it makes them and what could fix the problem: adding extra features
or getting rid of uninformative ones, cleaning up outliers, etc.

Now is also a good time to ensure that your model not only works well on average,
but also on all categories of districts, whether they’re rural or urban, rich or poor,
northern or southern, minority or not, etc. Creating subsets of your validation set for
each category takes a bit of work, but it’s important: if your model performs poorly on
a whole category of districts, then it should probably not be deployed until the issue
is solved, or at least it should not be used to make predictions for that category, as it
may do more harm than good.

Evaluate Your System on the Test Set
After tweaking your models for a while, you eventually have a system that performs
sufficiently well. You are ready to evaluate the final model on the test set. There is
nothing special about this process; just get the predictors and the labels from your
test set and run your final_model to transform the data and make predictions, then
evaluate these predictions:

X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()

final_predictions = final_model.predict(X_test)

final_rmse = mean_squared_error(y_test, final_predictions, squared=False)
print(final_rmse) # prints 41424.40026462184

In some cases, such a point estimate of the generalization error will not be quite
enough to convince you to launch: what if it is just 0.1% better than the model
currently in production? You might want to have an idea of how precise this estimate
is. For this, you can compute a 95% confidence interval for the generalization error
using scipy.stats.t.interval(). You get a fairly large interval from 39,275 to
43,467, and your previous point estimate of 41,424 is roughly in the middle of it:

>>> from scipy import stats
>>> confidence = 0.95
>>> squared_errors = (final_predictions - y_test) ** 2
>>> np.sqrt(stats.t.interval(confidence, len(squared_errors) - 1,
... loc=squared_errors.mean(),
... scale=stats.sem(squared_errors)))
...
array([39275.40861216, 43467.27680583])

96 | Chapter 2: End-to-End Machine Learning Project

If you did a lot of hyperparameter tuning, the performance will usually be slightly
worse than what you measured using cross-validation. That’s because your system
ends up fine-tuned to perform well on the validation data and will likely not perform
as well on unknown datasets. That’s not the case in this example since the test
RMSE is lower than the validation RMSE, but when it happens you must resist the
temptation to tweak the hyperparameters to make the numbers look good on the test
set; the improvements would be unlikely to generalize to new data.

Now comes the project prelaunch phase: you need to present your solution (high‐
lighting what you have learned, what worked and what did not, what assumptions
were made, and what your system’s limitations are), document everything, and create
nice presentations with clear visualizations and easy-to-remember statements (e.g.,
“the median income is the number one predictor of housing prices”). In this Califor‐
nia housing example, the final performance of the system is not much better than the
experts’ price estimates, which were often off by 30%, but it may still be a good idea
to launch it, especially if this frees up some time for the experts so they can work on
more interesting and productive tasks.

Launch, Monitor, and Maintain Your System
Perfect, you got approval to launch! You now need to get your solution ready for
production (e.g., polish the code, write documentation and tests, and so on). Then
you can deploy your model to your production environment. The most basic way to
do this is just to save the best model you trained, transfer the file to your production
environment, and load it. To save the model, you can use the joblib library like this:

import joblib

joblib.dump(final_model, "my_california_housing_model.pkl")

It’s often a good idea to save every model you experiment with so
that you can come back easily to any model you want. You may also
save the cross-validation scores and perhaps the actual predictions
on the validation set. This will allow you to easily compare scores
across model types, and compare the types of errors they make.

Once your model is transferred to production, you can load it and use it. For this you
must first import any custom classes and functions the model relies on (which means
transferring the code to production), then load the model using joblib and use it to
make predictions:

Launch, Monitor, and Maintain Your System | 97

13 In a nutshell, a REST (or RESTful) API is an HTTP-based API that follows some conventions, such as using
standard HTTP verbs to read, update, create, or delete resources (GET, POST, PUT, and DELETE) and using
JSON for the inputs and outputs.

import joblib
[...] # import KMeans, BaseEstimator, TransformerMixin, rbf_kernel, etc.

def column_ratio(X): [...]
def ratio_name(function_transformer, feature_names_in): [...]
class ClusterSimilarity(BaseEstimator, TransformerMixin): [...]

final_model_reloaded = joblib.load("my_california_housing_model.pkl")

new_data = [...] # some new districts to make predictions for
predictions = final_model_reloaded.predict(new_data)

For example, perhaps the model will be used within a website: the user will type in
some data about a new district and click the Estimate Price button. This will send
a query containing the data to the web server, which will forward it to your web
application, and finally your code will simply call the model’s predict() method
(you want to load the model upon server startup, rather than every time the model
is used). Alternatively, you can wrap the model within a dedicated web service that
your web application can query through a REST API13 (see Figure 2-20). This makes
it easier to upgrade your model to new versions without interrupting the main appli‐
cation. It also simplifies scaling, since you can start as many web services as needed
and load-balance the requests coming from your web application across these web
services. Moreover, it allows your web application to use any programming language,
not just Python.

Figure 2-20. A model deployed as a web service and used by a web application

Another popular strategy is to deploy your model to the cloud, for example on
Google’s Vertex AI (formerly known as Google Cloud AI Platform and Google Cloud
ML Engine): just save your model using joblib and upload it to Google Cloud
Storage (GCS), then head over to Vertex AI and create a new model version, pointing
it to the GCS file. That’s it! This gives you a simple web service that takes care of load
balancing and scaling for you. It takes JSON requests containing the input data (e.g.,
of a district) and returns JSON responses containing the predictions. You can then
use this web service in your website (or whatever production environment you are
using). As you will see in Chapter 19, deploying TensorFlow models on Vertex AI is
not much different from deploying Scikit-Learn models.

98 | Chapter 2: End-to-End Machine Learning Project

14 A captcha is a test to ensure a user is not a robot. These tests have often been used as a cheap way to label
training data.

But deployment is not the end of the story. You also need to write monitoring
code to check your system’s live performance at regular intervals and trigger alerts
when it drops. It may drop very quickly, for example if a component breaks in your
infrastructure, but be aware that it could also decay very slowly, which can easily go
unnoticed for a long time. This is quite common because of model rot: if the model
was trained with last year’s data, it may not be adapted to today’s data.

So, you need to monitor your model’s live performance. But how do you do that?
Well, it depends. In some cases, the model’s performance can be inferred from down‐
stream metrics. For example, if your model is part of a recommender system and it
suggests products that the users may be interested in, then it’s easy to monitor the
number of recommended products sold each day. If this number drops (compared
to non-recommended products), then the prime suspect is the model. This may be
because the data pipeline is broken, or perhaps the model needs to be retrained on
fresh data (as we will discuss shortly).

However, you may also need human analysis to assess the model’s performance. For
example, suppose you trained an image classification model (we’ll look at these in
Chapter 3) to detect various product defects on a production line. How can you get
an alert if the model’s performance drops, before thousands of defective products
get shipped to your clients? One solution is to send to human raters a sample of
all the pictures that the model classified (especially pictures that the model wasn’t
so sure about). Depending on the task, the raters may need to be experts, or they
could be nonspecialists, such as workers on a crowdsourcing platform (e.g., Amazon
Mechanical Turk). In some applications they could even be the users themselves,
responding, for example, via surveys or repurposed captchas.14

Either way, you need to put in place a monitoring system (with or without human
raters to evaluate the live model), as well as all the relevant processes to define what to
do in case of failures and how to prepare for them. Unfortunately, this can be a lot of
work. In fact, it is often much more work than building and training a model.

If the data keeps evolving, you will need to update your datasets and retrain your
model regularly. You should probably automate the whole process as much as possi‐
ble. Here are a few things you can automate:

• Collect fresh data regularly and label it (e.g., using human raters).•
• Write a script to train the model and fine-tune the hyperparameters automati‐•

cally. This script could run automatically, for example every day or every week,
depending on your needs.

Launch, Monitor, and Maintain Your System | 99

• Write another script that will evaluate both the new model and the previous•
model on the updated test set, and deploy the model to production if the perfor‐
mance has not decreased (if it did, make sure you investigate why). The script
should probably test the performance of your model on various subsets of the
test set, such as poor or rich districts, rural or urban districts, etc.

You should also make sure you evaluate the model’s input data quality. Sometimes
performance will degrade slightly because of a poor-quality signal (e.g., a malfunc‐
tioning sensor sending random values, or another team’s output becoming stale), but
it may take a while before your system’s performance degrades enough to trigger an
alert. If you monitor your model’s inputs, you may catch this earlier. For example, you
could trigger an alert if more and more inputs are missing a feature, or the mean or
standard deviation drifts too far from the training set, or a categorical feature starts
containing new categories.

Finally, make sure you keep backups of every model you create and have the process
and tools in place to roll back to a previous model quickly, in case the new model
starts failing badly for some reason. Having backups also makes it possible to easily
compare new models with previous ones. Similarly, you should keep backups of every
version of your datasets so that you can roll back to a previous dataset if the new one
ever gets corrupted (e.g., if the fresh data that gets added to it turns out to be full
of outliers). Having backups of your datasets also allows you to evaluate any model
against any previous dataset.

As you can see, machine learning involves quite a lot of infrastructure. Chapter 19
discusses some aspects of this, but it’s a very broad topic called ML Operations
(MLOps), which deserves its own book. So don’t be surprised if your first ML project
takes a lot of effort and time to build and deploy to production. Fortunately, once all
the infrastructure is in place, going from idea to production will be much faster.

Try It Out!
Hopefully this chapter gave you a good idea of what a machine learning project looks
like as well as showing you some of the tools you can use to train a great system. As
you can see, much of the work is in the data preparation step: building monitoring
tools, setting up human evaluation pipelines, and automating regular model training.
The machine learning algorithms are important, of course, but it is probably prefera‐
ble to be comfortable with the overall process and know three or four algorithms well
rather than to spend all your time exploring advanced algorithms.

So, if you have not already done so, now is a good time to pick up a laptop, select a
dataset that you are interested in, and try to go through the whole process from A to
Z. A good place to start is on a competition website such as Kaggle: you will have a
dataset to play with, a clear goal, and people to share the experience with. Have fun!

100 | Chapter 2: End-to-End Machine Learning Project

https://kaggle.com

Exercises
The following exercises are based on this chapter’s housing dataset:

1. Try a support vector machine regressor (sklearn.svm.SVR) with various1.
hyperparameters, such as kernel="linear" (with various values for the
C hyperparameter) or kernel="rbf" (with various values for the C and gamma
hyperparameters). Note that support vector machines don’t scale well to large
datasets, so you should probably train your model on just the first 5,000 instances
of the training set and use only 3-fold cross-validation, or else it will take hours.
Don’t worry about what the hyperparameters mean for now; we’ll discuss them
in Chapter 5. How does the best SVR predictor perform?

2. Try replacing the GridSearchCV with a RandomizedSearchCV.2.
3. Try adding a SelectFromModel transformer in the preparation pipeline to select3.

only the most important attributes.
4. Try creating a custom transformer that trains a k-nearest neighbors regressor4.

(sklearn.neighbors.KNeighborsRegressor) in its fit() method, and outputs
the model’s predictions in its transform() method. Then add this feature to
the preprocessing pipeline, using latitude and longitude as the inputs to this
transformer. This will add a feature in the model that corresponds to the housing
median price of the nearest districts.

5. Automatically explore some preparation options using GridSearchCV.5.
6. Try to implement the StandardScalerClone class again from scratch,6.

then add support for the inverse_transform() method: executing scaler.
inverse_transform(scaler.fit_transform(X)) should return an array very
close to X. Then add support for feature names: set feature_names_in_ in the
fit() method if the input is a DataFrame. This attribute should be a NumPy
array of column names. Lastly, implement the get_feature_names_out()

method: it should have one optional input_features=None argument. If passed,
the method should check that its length matches n_features_in_, and it should
match feature_names_in_ if it is defined; then input_features should be
returned. If input_features is None, then the method should either return
feature_names_in_ if it is defined or np.array(["x0", "x1", ...]) with
length n_features_in_ otherwise.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

Exercises | 101

https://homl.info/colab3

1 By default Scikit-Learn caches downloaded datasets in a directory called scikit_learn_data in your home
directory.

CHAPTER 3

Classification

In Chapter 1 I mentioned that the most common supervised learning tasks are
regression (predicting values) and classification (predicting classes). In Chapter 2
we explored a regression task, predicting housing values, using various algorithms
such as linear regression, decision trees, and random forests (which will be explained
in further detail in later chapters). Now we will turn our attention to classification
systems.

MNIST
In this chapter we will be using the MNIST dataset, which is a set of 70,000 small
images of digits handwritten by high school students and employees of the US
Census Bureau. Each image is labeled with the digit it represents. This set has
been studied so much that it is often called the “hello world” of machine learning:
whenever people come up with a new classification algorithm they are curious to see
how it will perform on MNIST, and anyone who learns machine learning tackles this
dataset sooner or later.

Scikit-Learn provides many helper functions to download popular datasets. MNIST is
one of them. The following code fetches the MNIST dataset from OpenML.org:1

from sklearn.datasets import fetch_openml

mnist = fetch_openml('mnist_784', as_frame=False)

The sklearn.datasets package contains mostly three types of functions: fetch_*
functions such as fetch_openml() to download real-life datasets, load_* functions

103

to load small toy datasets bundled with Scikit-Learn (so they don’t need to be down‐
loaded over the internet), and make_* functions to generate fake datasets, useful
for tests. Generated datasets are usually returned as an (X, y) tuple containing
the input data and the targets, both as NumPy arrays. Other datasets are returned
as sklearn.utils.Bunch objects, which are dictionaries whose entries can also be
accessed as attributes. They generally contain the following entries:

"DESCR"

A description of the dataset

"data"

The input data, usually as a 2D NumPy array

"target"

The labels, usually as a 1D NumPy array

The fetch_openml() function is a bit unusual since by default it returns the inputs as
a Pandas DataFrame and the labels as a Pandas Series (unless the dataset is sparse).
But the MNIST dataset contains images, and DataFrames aren’t ideal for that, so it’s
preferable to set as_frame=False to get the data as NumPy arrays instead. Let’s look
at these arrays:

>>> X, y = mnist.data, mnist.target
>>> X
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.],
 ...,
 [0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> X.shape
(70000, 784)
>>> y
array(['5', '0', '4', ..., '4', '5', '6'], dtype=object)
>>> y.shape
(70000,)

There are 70,000 images, and each image has 784 features. This is because each image
is 28 × 28 pixels, and each feature simply represents one pixel’s intensity, from 0
(white) to 255 (black). Let’s take a peek at one digit from the dataset (Figure 3-1).
All we need to do is grab an instance’s feature vector, reshape it to a 28 × 28 array,
and display it using Matplotlib’s imshow() function. We use cmap="binary" to get a
grayscale color map where 0 is white and 255 is black:

104 | Chapter 3: Classification

2 Datasets returned by fetch_openml() are not always shuffled or split.
3 Shuffling may be a bad idea in some contexts—for example, if you are working on time series data (such as

stock market prices or weather conditions). We will explore this in Chapter 15.

import matplotlib.pyplot as plt

def plot_digit(image_data):
 image = image_data.reshape(28, 28)
 plt.imshow(image, cmap="binary")
 plt.axis("off")

some_digit = X[0]
plot_digit(some_digit)
plt.show()

Figure 3-1. Example of an MNIST image

This looks like a 5, and indeed that’s what the label tells us:

>>> y[0]
'5'

To give you a feel for the complexity of the classification task, Figure 3-2 shows a few
more images from the MNIST dataset.

But wait! You should always create a test set and set it aside before inspecting the data
closely. The MNIST dataset returned by fetch_openml() is actually already split into
a training set (the first 60,000 images) and a test set (the last 10,000 images):2

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

The training set is already shuffled for us, which is good because this guarantees
that all cross-validation folds will be similar (we don’t want one fold to be missing
some digits). Moreover, some learning algorithms are sensitive to the order of the
training instances, and they perform poorly if they get many similar instances in a
row. Shuffling the dataset ensures that this won’t happen.3

MNIST | 105

Figure 3-2. Digits from the MNIST dataset

Training a Binary Classifier
Let’s simplify the problem for now and only try to identify one digit—for example,
the number 5. This “5-detector” will be an example of a binary classifier, capable
of distinguishing between just two classes, 5 and non-5. First we’ll create the target
vectors for this classification task:

y_train_5 = (y_train == '5') # True for all 5s, False for all other digits
y_test_5 = (y_test == '5')

Now let’s pick a classifier and train it. A good place to start is with a stochastic gra‐
dient descent (SGD, or stochastic GD) classifier, using Scikit-Learn’s SGDClassifier
class. This classifier is capable of handling very large datasets efficiently. This is in
part because SGD deals with training instances independently, one at a time, which
also makes SGD well suited for online learning, as you will see later. Let’s create an
SGDClassifier and train it on the whole training set:

from sklearn.linear_model import SGDClassifier

sgd_clf = SGDClassifier(random_state=42)
sgd_clf.fit(X_train, y_train_5)

106 | Chapter 3: Classification

Now we can use it to detect images of the number 5:

>>> sgd_clf.predict([some_digit])
array([True])

The classifier guesses that this image represents a 5 (True). Looks like it guessed right
in this particular case! Now, let’s evaluate this model’s performance.

Performance Measures
Evaluating a classifier is often significantly trickier than evaluating a regressor, so we
will spend a large part of this chapter on this topic. There are many performance
measures available, so grab another coffee and get ready to learn a bunch of new
concepts and acronyms!

Measuring Accuracy Using Cross-Validation
A good way to evaluate a model is to use cross-validation, just as you did in
Chapter 2. Let’s use the cross_val_score() function to evaluate our SGDClassifier
model, using k-fold cross-validation with three folds. Remember that k-fold cross-
validation means splitting the training set into k folds (in this case, three), then
training the model k times, holding out a different fold each time for evaluation (see
Chapter 2):

>>> from sklearn.model_selection import cross_val_score
>>> cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([0.95035, 0.96035, 0.9604])

Wow! Above 95% accuracy (ratio of correct predictions) on all cross-validation folds?
This looks amazing, doesn’t it? Well, before you get too excited, let’s look at a dummy
classifier that just classifies every single image in the most frequent class, which in
this case is the negative class (i.e., non 5):

from sklearn.dummy import DummyClassifier

dummy_clf = DummyClassifier()
dummy_clf.fit(X_train, y_train_5)
print(any(dummy_clf.predict(X_train))) # prints False: no 5s detected

Can you guess this model’s accuracy? Let’s find out:

>>> cross_val_score(dummy_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([0.90965, 0.90965, 0.90965])

That’s right, it has over 90% accuracy! This is simply because only about 10% of the
images are 5s, so if you always guess that an image is not a 5, you will be right about
90% of the time. Beats Nostradamus.

This demonstrates why accuracy is generally not the preferred performance measure
for classifiers, especially when you are dealing with skewed datasets (i.e., when some

Performance Measures | 107

classes are much more frequent than others). A much better way to evaluate the
performance of a classifier is to look at the confusion matrix (CM).

Implementing Cross-Validation
Occasionally you will need more control over the cross-validation process than
what Scikit-Learn provides off the shelf. In these cases, you can implement cross-
validation yourself. The following code does roughly the same thing as Scikit-Learn’s
cross_val_score() function, and it prints the same result:

from sklearn.model_selection import StratifiedKFold
from sklearn.base import clone

skfolds = StratifiedKFold(n_splits=3) # add shuffle=True if the dataset is
 # not already shuffled
for train_index, test_index in skfolds.split(X_train, y_train_5):
 clone_clf = clone(sgd_clf)
 X_train_folds = X_train[train_index]
 y_train_folds = y_train_5[train_index]
 X_test_fold = X_train[test_index]
 y_test_fold = y_train_5[test_index]

 clone_clf.fit(X_train_folds, y_train_folds)
 y_pred = clone_clf.predict(X_test_fold)
 n_correct = sum(y_pred == y_test_fold)
 print(n_correct / len(y_pred)) # prints 0.95035, 0.96035, and 0.9604

The StratifiedKFold class performs stratified sampling (as explained in Chapter 2)
to produce folds that contain a representative ratio of each class. At each iteration the
code creates a clone of the classifier, trains that clone on the training folds, and makes
predictions on the test fold. Then it counts the number of correct predictions and
outputs the ratio of correct predictions.

Confusion Matrices
The general idea of a confusion matrix is to count the number of times instances of
class A are classified as class B, for all A/B pairs. For example, to know the number of
times the classifier confused images of 8s with 0s, you would look at row #8, column
#0 of the confusion matrix.

To compute the confusion matrix, you first need to have a set of predictions so that
they can be compared to the actual targets. You could make predictions on the test
set, but it’s best to keep that untouched for now (remember that you want to use the
test set only at the very end of your project, once you have a classifier that you are
ready to launch). Instead, you can use the cross_val_predict() function:

108 | Chapter 3: Classification

from sklearn.model_selection import cross_val_predict

y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)

Just like the cross_val_score() function, cross_val_predict() performs k-fold
cross-validation, but instead of returning the evaluation scores, it returns the predic‐
tions made on each test fold. This means that you get a clean prediction for each
instance in the training set (by “clean” I mean “out-of-sample”: the model makes
predictions on data that it never saw during training).

Now you are ready to get the confusion matrix using the confusion_matrix()
function. Just pass it the target classes (y_train_5) and the predicted classes
(y_train_pred):

>>> from sklearn.metrics import confusion_matrix
>>> cm = confusion_matrix(y_train_5, y_train_pred)
>>> cm
array([[53892, 687],
 [1891, 3530]])

Each row in a confusion matrix represents an actual class, while each column rep‐
resents a predicted class. The first row of this matrix considers non-5 images (the
negative class): 53,892 of them were correctly classified as non-5s (they are called true
negatives), while the remaining 687 were wrongly classified as 5s (false positives, also
called type I errors). The second row considers the images of 5s (the positive class):
1,891 were wrongly classified as non-5s (false negatives, also called type II errors),
while the remaining 3,530 were correctly classified as 5s (true positives). A perfect
classifier would only have true positives and true negatives, so its confusion matrix
would have nonzero values only on its main diagonal (top left to bottom right):

>>> y_train_perfect_predictions = y_train_5 # pretend we reached perfection
>>> confusion_matrix(y_train_5, y_train_perfect_predictions)
array([[54579, 0],
 [0, 5421]])

The confusion matrix gives you a lot of information, but sometimes you may prefer
a more concise metric. An interesting one to look at is the accuracy of the positive
predictions; this is called the precision of the classifier (Equation 3-1).

Equation 3-1. Precision

precision = TP
TP + FP

TP is the number of true positives, and FP is the number of false positives.

A trivial way to have perfect precision is to create a classifier that always makes
negative predictions, except for one single positive prediction on the instance it’s

Performance Measures | 109

most confident about. If this one prediction is correct, then the classifier has 100%
precision (precision = 1/1 = 100%). Obviously, such a classifier would not be very
useful, since it would ignore all but one positive instance. So, precision is typically
used along with another metric named recall, also called sensitivity or the true positive
rate (TPR): this is the ratio of positive instances that are correctly detected by the
classifier (Equation 3-2).

Equation 3-2. Recall

recall = TP
TP + FN

FN is, of course, the number of false negatives.

If you are confused about the confusion matrix, Figure 3-3 may help.

Figure 3-3. An illustrated confusion matrix showing examples of true negatives (top left),
false positives (top right), false negatives (lower left), and true positives (lower right)

Precision and Recall
Scikit-Learn provides several functions to compute classifier metrics, including preci‐
sion and recall:

>>> from sklearn.metrics import precision_score, recall_score
>>> precision_score(y_train_5, y_train_pred) # == 3530 / (687 + 3530)
0.8370879772350012
>>> recall_score(y_train_5, y_train_pred) # == 3530 / (1891 + 3530)
0.6511713705958311

110 | Chapter 3: Classification

Now our 5-detector does not look as shiny as it did when we looked at its accuracy.
When it claims an image represents a 5, it is correct only 83.7% of the time. More‐
over, it only detects 65.1% of the 5s.

It is often convenient to combine precision and recall into a single metric called the
F1 score, especially when you need a single metric to compare two classifiers. The
F1 score is the harmonic mean of precision and recall (Equation 3-3). Whereas the
regular mean treats all values equally, the harmonic mean gives much more weight to
low values. As a result, the classifier will only get a high F1 score if both recall and
precision are high.

Equation 3-3. F1 score

F1 = 2
1

precision + 1
recall

= 2 × precision × recall
precision + recall = TP

TP + FN + FP
2

To compute the F1 score, simply call the f1_score() function:

>>> from sklearn.metrics import f1_score
>>> f1_score(y_train_5, y_train_pred)
0.7325171197343846

The F1 score favors classifiers that have similar precision and recall. This is not always
what you want: in some contexts you mostly care about precision, and in other
contexts you really care about recall. For example, if you trained a classifier to detect
videos that are safe for kids, you would probably prefer a classifier that rejects many
good videos (low recall) but keeps only safe ones (high precision), rather than a
classifier that has a much higher recall but lets a few really bad videos show up in
your product (in such cases, you may even want to add a human pipeline to check
the classifier’s video selection). On the other hand, suppose you train a classifier to
detect shoplifters in surveillance images: it is probably fine if your classifier only has
30% precision as long as it has 99% recall (sure, the security guards will get a few false
alerts, but almost all shoplifters will get caught).

Unfortunately, you can’t have it both ways: increasing precision reduces recall, and
vice versa. This is called the precision/recall trade-off.

The Precision/Recall Trade-off
To understand this trade-off, let’s look at how the SGDClassifier makes its classifica‐
tion decisions. For each instance, it computes a score based on a decision function.
If that score is greater than a threshold, it assigns the instance to the positive class;
otherwise it assigns it to the negative class. Figure 3-4 shows a few digits positioned
from the lowest score on the left to the highest score on the right. Suppose the
decision threshold is positioned at the central arrow (between the two 5s): you will

Performance Measures | 111

find 4 true positives (actual 5s) on the right of that threshold, and 1 false positive
(actually a 6). Therefore, with that threshold, the precision is 80% (4 out of 5). But
out of 6 actual 5s, the classifier only detects 4, so the recall is 67% (4 out of 6). If
you raise the threshold (move it to the arrow on the right), the false positive (the
6) becomes a true negative, thereby increasing the precision (up to 100% in this
case), but one true positive becomes a false negative, decreasing recall down to 50%.
Conversely, lowering the threshold increases recall and reduces precision.

Figure 3-4. The precision/recall trade-off: images are ranked by their classifier score,
and those above the chosen decision threshold are considered positive; the higher the
threshold, the lower the recall, but (in general) the higher the precision

Scikit-Learn does not let you set the threshold directly, but it does give you access to
the decision scores that it uses to make predictions. Instead of calling the classifier’s
predict() method, you can call its decision_function() method, which returns a
score for each instance, and then use any threshold you want to make predictions
based on those scores:

>>> y_scores = sgd_clf.decision_function([some_digit])
>>> y_scores
array([2164.22030239])
>>> threshold = 0
>>> y_some_digit_pred = (y_scores > threshold)
array([True])

The SGDClassifier uses a threshold equal to 0, so the preceding code returns the
same result as the predict() method (i.e., True). Let’s raise the threshold:

>>> threshold = 3000
>>> y_some_digit_pred = (y_scores > threshold)
>>> y_some_digit_pred
array([False])

This confirms that raising the threshold decreases recall. The image actually repre‐
sents a 5, and the classifier detects it when the threshold is 0, but it misses it when the
threshold is increased to 3,000.

112 | Chapter 3: Classification

How do you decide which threshold to use? First, use the cross_val_predict()
function to get the scores of all instances in the training set, but this time specify that
you want to return decision scores instead of predictions:

y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3,
 method="decision_function")

With these scores, use the precision_recall_curve() function to compute precision
and recall for all possible thresholds (the function adds a last precision of 0 and a last
recall of 1, corresponding to an infinite threshold):

from sklearn.metrics import precision_recall_curve

precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)

Finally, use Matplotlib to plot precision and recall as functions of the threshold value
(Figure 3-5). Let’s show the threshold of 3,000 we selected:

plt.plot(thresholds, precisions[:-1], "b--", label="Precision", linewidth=2)
plt.plot(thresholds, recalls[:-1], "g-", label="Recall", linewidth=2)
plt.vlines(threshold, 0, 1.0, "k", "dotted", label="threshold")
[...] # beautify the figure: add grid, legend, axis, labels, and circles
plt.show()

Figure 3-5. Precision and recall versus the decision threshold

You may wonder why the precision curve is bumpier than the recall
curve in Figure 3-5. The reason is that precision may sometimes go
down when you raise the threshold (although in general it will go
up). To understand why, look back at Figure 3-4 and notice what
happens when you start from the central threshold and move it
just one digit to the right: precision goes from 4/5 (80%) down to
3/4 (75%). On the other hand, recall can only go down when the
threshold is increased, which explains why its curve looks smooth.

Performance Measures | 113

At this threshold value, precision is near 90% and recall is around 50%. Another way
to select a good precision/recall trade-off is to plot precision directly against recall, as
shown in Figure 3-6 (the same threshold is shown):

plt.plot(recalls, precisions, linewidth=2, label="Precision/Recall curve")
[...] # beautify the figure: add labels, grid, legend, arrow, and text
plt.show()

Figure 3-6. Precision versus recall

You can see that precision really starts to fall sharply at around 80% recall. You
will probably want to select a precision/recall trade-off just before that drop—for
example, at around 60% recall. But of course, the choice depends on your project.

Suppose you decide to aim for 90% precision. You could use the first plot to find the
threshold you need to use, but that’s not very precise. Alternatively, you can search
for the lowest threshold that gives you at least 90% precision. For this, you can use the
NumPy array’s argmax() method. This returns the first index of the maximum value,
which in this case means the first True value:

>>> idx_for_90_precision = (precisions >= 0.90).argmax()
>>> threshold_for_90_precision = thresholds[idx_for_90_precision]
>>> threshold_for_90_precision
3370.0194991439557

114 | Chapter 3: Classification

To make predictions (on the training set for now), instead of calling the classifier’s
predict() method, you can run this code:

y_train_pred_90 = (y_scores >= threshold_for_90_precision)

Let’s check these predictions’ precision and recall:

>>> precision_score(y_train_5, y_train_pred_90)
0.9000345901072293
>>> recall_at_90_precision = recall_score(y_train_5, y_train_pred_90)
>>> recall_at_90_precision
0.4799852425751706

Great, you have a 90% precision classifier! As you can see, it is fairly easy to create a
classifier with virtually any precision you want: just set a high enough threshold, and
you’re done. But wait, not so fast–a high-precision classifier is not very useful if its
recall is too low! For many applications, 48% recall wouldn’t be great at all.

If someone says, “Let’s reach 99% precision”, you should ask, “At
what recall?”

The ROC Curve
The receiver operating characteristic (ROC) curve is another common tool used with
binary classifiers. It is very similar to the precision/recall curve, but instead of plot‐
ting precision versus recall, the ROC curve plots the true positive rate (another name
for recall) against the false positive rate (FPR). The FPR (also called the fall-out) is the
ratio of negative instances that are incorrectly classified as positive. It is equal to 1 –
the true negative rate (TNR), which is the ratio of negative instances that are correctly
classified as negative. The TNR is also called specificity. Hence, the ROC curve plots
sensitivity (recall) versus 1 – specificity.

To plot the ROC curve, you first use the roc_curve() function to compute the TPR
and FPR for various threshold values:

from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)

Then you can plot the FPR against the TPR using Matplotlib. The following code
produces the plot in Figure 3-7. To find the point that corresponds to 90% precision,
we need to look for the index of the desired threshold. Since thresholds are listed in
decreasing order in this case, we use <= instead of >= on the first line:

Performance Measures | 115

idx_for_threshold_at_90 = (thresholds <= threshold_for_90_precision).argmax()
tpr_90, fpr_90 = tpr[idx_for_threshold_at_90], fpr[idx_for_threshold_at_90]

plt.plot(fpr, tpr, linewidth=2, label="ROC curve")
plt.plot([0, 1], [0, 1], 'k:', label="Random classifier's ROC curve")
plt.plot([fpr_90], [tpr_90], "ko", label="Threshold for 90% precision")
[...] # beautify the figure: add labels, grid, legend, arrow, and text
plt.show()

Figure 3-7. A ROC curve plotting the false positive rate against the true positive rate for
all possible thresholds; the black circle highlights the chosen ratio (at 90% precision and
48% recall)

Once again there is a trade-off: the higher the recall (TPR), the more false positives
(FPR) the classifier produces. The dotted line represents the ROC curve of a purely
random classifier; a good classifier stays as far away from that line as possible (toward
the top-left corner).

One way to compare classifiers is to measure the area under the curve (AUC). A
perfect classifier will have a ROC AUC equal to 1, whereas a purely random classifier
will have a ROC AUC equal to 0.5. Scikit-Learn provides a function to estimate the
ROC AUC:

>>> from sklearn.metrics import roc_auc_score
>>> roc_auc_score(y_train_5, y_scores)
0.9604938554008616

116 | Chapter 3: Classification

4 Scikit-Learn classifiers always have either a decision_function() method or a predict_proba() method, or
sometimes both.

Since the ROC curve is so similar to the precision/recall (PR)
curve, you may wonder how to decide which one to use. As a rule
of thumb, you should prefer the PR curve whenever the positive
class is rare or when you care more about the false positives than
the false negatives. Otherwise, use the ROC curve. For example,
looking at the previous ROC curve (and the ROC AUC score),
you may think that the classifier is really good. But this is mostly
because there are few positives (5s) compared to the negatives
(non-5s). In contrast, the PR curve makes it clear that the classifier
has room for improvement: the curve could really be closer to the
top-right corner (see Figure 3-6 again).

Let’s now create a RandomForestClassifier, whose PR curve and F1 score we can
compare to those of the SGDClassifier:

from sklearn.ensemble import RandomForestClassifier

forest_clf = RandomForestClassifier(random_state=42)

The precision_recall_curve() function expects labels and scores for each
instance, so we need to train the random forest classifier and make it assign a
score to each instance. But the RandomForestClassifier class does not have a
decision_function() method, due to the way it works (we will cover this in Chap‐
ter 7). Luckily, it has a predict_proba() method that returns class probabilities for
each instance, and we can just use the probability of the positive class as a score, so
it will work fine.4 We can call the cross_val_predict() function to train the Random
ForestClassifier using cross-validation and make it predict class probabilities for
every image as follows:

y_probas_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3,
 method="predict_proba")

Let’s look at the class probabilities for the first two images in the training set:

>>> y_probas_forest[:2]
array([[0.11, 0.89],
 [0.99, 0.01]])

The model predicts that the first image is positive with 89% probability, and it
predicts that the second image is negative with 99% probability. Since each image is
either positive or negative, the probabilities in each row add up to 100%.

Performance Measures | 117

These are estimated probabilities, not actual probabilities. For
example, if you look at all the images that the model classified
as positive with an estimated probability between 50% and 60%,
roughly 94% of them are actually positive. So, the model’s estima‐
ted probabilities were much too low in this case—but models can
be overconfident as well. The sklearn.calibration package con‐
tains tools to calibrate the estimated probabilities and make them
much closer to actual probabilities. See the extra material section in
this chapter’s notebook for more details.

The second column contains the estimated probabilities for the positive class, so let’s
pass them to the precision_recall_curve() function:

y_scores_forest = y_probas_forest[:, 1]
precisions_forest, recalls_forest, thresholds_forest = precision_recall_curve(
 y_train_5, y_scores_forest)

Now we’re ready to plot the PR curve. It is useful to plot the first PR curve as well to
see how they compare (Figure 3-8):

plt.plot(recalls_forest, precisions_forest, "b-", linewidth=2,
 label="Random Forest")
plt.plot(recalls, precisions, "--", linewidth=2, label="SGD")
[...] # beautify the figure: add labels, grid, and legend
plt.show()

Figure 3-8. Comparing PR curves: the random forest classifier is superior to the SGD
classifier because its PR curve is much closer to the top-right corner, and it has a greater
AUC

118 | Chapter 3: Classification

https://homl.info/colab3

As you can see in Figure 3-8, the RandomForestClassifier’s PR curve looks much
better than the SGDClassifier’s: it comes much closer to the top-right corner. Its F1
score and ROC AUC score are also significantly better:

>>> y_train_pred_forest = y_probas_forest[:, 1] >= 0.5 # positive proba ≥ 50%
>>> f1_score(y_train_5, y_pred_forest)
0.9242275142688446
>>> roc_auc_score(y_train_5, y_scores_forest)
0.9983436731328145

Try measuring the precision and recall scores: you should find about 99.1% precision
and 86.6% recall. Not too bad!

You now know how to train binary classifiers, choose the appropriate metric for
your task, evaluate your classifiers using cross-validation, select the precision/recall
trade-off that fits your needs, and use several metrics and curves to compare various
models. You’re ready to try to detect more than just the 5s.

Multiclass Classification
Whereas binary classifiers distinguish between two classes, multiclass classifiers (also
called multinomial classifiers) can distinguish between more than two classes.

Some Scikit-Learn classifiers (e.g., LogisticRegression, RandomForestClassifier,
and GaussianNB) are capable of handling multiple classes natively. Others are strictly
binary classifiers (e.g., SGDClassifier and SVC). However, there are various strategies
that you can use to perform multiclass classification with multiple binary classifiers.

One way to create a system that can classify the digit images into 10 classes (from 0
to 9) is to train 10 binary classifiers, one for each digit (a 0-detector, a 1-detector, a
2-detector, and so on). Then when you want to classify an image, you get the decision
score from each classifier for that image and you select the class whose classifier
outputs the highest score. This is called the one-versus-the-rest (OvR) strategy, or
sometimes one-versus-all (OvA).

Another strategy is to train a binary classifier for every pair of digits: one to distin‐
guish 0s and 1s, another to distinguish 0s and 2s, another for 1s and 2s, and so
on. This is called the one-versus-one (OvO) strategy. If there are N classes, you need
to train N × (N – 1) / 2 classifiers. For the MNIST problem, this means training
45 binary classifiers! When you want to classify an image, you have to run the
image through all 45 classifiers and see which class wins the most duels. The main
advantage of OvO is that each classifier only needs to be trained on the part of the
training set containing the two classes that it must distinguish.

Some algorithms (such as support vector machine classifiers) scale poorly with the
size of the training set. For these algorithms OvO is preferred because it is faster

Multiclass Classification | 119

to train many classifiers on small training sets than to train few classifiers on large
training sets. For most binary classification algorithms, however, OvR is preferred.

Scikit-Learn detects when you try to use a binary classification algorithm for a
multiclass classification task, and it automatically runs OvR or OvO, depending
on the algorithm. Let’s try this with a support vector machine classifier using the
sklearn.svm.SVC class (see Chapter 5). We’ll only train on the first 2,000 images, or
else it will take a very long time:

from sklearn.svm import SVC

svm_clf = SVC(random_state=42)
svm_clf.fit(X_train[:2000], y_train[:2000]) # y_train, not y_train_5

That was easy! We trained the SVC using the original target classes from 0 to 9
(y_train), instead of the 5-versus-the-rest target classes (y_train_5). Since there are
10 classes (i.e., more than 2), Scikit-Learn used the OvO strategy and trained 45
binary classifiers. Now let’s make a prediction on an image:

>>> svm_clf.predict([some_digit])
array(['5'], dtype=object)

That’s correct! This code actually made 45 predictions—one per pair of classes—and
it selected the class that won the most duels. If you call the decision_function()
method, you will see that it returns 10 scores per instance: one per class. Each class
gets a score equal to the number of won duels plus or minus a small tweak (max
±0.33) to break ties, based on the classifier scores:

>>> some_digit_scores = svm_clf.decision_function([some_digit])
>>> some_digit_scores.round(2)
array([[3.79, 0.73, 6.06, 8.3 , -0.29, 9.3 , 1.75, 2.77, 7.21,
 4.82]])

The highest score is 9.3, and it’s indeed the one corresponding to class 5:

>>> class_id = some_digit_scores.argmax()
>>> class_id
5

When a classifier is trained, it stores the list of target classes in its classes_ attribute,
ordered by value. In the case of MNIST, the index of each class in the classes_ array
conveniently matches the class itself (e.g., the class at index 5 happens to be class '5'),
but in general you won’t be so lucky; you will need to look up the class label like this:

>>> svm_clf.classes_
array(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], dtype=object)
>>> svm_clf.classes_[class_id]
'5'

If you want to force Scikit-Learn to use one-versus-one or one-versus-the-rest, you
can use the OneVsOneClassifier or OneVsRestClassifier classes. Simply create

120 | Chapter 3: Classification

an instance and pass a classifier to its constructor (it doesn’t even have to be a
binary classifier). For example, this code creates a multiclass classifier using the OvR
strategy, based on an SVC:

from sklearn.multiclass import OneVsRestClassifier

ovr_clf = OneVsRestClassifier(SVC(random_state=42))
ovr_clf.fit(X_train[:2000], y_train[:2000])

Let’s make a prediction, and check the number of trained classifiers:

>>> ovr_clf.predict([some_digit])
array(['5'], dtype='<U1')
>>> len(ovr_clf.estimators_)
10

Training an SGDClassifier on a multiclass dataset and using it to make predictions is
just as easy:

>>> sgd_clf = SGDClassifier(random_state=42)
>>> sgd_clf.fit(X_train, y_train)
>>> sgd_clf.predict([some_digit])
array(['3'], dtype='<U1')

Oops, that’s incorrect. Prediction errors do happen! This time Scikit-Learn used
the OvR strategy under the hood: since there are 10 classes, it trained 10 binary
classifiers. The decision_function() method now returns one value per class. Let’s
look at the scores that the SGD classifier assigned to each class:

>>> sgd_clf.decision_function([some_digit]).round()
array([[-31893., -34420., -9531., 1824., -22320., -1386., -26189.,
 -16148., -4604., -12051.]])

You can see that the classifier is not very confident about its prediction: almost all
scores are very negative, while class 3 has a score of +1,824, and class 5 is not too far
behind at –1,386. Of course, you’ll want to evaluate this classifier on more than one
image. Since there are roughly the same number of images in each class, the accuracy
metric is fine. As usual, you can use the cross_val_score() function to evaluate the
model:

>>> cross_val_score(sgd_clf, X_train, y_train, cv=3, scoring="accuracy")
array([0.87365, 0.85835, 0.8689])

It gets over 85.8% on all test folds. If you used a random classifier, you would get
10% accuracy, so this is not such a bad score, but you can still do much better. Simply
scaling the inputs (as discussed in Chapter 2) increases accuracy above 89.1%:

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler()
>>> X_train_scaled = scaler.fit_transform(X_train.astype("float64"))
>>> cross_val_score(sgd_clf, X_train_scaled, y_train, cv=3, scoring="accuracy")
array([0.8983, 0.891 , 0.9018])

Multiclass Classification | 121

Error Analysis
If this were a real project, you would now follow the steps in your machine learning
project checklist (see Appendix A). You’d explore data preparation options, try out
multiple models, shortlist the best ones, fine-tune their hyperparameters using Grid
SearchCV, and automate as much as possible. Here, we will assume that you have
found a promising model and you want to find ways to improve it. One way to do
this is to analyze the types of errors it makes.

First, look at the confusion matrix. For this, you first need to make predictions using
the cross_val_predict() function; then you can pass the labels and predictions to
the confusion_matrix() function, just like you did earlier. However, since there are
now 10 classes instead of 2, the confusion matrix will contain quite a lot of numbers,
and it may be hard to read.

A colored diagram of the confusion matrix is much easier to analyze. To plot such a
diagram, use the ConfusionMatrixDisplay.from_predictions() function like this:

from sklearn.metrics import ConfusionMatrixDisplay

y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3)
ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred)
plt.show()

This produces the left diagram in Figure 3-9. This confusion matrix looks pretty
good: most images are on the main diagonal, which means that they were classified
correctly. Notice that the cell on the diagonal in row #5 and column #5 looks slightly
darker than the other digits. This could be because the model made more errors
on 5s, or because there are fewer 5s in the dataset than the other digits. That’s why
it’s important to normalize the confusion matrix by dividing each value by the total
number of images in the corresponding (true) class (i.e., divide by the row’s sum).
This can be done simply by setting normalize="true". We can also specify the val
ues_format=".0%" argument to show percentages with no decimals. The following
code produces the diagram on the right in Figure 3-9:

ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred,
 normalize="true", values_format=".0%")
plt.show()

Now we can easily see that only 82% of the images of 5s were classified correctly. The
most common error the model made with images of 5s was to misclassify them as 8s:
this happened for 10% of all 5s. But only 2% of 8s got misclassified as 5s; confusion
matrices are generally not symmetrical! If you look carefully, you will notice that
many digits have been misclassified as 8s, but this is not immediately obvious from
this diagram. If you want to make the errors stand out more, you can try putting zero
weight on the correct predictions. The following code does just that and produces the
diagram on the left in Figure 3-10:

122 | Chapter 3: Classification

sample_weight = (y_train_pred != y_train)
ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred,
 sample_weight=sample_weight,
 normalize="true", values_format=".0%")
plt.show()

Figure 3-9. Confusion matrix (left) and the same CM normalized by row (right)

Figure 3-10. Confusion matrix with errors only, normalized by row (left) and by column
(right)

Now you can see much more clearly the kinds of errors the classifier makes. The
column for class 8 is now really bright, which confirms that many images got misclas‐
sified as 8s. In fact this is the most common misclassification for almost all classes.
But be careful how you interpret the percentages in this diagram: remember that
we’ve excluded the correct predictions. For example, the 36% in row #7, column #9
does not mean that 36% of all images of 7s were misclassified as 9s. It means that 36%
of the errors the model made on images of 7s were misclassifications as 9s. In reality,

Error Analysis | 123

only 3% of images of 7s were misclassified as 9s, as you can see in the diagram on the
right in Figure 3-9.

It is also possible to normalize the confusion matrix by column rather than by row:
if you set normalize="pred", you get the diagram on the right in Figure 3-10. For
example, you can see that 56% of misclassified 7s are actually 9s.

Analyzing the confusion matrix often gives you insights into ways to improve your
classifier. Looking at these plots, it seems that your efforts should be spent on reduc‐
ing the false 8s. For example, you could try to gather more training data for digits that
look like 8s (but are not) so that the classifier can learn to distinguish them from real
8s. Or you could engineer new features that would help the classifier—for example,
writing an algorithm to count the number of closed loops (e.g., 8 has two, 6 has one,
5 has none). Or you could preprocess the images (e.g., using Scikit-Image, Pillow, or
OpenCV) to make some patterns, such as closed loops, stand out more.

Analyzing individual errors can also be a good way to gain insights into what your
classifier is doing and why it is failing. For example, let’s plot examples of 3s and 5s in
a confusion matrix style (Figure 3-11):

cl_a, cl_b = '3', '5'
X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)]
X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)]
X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)]
X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)]
[...] # plot all images in X_aa, X_ab, X_ba, X_bb in a confusion matrix style

Figure 3-11. Some images of 3s and 5s organized like a confusion matrix

124 | Chapter 3: Classification

As you can see, some of the digits that the classifier gets wrong (i.e., in the bottom-left
and top-right blocks) are so badly written that even a human would have trouble
classifying them. However, most misclassified images seem like obvious errors to us.
It may be hard to understand why the classifier made the mistakes it did, but remem‐
ber that the human brain is a fantastic pattern recognition system, and our visual
system does a lot of complex preprocessing before any information even reaches our
consciousness. So, the fact that this task feels simple does not mean that it is. Recall
that we used a simple SGDClassifier, which is just a linear model: all it does is assign
a weight per class to each pixel, and when it sees a new image it just sums up the
weighted pixel intensities to get a score for each class. Since 3s and 5s differ by only a
few pixels, this model will easily confuse them.

The main difference between 3s and 5s is the position of the small line that joins the
top line to the bottom arc. If you draw a 3 with the junction slightly shifted to the left,
the classifier might classify it as a 5, and vice versa. In other words, this classifier is
quite sensitive to image shifting and rotation. One way to reduce the 3/5 confusion
is to preprocess the images to ensure that they are well centered and not too rotated.
However, this may not be easy since it requires predicting the correct rotation of each
image. A much simpler approach consists of augmenting the training set with slightly
shifted and rotated variants of the training images. This will force the model to learn
to be more tolerant to such variations. This is called data augmentation (we’ll cover
this in Chapter 14; also see exercise 2 at the end of this chapter).

Multilabel Classification
Until now, each instance has always been assigned to just one class. But in some cases
you may want your classifier to output multiple classes for each instance. Consider
a face-recognition classifier: what should it do if it recognizes several people in the
same picture? It should attach one tag per person it recognizes. Say the classifier
has been trained to recognize three faces: Alice, Bob, and Charlie. Then when the
classifier is shown a picture of Alice and Charlie, it should output [True, False,
True] (meaning “Alice yes, Bob no, Charlie yes”). Such a classification system that
outputs multiple binary tags is called a multilabel classification system.

We won’t go into face recognition just yet, but let’s look at a simpler example, just for
illustration purposes:

import numpy as np
from sklearn.neighbors import KNeighborsClassifier

y_train_large = (y_train >= '7')
y_train_odd = (y_train.astype('int8') % 2 == 1)
y_multilabel = np.c_[y_train_large, y_train_odd]

Multilabel Classification | 125

5 Scikit-Learn offers a few other averaging options and multilabel classifier metrics; see the documentation for
more details.

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_multilabel)

This code creates a y_multilabel array containing two target labels for each digit
image: the first indicates whether or not the digit is large (7, 8, or 9), and the second
indicates whether or not it is odd. Then the code creates a KNeighborsClassifier
instance, which supports multilabel classification (not all classifiers do), and trains
this model using the multiple targets array. Now you can make a prediction, and
notice that it outputs two labels:

>>> knn_clf.predict([some_digit])
array([[False, True]])

And it gets it right! The digit 5 is indeed not large (False) and odd (True).

There are many ways to evaluate a multilabel classifier, and selecting the right metric
really depends on your project. One approach is to measure the F1 score for each
individual label (or any other binary classifier metric discussed earlier), then simply
compute the average score. The following code computes the average F1 score across
all labels:

>>> y_train_knn_pred = cross_val_predict(knn_clf, X_train, y_multilabel, cv=3)
>>> f1_score(y_multilabel, y_train_knn_pred, average="macro")
0.976410265560605

This approach assumes that all labels are equally important, which may not be the
case. In particular, if you have many more pictures of Alice than of Bob or Charlie,
you may want to give more weight to the classifier’s score on pictures of Alice. One
simple option is to give each label a weight equal to its support (i.e., the number of
instances with that target label). To do this, simply set average="weighted" when
calling the f1_score() function.5

If you wish to use a classifier that does not natively support multilabel classification,
such as SVC, one possible strategy is to train one model per label. However, this
strategy may have a hard time capturing the dependencies between the labels. For
example, a large digit (7, 8, or 9) is twice more likely to be odd than even, but the
classifier for the “odd” label does not know what the classifier for the “large” label
predicted. To solve this issue, the models can be organized in a chain: when a model
makes a prediction, it uses the input features plus all the predictions of the models
that come before it in the chain.

The good news is that Scikit-Learn has a class called ChainClassifier that does
just that! By default it will use the true labels for training, feeding each model the
appropriate labels depending on their position in the chain. But if you set the cv

126 | Chapter 3: Classification

hyperparameter, it will use cross-validation to get “clean” (out-of-sample) predictions
from each trained model for every instance in the training set, and these predictions
will then be used to train all the models later in the chain. Here’s an example showing
how to create and train a ChainClassifier using the cross-validation strategy. As
earlier, we’ll just use the first 2,000 images in the training set to speed things up:

from sklearn.multioutput import ClassifierChain

chain_clf = ClassifierChain(SVC(), cv=3, random_state=42)
chain_clf.fit(X_train[:2000], y_multilabel[:2000])

Now we can use this ChainClassifier to make predictions:

>>> chain_clf.predict([some_digit])
array([[0., 1.]])

Multioutput Classification
The last type of classification task we’ll discuss here is called multioutput–multiclass
classification (or just multioutput classification). It is a generalization of multilabel
classification where each label can be multiclass (i.e., it can have more than two
possible values).

To illustrate this, let’s build a system that removes noise from images. It will take
as input a noisy digit image, and it will (hopefully) output a clean digit image,
represented as an array of pixel intensities, just like the MNIST images. Notice that
the classifier’s output is multilabel (one label per pixel) and each label can have
multiple values (pixel intensity ranges from 0 to 255). This is thus an example of a
multioutput classification system.

The line between classification and regression is sometimes blurry,
such as in this example. Arguably, predicting pixel intensity is more
akin to regression than to classification. Moreover, multioutput
systems are not limited to classification tasks; you could even have
a system that outputs multiple labels per instance, including both
class labels and value labels.

Let’s start by creating the training and test sets by taking the MNIST images and
adding noise to their pixel intensities with NumPy’s randint() function. The target
images will be the original images:

np.random.seed(42) # to make this code example reproducible
noise = np.random.randint(0, 100, (len(X_train), 784))
X_train_mod = X_train + noise
noise = np.random.randint(0, 100, (len(X_test), 784))
X_test_mod = X_test + noise

Multioutput Classification | 127

y_train_mod = X_train
y_test_mod = X_test

Let’s take a peek at the first image from the test set (Figure 3-12). Yes, we’re snooping
on the test data, so you should be frowning right now.

Figure 3-12. A noisy image (left) and the target clean image (right)

On the left is the noisy input image, and on the right is the clean target image. Now
let’s train the classifier and make it clean up this image (Figure 3-13):

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train_mod, y_train_mod)
clean_digit = knn_clf.predict([X_test_mod[0]])
plot_digit(clean_digit)
plt.show()

Figure 3-13. The cleaned-up image

Looks close enough to the target! This concludes our tour of classification. You now
know how to select good metrics for classification tasks, pick the appropriate preci‐
sion/recall trade-off, compare classifiers, and more generally build good classification
systems for a variety of tasks. In the next chapters, you’ll learn how all these machine
learning models you’ve been using actually work.

128 | Chapter 3: Classification

6 You can use the shift() function from the scipy.ndimage.interpolation module. For example,
shift(image, [2, 1], cval=0) shifts the image two pixels down and one pixel to the right.

Exercises
1. Try to build a classifier for the MNIST dataset that achieves over 97% accuracy1.

on the test set. Hint: the KNeighborsClassifier works quite well for this task;
you just need to find good hyperparameter values (try a grid search on the
weights and n_neighbors hyperparameters).

2. Write a function that can shift an MNIST image in any direction (left, right, up,2.
or down) by one pixel.6 Then, for each image in the training set, create four
shifted copies (one per direction) and add them to the training set. Finally, train
your best model on this expanded training set and measure its accuracy on the
test set. You should observe that your model performs even better now! This
technique of artificially growing the training set is called data augmentation or
training set expansion.

3. Tackle the Titanic dataset. A great place to start is on Kaggle. Alternatively, you3.
can download the data from https://homl.info/titanic.tgz and unzip this tarball
like you did for the housing data in Chapter 2. This will give you two CSV files,
train.csv and test.csv, which you can load using pandas.read_csv(). The goal
is to train a classifier that can predict the Survived column based on the other
columns.

4. Build a spam classifier (a more challenging exercise):4.
a. Download examples of spam and ham from Apache SpamAssassin’s publica.

datasets.
b. Unzip the datasets and familiarize yourself with the data format.b.
c. Split the data into a training set and a test set.c.
d. Write a data preparation pipeline to convert each email into a feature vector.d.

Your preparation pipeline should transform an email into a (sparse) vector
that indicates the presence or absence of each possible word. For example, if
all emails only ever contain four words, “Hello”, “how”, “are”, “you”, then the
email “Hello you Hello Hello you” would be converted into a vector [1, 0,
0, 1] (meaning [“Hello” is present, “how” is absent, “are” is absent, “you” is
present]), or [3, 0, 0, 2] if you prefer to count the number of occurrences of
each word.
You may want to add hyperparameters to your preparation pipeline to control
whether or not to strip off email headers, convert each email to lowercase,
remove punctuation, replace all URLs with “URL”, replace all numbers with

Exercises | 129

https://kaggle.com/c/titanic
https://homl.info/titanic.tgz
https://homl.info/spamassassin
https://homl.info/spamassassin

“NUMBER”, or even perform stemming (i.e., trim off word endings; there are
Python libraries available to do this).

e. Finally, try out several classifiers and see if you can build a great spam classi‐e.
fier, with both high recall and high precision.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

130 | Chapter 3: Classification

https://homl.info/colab3

1 A closed-form equation is only composed of a finite number of constants, variables, and standard operations:
for example, a = sin(b – c). No infinite sums, no limits, no integrals, etc.

CHAPTER 4

Training Models

So far we have treated machine learning models and their training algorithms mostly
like black boxes. If you went through some of the exercises in the previous chapters,
you may have been surprised by how much you can get done without knowing any‐
thing about what’s under the hood: you optimized a regression system, you improved
a digit image classifier, and you even built a spam classifier from scratch, all without
knowing how they actually work. Indeed, in many situations you don’t really need to
know the implementation details.

However, having a good understanding of how things work can help you quickly
home in on the appropriate model, the right training algorithm to use, and a good
set of hyperparameters for your task. Understanding what’s under the hood will also
help you debug issues and perform error analysis more efficiently. Lastly, most of
the topics discussed in this chapter will be essential in understanding, building, and
training neural networks (discussed in Part II of this book).

In this chapter we will start by looking at the linear regression model, one of the
simplest models there is. We will discuss two very different ways to train it:

• Using a “closed-form” equation1 that directly computes the model parameters•
that best fit the model to the training set (i.e., the model parameters that mini‐
mize the cost function over the training set).

• Using an iterative optimization approach called gradient descent (GD) that grad‐•
ually tweaks the model parameters to minimize the cost function over the train‐
ing set, eventually converging to the same set of parameters as the first method.
We will look at a few variants of gradient descent that we will use again and

131

again when we study neural networks in Part II: batch GD, mini-batch GD, and
stochastic GD.

Next we will look at polynomial regression, a more complex model that can fit
nonlinear datasets. Since this model has more parameters than linear regression,
it is more prone to overfitting the training data. We will explore how to detect
whether or not this is the case using learning curves, and then we will look at several
regularization techniques that can reduce the risk of overfitting the training set.

Finally, we will examine two more models that are commonly used for classification
tasks: logistic regression and softmax regression.

There will be quite a few math equations in this chapter, using basic
notions of linear algebra and calculus. To understand these equa‐
tions, you will need to know what vectors and matrices are; how to
transpose them, multiply them, and inverse them; and what partial
derivatives are. If you are unfamiliar with these concepts, please
go through the linear algebra and calculus introductory tutorials
available as Jupyter notebooks in the online supplemental material.
For those who are truly allergic to mathematics, you should still go
through this chapter and simply skip the equations; hopefully, the
text will be sufficient to help you understand most of the concepts.

Linear Regression
In Chapter 1 we looked at a simple regression model of life satisfaction:

life_satisfaction = θ0 + θ1 × GDP_per_capita

This model is just a linear function of the input feature GDP_per_capita. θ0 and θ1 are
the model’s parameters.

More generally, a linear model makes a prediction by simply computing a weighted
sum of the input features, plus a constant called the bias term (also called the intercept
term), as shown in Equation 4-1.

Equation 4-1. Linear regression model prediction

y = θ0 + θ1x1 + θ2x2 +⋯ + θnxn

In this equation:

• ŷ is the predicted value.•
• n is the number of features.•

132 | Chapter 4: Training Models

https://github.com/ageron/handson-ml3

• xi is the ith feature value.•
• θj is the jth model parameter, including the bias term θ0 and the feature weights θ1,•

θ2, ⋯, θn.

This can be written much more concisely using a vectorized form, as shown in
Equation 4-2.

Equation 4-2. Linear regression model prediction (vectorized form)

y = ℎθ x = θ · x

In this equation:

• hθ is the hypothesis function, using the model parameters θ.•
• θ is the model’s parameter vector, containing the bias term θ0 and the feature•

weights θ1 to θn.
• x is the instance’s feature vector, containing x0 to xn, with x0 always equal to 1.•
• θ · x is the dot product of the vectors θ and x, which is equal to θ0x0 + θ1x1 + θ2x2•

+ ... + θnxn.

In machine learning, vectors are often represented as column vec‐
tors, which are 2D arrays with a single column. If θ and x are
column vectors, then the prediction is y = θ⊺x, where θ⊺ is the
transpose of θ (a row vector instead of a column vector) and θ⊺x
is the matrix multiplication of θ⊺ and x. It is of course the same
prediction, except that it is now represented as a single-cell matrix
rather than a scalar value. In this book I will use this notation to
avoid switching between dot products and matrix multiplications.

OK, that’s the linear regression model—but how do we train it? Well, recall that
training a model means setting its parameters so that the model best fits the training
set. For this purpose, we first need a measure of how well (or poorly) the model fits
the training data. In Chapter 2 we saw that the most common performance measure
of a regression model is the root mean square error (Equation 2-1). Therefore, to
train a linear regression model, we need to find the value of θ that minimizes the
RMSE. In practice, it is simpler to minimize the mean squared error (MSE) than the
RMSE, and it leads to the same result (because the value that minimizes a positive
function also minimizes its square root).

Linear Regression | 133

Learning algorithms will often optimize a different loss function
during training than the performance measure used to evaluate
the final model. This is generally because the function is easier to
optimize and/or because it has extra terms needed during training
only (e.g., for regularization). A good performance metric is as
close as possible to the final business objective. A good training
loss is easy to optimize and strongly correlated with the metric. For
example, classifiers are often trained using a cost function such as
the log loss (as you will see later in this chapter) but evaluated using
precision/recall. The log loss is easy to minimize, and doing so will
usually improve precision/recall.

The MSE of a linear regression hypothesis hθ on a training set X is calculated using
Equation 4-3.

Equation 4-3. MSE cost function for a linear regression model

MSE X,ℎθ = 1
m

∑
i = 1

m
θ
⊺
x i − y i

2

Most of these notations were presented in Chapter 2 (see “Notations” on page 44).
The only difference is that we write hθ instead of just h to make it clear that the model
is parametrized by the vector θ. To simplify notations, we will just write MSE(θ)
instead of MSE(X, hθ).

The Normal Equation
To find the value of θ that minimizes the MSE, there exists a closed-form solution—in
other words, a mathematical equation that gives the result directly. This is called the
Normal equation (Equation 4-4).

Equation 4-4. Normal equation

θ = X⊺X
−1

 X⊺ y

In this equation:

• θ is the value of θ that minimizes the cost function.•
• y is the vector of target values containing y(1) to y(m).•

134 | Chapter 4: Training Models

Let’s generate some linear-looking data to test this equation on (Figure 4-1):

import numpy as np

np.random.seed(42) # to make this code example reproducible
m = 100 # number of instances
X = 2 * np.random.rand(m, 1) # column vector
y = 4 + 3 * X + np.random.randn(m, 1) # column vector

Figure 4-1. A randomly generated linear dataset

Now let’s compute θ using the Normal equation. We will use the inv() function from
NumPy’s linear algebra module (np.linalg) to compute the inverse of a matrix, and
the dot() method for matrix multiplication:

from sklearn.preprocessing import add_dummy_feature

X_b = add_dummy_feature(X) # add x0 = 1 to each instance
theta_best = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ y

The @ operator performs matrix multiplication. If A and B are
NumPy arrays, then A @ B is equivalent to np.matmul(A, B). Many
other libraries, like TensorFlow, PyTorch, and JAX, support the @
operator as well. However, you cannot use @ on pure Python arrays
(i.e., lists of lists).

Linear Regression | 135

The function that we used to generate the data is y = 4 + 3x1 + Gaussian noise. Let’s
see what the equation found:

>>> theta_best
array([[4.21509616],
 [2.77011339]])

We would have hoped for θ0 = 4 and θ1 = 3 instead of θ0 = 4.215 and θ1 = 2.770.
Close enough, but the noise made it impossible to recover the exact parameters of the
original function. The smaller and noisier the dataset, the harder it gets.

Now we can make predictions using θ:

>>> X_new = np.array([[0], [2]])
>>> X_new_b = add_dummy_feature(X_new) # add x0 = 1 to each instance
>>> y_predict = X_new_b @ theta_best
>>> y_predict
array([[4.21509616],
 [9.75532293]])

Let’s plot this model’s predictions (Figure 4-2):

import matplotlib.pyplot as plt

plt.plot(X_new, y_predict, "r-", label="Predictions")
plt.plot(X, y, "b.")
[...] # beautify the figure: add labels, axis, grid, and legend
plt.show()

Figure 4-2. Linear regression model predictions

136 | Chapter 4: Training Models

Performing linear regression using Scikit-Learn is relatively straightforward:

>>> from sklearn.linear_model import LinearRegression
>>> lin_reg = LinearRegression()
>>> lin_reg.fit(X, y)
>>> lin_reg.intercept_, lin_reg.coef_
(array([4.21509616]), array([[2.77011339]]))
>>> lin_reg.predict(X_new)
array([[4.21509616],
 [9.75532293]])

Notice that Scikit-Learn separates the bias term (intercept_) from the feature
weights (coef_). The LinearRegression class is based on the scipy.linalg.lstsq()
function (the name stands for “least squares”), which you could call directly:

>>> theta_best_svd, residuals, rank, s = np.linalg.lstsq(X_b, y, rcond=1e-6)
>>> theta_best_svd
array([[4.21509616],
 [2.77011339]])

This function computes θ = X+y, where X+ is the pseudoinverse of X (specifi‐
cally, the Moore–Penrose inverse). You can use np.linalg.pinv() to compute the
pseudoinverse directly:

>>> np.linalg.pinv(X_b) @ y
array([[4.21509616],
 [2.77011339]])

The pseudoinverse itself is computed using a standard matrix factorization technique
called singular value decomposition (SVD) that can decompose the training set matrix
X into the matrix multiplication of three matrices U Σ V⊺ (see numpy.linalg.svd()).
The pseudoinverse is computed as X+ = VΣ+U⊺. To compute the matrix Σ+, the
algorithm takes Σ and sets to zero all values smaller than a tiny threshold value,
then it replaces all the nonzero values with their inverse, and finally it transposes
the resulting matrix. This approach is more efficient than computing the Normal
equation, plus it handles edge cases nicely: indeed, the Normal equation may not
work if the matrix X⊺X is not invertible (i.e., singular), such as if m < n or if some
features are redundant, but the pseudoinverse is always defined.

Computational Complexity
The Normal equation computes the inverse of X⊺ X, which is an (n + 1) × (n + 1)
matrix (where n is the number of features). The computational complexity of inverting
such a matrix is typically about O(n2.4) to O(n3), depending on the implementation.
In other words, if you double the number of features, you multiply the computation
time by roughly 22.4 = 5.3 to 23 = 8.

Linear Regression | 137

The SVD approach used by Scikit-Learn’s LinearRegression class is about O(n2). If
you double the number of features, you multiply the computation time by roughly 4.

Both the Normal equation and the SVD approach get very slow
when the number of features grows large (e.g., 100,000). On the
positive side, both are linear with regard to the number of instances
in the training set (they are O(m)), so they handle large training
sets efficiently, provided they can fit in memory.

Also, once you have trained your linear regression model (using the Normal equation
or any other algorithm), predictions are very fast: the computational complexity is
linear with regard to both the number of instances you want to make predictions on
and the number of features. In other words, making predictions on twice as many
instances (or twice as many features) will take roughly twice as much time.

Now we will look at a very different way to train a linear regression model, which is
better suited for cases where there are a large number of features or too many training
instances to fit in memory.

Gradient Descent
Gradient descent is a generic optimization algorithm capable of finding optimal solu‐
tions to a wide range of problems. The general idea of gradient descent is to tweak
parameters iteratively in order to minimize a cost function.

Suppose you are lost in the mountains in a dense fog, and you can only feel the slope
of the ground below your feet. A good strategy to get to the bottom of the valley
quickly is to go downhill in the direction of the steepest slope. This is exactly what
gradient descent does: it measures the local gradient of the error function with regard
to the parameter vector θ, and it goes in the direction of descending gradient. Once
the gradient is zero, you have reached a minimum!

In practice, you start by filling θ with random values (this is called random initiali‐
zation). Then you improve it gradually, taking one baby step at a time, each step
attempting to decrease the cost function (e.g., the MSE), until the algorithm converges
to a minimum (see Figure 4-3).

138 | Chapter 4: Training Models

Figure 4-3. In this depiction of gradient descent, the model parameters are initialized
randomly and get tweaked repeatedly to minimize the cost function; the learning step
size is proportional to the slope of the cost function, so the steps gradually get smaller as
the cost approaches the minimum

An important parameter in gradient descent is the size of the steps, determined by
the learning rate hyperparameter. If the learning rate is too small, then the algorithm
will have to go through many iterations to converge, which will take a long time (see
Figure 4-4).

Figure 4-4. Learning rate too small

Gradient Descent | 139

On the other hand, if the learning rate is too high, you might jump across the valley
and end up on the other side, possibly even higher up than you were before. This
might make the algorithm diverge, with larger and larger values, failing to find a good
solution (see Figure 4-5).

Figure 4-5. Learning rate too high

Additionally, not all cost functions look like nice, regular bowls. There may be
holes, ridges, plateaus, and all sorts of irregular terrain, making convergence to the
minimum difficult. Figure 4-6 shows the two main challenges with gradient descent.
If the random initialization starts the algorithm on the left, then it will converge to a
local minimum, which is not as good as the global minimum. If it starts on the right,
then it will take a very long time to cross the plateau. And if you stop too early, you
will never reach the global minimum.

Figure 4-6. Gradient descent pitfalls

140 | Chapter 4: Training Models

2 Technically speaking, its derivative is Lipschitz continuous.
3 Since feature 1 is smaller, it takes a larger change in θ1 to affect the cost function, which is why the bowl is

elongated along the θ1 axis.

Fortunately, the MSE cost function for a linear regression model happens to be a
convex function, which means that if you pick any two points on the curve, the line
segment joining them is never below the curve. This implies that there are no local
minima, just one global minimum. It is also a continuous function with a slope that
never changes abruptly.2 These two facts have a great consequence: gradient descent
is guaranteed to approach arbitrarily closely the global minimum (if you wait long
enough and if the learning rate is not too high).

While the cost function has the shape of a bowl, it can be an elongated bowl if the
features have very different scales. Figure 4-7 shows gradient descent on a training set
where features 1 and 2 have the same scale (on the left), and on a training set where
feature 1 has much smaller values than feature 2 (on the right).3

Figure 4-7. Gradient descent with (left) and without (right) feature scaling

As you can see, on the left the gradient descent algorithm goes straight toward the
minimum, thereby reaching it quickly, whereas on the right it first goes in a direction
almost orthogonal to the direction of the global minimum, and it ends with a long
march down an almost flat valley. It will eventually reach the minimum, but it will
take a long time.

When using gradient descent, you should ensure that all features
have a similar scale (e.g., using Scikit-Learn’s StandardScaler
class), or else it will take much longer to converge.

Gradient Descent | 141

This diagram also illustrates the fact that training a model means searching for a
combination of model parameters that minimizes a cost function (over the training
set). It is a search in the model’s parameter space. The more parameters a model
has, the more dimensions this space has, and the harder the search is: searching
for a needle in a 300-dimensional haystack is much trickier than in 3 dimensions.
Fortunately, since the cost function is convex in the case of linear regression, the
needle is simply at the bottom of the bowl.

Batch Gradient Descent
To implement gradient descent, you need to compute the gradient of the cost func‐
tion with regard to each model parameter θj. In other words, you need to calculate
how much the cost function will change if you change θj just a little bit. This is called
a partial derivative. It is like asking, “What is the slope of the mountain under my
feet if I face east”? and then asking the same question facing north (and so on for all
other dimensions, if you can imagine a universe with more than three dimensions).
Equation 4-5 computes the partial derivative of the MSE with regard to parameter θj,
noted ∂ MSE(θ) / ∂θj.

Equation 4-5. Partial derivatives of the cost function

∂
∂θj

MSE θ = 2
m

∑
i = 1

m
θ
⊺
x i − y i xj

i

Instead of computing these partial derivatives individually, you can use Equation 4-6
to compute them all in one go. The gradient vector, noted ∇θMSE(θ), contains all the
partial derivatives of the cost function (one for each model parameter).

Equation 4-6. Gradient vector of the cost function

∇θMSE θ =

∂
∂θ0

MSE θ

∂
∂θ1

MSE θ

⋮

∂
∂θn

MSE θ

= 2
m
X⊺ Xθ − y

142 | Chapter 4: Training Models

4 Eta (η) is the seventh letter of the Greek alphabet.

Notice that this formula involves calculations over the full training
set X, at each gradient descent step! This is why the algorithm is
called batch gradient descent: it uses the whole batch of training
data at every step (actually, full gradient descent would probably
be a better name). As a result, it is terribly slow on very large
training sets (we will look at some much faster gradient descent
algorithms shortly). However, gradient descent scales well with the
number of features; training a linear regression model when there
are hundreds of thousands of features is much faster using gradient
descent than using the Normal equation or SVD decomposition.

Once you have the gradient vector, which points uphill, just go in the opposite
direction to go downhill. This means subtracting ∇θMSE(θ) from θ. This is where the
learning rate η comes into play:4 multiply the gradient vector by η to determine the
size of the downhill step (Equation 4-7).

Equation 4-7. Gradient descent step

θ
next step = θ − η∇θMSE θ

Let’s look at a quick implementation of this algorithm:

eta = 0.1 # learning rate
n_epochs = 1000
m = len(X_b) # number of instances

np.random.seed(42)
theta = np.random.randn(2, 1) # randomly initialized model parameters

for epoch in range(n_epochs):
 gradients = 2 / m * X_b.T @ (X_b @ theta - y)
 theta = theta - eta * gradients

That wasn’t too hard! Each iteration over the training set is called an epoch. Let’s look
at the resulting theta:

>>> theta
array([[4.21509616],
 [2.77011339]])

Hey, that’s exactly what the Normal equation found! Gradient descent worked per‐
fectly. But what if you had used a different learning rate (eta)? Figure 4-8 shows
the first 20 steps of gradient descent using three different learning rates. The line
at the bottom of each plot represents the random starting point, then each epoch is
represented by a darker and darker line.

Gradient Descent | 143

Figure 4-8. Gradient descent with various learning rates

On the left, the learning rate is too low: the algorithm will eventually reach the
solution, but it will take a long time. In the middle, the learning rate looks pretty
good: in just a few epochs, it has already converged to the solution. On the right,
the learning rate is too high: the algorithm diverges, jumping all over the place and
actually getting further and further away from the solution at every step.

To find a good learning rate, you can use grid search (see Chapter 2). However, you
may want to limit the number of epochs so that grid search can eliminate models that
take too long to converge.

You may wonder how to set the number of epochs. If it is too low, you will still be
far away from the optimal solution when the algorithm stops; but if it is too high,
you will waste time while the model parameters do not change anymore. A simple
solution is to set a very large number of epochs but to interrupt the algorithm when
the gradient vector becomes tiny—that is, when its norm becomes smaller than a
tiny number ϵ (called the tolerance)—because this happens when gradient descent has
(almost) reached the minimum.

Convergence Rate
When the cost function is convex and its slope does not change abruptly (as is the
case for the MSE cost function), batch gradient descent with a fixed learning rate will
eventually converge to the optimal solution, but you may have to wait a while: it can
take O(1/ϵ) iterations to reach the optimum within a range of ϵ, depending on the
shape of the cost function. If you divide the tolerance by 10 to have a more precise
solution, then the algorithm may have to run about 10 times longer.

144 | Chapter 4: Training Models

Stochastic Gradient Descent
The main problem with batch gradient descent is the fact that it uses the whole
training set to compute the gradients at every step, which makes it very slow when
the training set is large. At the opposite extreme, stochastic gradient descent picks a
random instance in the training set at every step and computes the gradients based
only on that single instance. Obviously, working on a single instance at a time makes
the algorithm much faster because it has very little data to manipulate at every
iteration. It also makes it possible to train on huge training sets, since only one
instance needs to be in memory at each iteration (stochastic GD can be implemented
as an out-of-core algorithm; see Chapter 1).

On the other hand, due to its stochastic (i.e., random) nature, this algorithm is
much less regular than batch gradient descent: instead of gently decreasing until it
reaches the minimum, the cost function will bounce up and down, decreasing only
on average. Over time it will end up very close to the minimum, but once it gets there
it will continue to bounce around, never settling down (see Figure 4-9). Once the
algorithm stops, the final parameter values will be good, but not optimal.

Figure 4-9. With stochastic gradient descent, each training step is much faster but also
much more stochastic than when using batch gradient descent

When the cost function is very irregular (as in Figure 4-6), this can actually help
the algorithm jump out of local minima, so stochastic gradient descent has a better
chance of finding the global minimum than batch gradient descent does.

Therefore, randomness is good to escape from local optima, but bad because it means
that the algorithm can never settle at the minimum. One solution to this dilemma
is to gradually reduce the learning rate. The steps start out large (which helps make
quick progress and escape local minima), then get smaller and smaller, allowing
the algorithm to settle at the global minimum. This process is akin to simulated
annealing, an algorithm inspired by the process in metallurgy of annealing, where
molten metal is slowly cooled down. The function that determines the learning rate

Gradient Descent | 145

at each iteration is called the learning schedule. If the learning rate is reduced too
quickly, you may get stuck in a local minimum, or even end up frozen halfway to
the minimum. If the learning rate is reduced too slowly, you may jump around the
minimum for a long time and end up with a suboptimal solution if you halt training
too early.

This code implements stochastic gradient descent using a simple learning schedule:

n_epochs = 50
t0, t1 = 5, 50 # learning schedule hyperparameters

def learning_schedule(t):
 return t0 / (t + t1)

np.random.seed(42)
theta = np.random.randn(2, 1) # random initialization

for epoch in range(n_epochs):
 for iteration in range(m):
 random_index = np.random.randint(m)
 xi = X_b[random_index : random_index + 1]
 yi = y[random_index : random_index + 1]
 gradients = 2 * xi.T @ (xi @ theta - yi) # for SGD, do not divide by m
 eta = learning_schedule(epoch * m + iteration)
 theta = theta - eta * gradients

By convention we iterate by rounds of m iterations; each round is called an epoch, as
earlier. While the batch gradient descent code iterated 1,000 times through the whole
training set, this code goes through the training set only 50 times and reaches a pretty
good solution:

>>> theta
array([[4.21076011],
 [2.74856079]])

Figure 4-10 shows the first 20 steps of training (notice how irregular the steps are).

Note that since instances are picked randomly, some instances may be picked several
times per epoch, while others may not be picked at all. If you want to be sure that the
algorithm goes through every instance at each epoch, another approach is to shuffle
the training set (making sure to shuffle the input features and the labels jointly), then
go through it instance by instance, then shuffle it again, and so on. However, this
approach is more complex, and it generally does not improve the result.

146 | Chapter 4: Training Models

Figure 4-10. The first 20 steps of stochastic gradient descent

When using stochastic gradient descent, the training instances
must be independent and identically distributed (IID) to ensure
that the parameters get pulled toward the global optimum, on
average. A simple way to ensure this is to shuffle the instances
during training (e.g., pick each instance randomly, or shuffle the
training set at the beginning of each epoch). If you do not shuffle
the instances—for example, if the instances are sorted by label—
then SGD will start by optimizing for one label, then the next, and
so on, and it will not settle close to the global minimum.

To perform linear regression using stochastic GD with Scikit-Learn, you can use
the SGDRegressor class, which defaults to optimizing the MSE cost function. The
following code runs for maximum 1,000 epochs (max_iter) or until the loss drops by
less than 10–5 (tol) during 100 epochs (n_iter_no_change). It starts with a learning
rate of 0.01 (eta0), using the default learning schedule (different from the one we
used). Lastly, it does not use any regularization (penalty=None; more details on this
shortly):

from sklearn.linear_model import SGDRegressor

sgd_reg = SGDRegressor(max_iter=1000, tol=1e-5, penalty=None, eta0=0.01,
 n_iter_no_change=100, random_state=42)
sgd_reg.fit(X, y.ravel()) # y.ravel() because fit() expects 1D targets

Gradient Descent | 147

Once again, you find a solution quite close to the one returned by the Normal
equation:

>>> sgd_reg.intercept_, sgd_reg.coef_
(array([4.21278812]), array([2.77270267]))

All Scikit-Learn estimators can be trained using the fit() method,
but some estimators also have a partial_fit() method that you
can call to run a single round of training on one or more instances
(it ignores hyperparameters like max_iter or tol). Repeatedly call‐
ing partial_fit() will gradually train the model. This is useful
when you need more control over the training process. Other
models have a warm_start hyperparameter instead (and some have
both): if you set warm_start=True, calling the fit() method on a
trained model will not reset the model; it will just continue training
where it left off, respecting hyperparameters like max_iter and tol.
Note that fit() resets the iteration counter used by the learning
schedule, while partial_fit() does not.

Mini-Batch Gradient Descent
The last gradient descent algorithm we will look at is called mini-batch gradient
descent. It is straightforward once you know batch and stochastic gradient descent:
at each step, instead of computing the gradients based on the full training set (as in
batch GD) or based on just one instance (as in stochastic GD), mini-batch GD com‐
putes the gradients on small random sets of instances called mini-batches. The main
advantage of mini-batch GD over stochastic GD is that you can get a performance
boost from hardware optimization of matrix operations, especially when using GPUs.

The algorithm’s progress in parameter space is less erratic than with stochastic GD,
especially with fairly large mini-batches. As a result, mini-batch GD will end up
walking around a bit closer to the minimum than stochastic GD—but it may be
harder for it to escape from local minima (in the case of problems that suffer from
local minima, unlike linear regression with the MSE cost function). Figure 4-11
shows the paths taken by the three gradient descent algorithms in parameter space
during training. They all end up near the minimum, but batch GD’s path actually
stops at the minimum, while both stochastic GD and mini-batch GD continue to
walk around. However, don’t forget that batch GD takes a lot of time to take each
step, and stochastic GD and mini-batch GD would also reach the minimum if you
used a good learning schedule.

148 | Chapter 4: Training Models

5 While the Normal equation can only perform linear regression, the gradient descent algorithms can be used
to train many other models, as you’ll see.

Figure 4-11. Gradient descent paths in parameter space

Table 4-1 compares the algorithms we’ve discussed so far for linear regression5 (recall
that m is the number of training instances and n is the number of features).

Table 4-1. Comparison of algorithms for linear regression

Algorithm Large m Out-of-core support Large n Hyperparams Scaling required Scikit-Learn
Normal equation Fast No Slow 0 No N/A

SVD Fast No Slow 0 No LinearRegression

Batch GD Slow No Fast 2 Yes N/A

Stochastic GD Fast Yes Fast ≥2 Yes SGDRegressor

Mini-batch GD Fast Yes Fast ≥2 Yes N/A

There is almost no difference after training: all these algorithms end up with very
similar models and make predictions in exactly the same way.

Polynomial Regression
What if your data is more complex than a straight line? Surprisingly, you can use a
linear model to fit nonlinear data. A simple way to do this is to add powers of each
feature as new features, then train a linear model on this extended set of features. This
technique is called polynomial regression.

Polynomial Regression | 149

Let’s look at an example. First, we’ll generate some nonlinear data (see Figure 4-12),
based on a simple quadratic equation—that’s an equation of the form y = ax² + bx +
c—plus some noise:

np.random.seed(42)
m = 100
X = 6 * np.random.rand(m, 1) - 3
y = 0.5 * X ** 2 + X + 2 + np.random.randn(m, 1)

Figure 4-12. Generated nonlinear and noisy dataset

Clearly, a straight line will never fit this data properly. So let’s use Scikit-Learn’s
PolynomialFeatures class to transform our training data, adding the square (second-
degree polynomial) of each feature in the training set as a new feature (in this case
there is just one feature):

>>> from sklearn.preprocessing import PolynomialFeatures
>>> poly_features = PolynomialFeatures(degree=2, include_bias=False)
>>> X_poly = poly_features.fit_transform(X)
>>> X[0]
array([-0.75275929])
>>> X_poly[0]
array([-0.75275929, 0.56664654])

X_poly now contains the original feature of X plus the square of this feature. Now we
can fit a LinearRegression model to this extended training data (Figure 4-13):

>>> lin_reg = LinearRegression()
>>> lin_reg.fit(X_poly, y)
>>> lin_reg.intercept_, lin_reg.coef_
(array([1.78134581]), array([[0.93366893, 0.56456263]]))

150 | Chapter 4: Training Models

Figure 4-13. Polynomial regression model predictions

Not bad: the model estimates y = 0.56x1
2 + 0.93x1 + 1.78 when in fact the original

function was y = 0.5x1
2 + 1.0x1 + 2.0 + Gaussian noise.

Note that when there are multiple features, polynomial regression is capable of
finding relationships between features, which is something a plain linear regression
model cannot do. This is made possible by the fact that PolynomialFeatures also
adds all combinations of features up to the given degree. For example, if there were
two features a and b, PolynomialFeatures with degree=3 would not only add the
features a2, a3, b2, and b3, but also the combinations ab, a2b, and ab2.

PolynomialFeatures(degree=d) transforms an array containing n
features into an array containing (n + d)! / d!n! features, where n!
is the factorial of n, equal to 1 × 2 × 3 × ⋯ × n. Beware of the
combinatorial explosion of the number of features!

Learning Curves
If you perform high-degree polynomial regression, you will likely fit the training data
much better than with plain linear regression. For example, Figure 4-14 applies a
300-degree polynomial model to the preceding training data, and compares the result
with a pure linear model and a quadratic model (second-degree polynomial). Notice
how the 300-degree polynomial model wiggles around to get as close as possible to
the training instances.

Learning Curves | 151

Figure 4-14. High-degree polynomial regression

This high-degree polynomial regression model is severely overfitting the training
data, while the linear model is underfitting it. The model that will generalize best in
this case is the quadratic model, which makes sense because the data was generated
using a quadratic model. But in general you won’t know what function generated the
data, so how can you decide how complex your model should be? How can you tell
that your model is overfitting or underfitting the data?

In Chapter 2 you used cross-validation to get an estimate of a model’s generalization
performance. If a model performs well on the training data but generalizes poorly
according to the cross-validation metrics, then your model is overfitting. If it per‐
forms poorly on both, then it is underfitting. This is one way to tell when a model is
too simple or too complex.

Another way to tell is to look at the learning curves, which are plots of the model’s
training error and validation error as a function of the training iteration: just evaluate
the model at regular intervals during training on both the training set and the
validation set, and plot the results. If the model cannot be trained incrementally (i.e.,
if it does not support partial_fit() or warm_start), then you must train it several
times on gradually larger subsets of the training set.

Scikit-Learn has a useful learning_curve() function to help with this: it trains
and evaluates the model using cross-validation. By default it retrains the model on
growing subsets of the training set, but if the model supports incremental learning
you can set exploit_incremental_learning=True when calling learning_curve()
and it will train the model incrementally instead. The function returns the training
set sizes at which it evaluated the model, and the training and validation scores it

152 | Chapter 4: Training Models

measured for each size and for each cross-validation fold. Let’s use this function to
look at the learning curves of the plain linear regression model (see Figure 4-15):

from sklearn.model_selection import learning_curve

train_sizes, train_scores, valid_scores = learning_curve(
 LinearRegression(), X, y, train_sizes=np.linspace(0.01, 1.0, 40), cv=5,
 scoring="neg_root_mean_squared_error")
train_errors = -train_scores.mean(axis=1)
valid_errors = -valid_scores.mean(axis=1)

plt.plot(train_sizes, train_errors, "r-+", linewidth=2, label="train")
plt.plot(train_sizes, valid_errors, "b-", linewidth=3, label="valid")
[...] # beautify the figure: add labels, axis, grid, and legend
plt.show()

Figure 4-15. Learning curves

This model is underfitting. To see why, first let’s look at the training error. When there
are just one or two instances in the training set, the model can fit them perfectly,
which is why the curve starts at zero. But as new instances are added to the training
set, it becomes impossible for the model to fit the training data perfectly, both because
the data is noisy and because it is not linear at all. So the error on the training
data goes up until it reaches a plateau, at which point adding new instances to the
training set doesn’t make the average error much better or worse. Now let’s look at
the validation error. When the model is trained on very few training instances, it is
incapable of generalizing properly, which is why the validation error is initially quite
large. Then, as the model is shown more training examples, it learns, and thus the
validation error slowly goes down. However, once again a straight line cannot do a
good job of modeling the data, so the error ends up at a plateau, very close to the
other curve.

Learning Curves | 153

These learning curves are typical of a model that’s underfitting. Both curves have
reached a plateau; they are close and fairly high.

If your model is underfitting the training data, adding more train‐
ing examples will not help. You need to use a better model or come
up with better features.

Now let’s look at the learning curves of a 10th-degree polynomial model on the same
data (Figure 4-16):

from sklearn.pipeline import make_pipeline

polynomial_regression = make_pipeline(
 PolynomialFeatures(degree=10, include_bias=False),
 LinearRegression())

train_sizes, train_scores, valid_scores = learning_curve(
 polynomial_regression, X, y, train_sizes=np.linspace(0.01, 1.0, 40), cv=5,
 scoring="neg_root_mean_squared_error")
[...] # same as earlier

Figure 4-16. Learning curves for the 10th-degree polynomial model

These learning curves look a bit like the previous ones, but there are two very
important differences:

• The error on the training data is much lower than before.•
• There is a gap between the curves. This means that the model performs signif‐•

icantly better on the training data than on the validation data, which is the

154 | Chapter 4: Training Models

6 This notion of bias is not to be confused with the bias term of linear models.

hallmark of an overfitting model. If you used a much larger training set, however,
the two curves would continue to get closer.

One way to improve an overfitting model is to feed it more training
data until the validation error reaches the training error.

The Bias/Variance Trade-Off
An important theoretical result of statistics and machine learning is the fact that
a model’s generalization error can be expressed as the sum of three very different
errors:

Bias
This part of the generalization error is due to wrong assumptions, such as
assuming that the data is linear when it is actually quadratic. A high-bias model
is most likely to underfit the training data.6

Variance
This part is due to the model’s excessive sensitivity to small variations in the
training data. A model with many degrees of freedom (such as a high-degree
polynomial model) is likely to have high variance and thus overfit the training
data.

Irreducible error
This part is due to the noisiness of the data itself. The only way to reduce this
part of the error is to clean up the data (e.g., fix the data sources, such as broken
sensors, or detect and remove outliers).

Increasing a model’s complexity will typically increase its variance and reduce its bias.
Conversely, reducing a model’s complexity increases its bias and reduces its variance.
This is why it is called a trade-off.

Regularized Linear Models
As you saw in Chapters 1 and 2, a good way to reduce overfitting is to regularize the
model (i.e., to constrain it): the fewer degrees of freedom it has, the harder it will be
for it to overfit the data. A simple way to regularize a polynomial model is to reduce
the number of polynomial degrees.

Regularized Linear Models | 155

7 It is common to use the notation J(θ) for cost functions that don’t have a short name; I’ll often use this
notation throughout the rest of this book. The context will make it clear which cost function is being
discussed.

8 Norms are discussed in Chapter 2.

For a linear model, regularization is typically achieved by constraining the weights
of the model. We will now look at ridge regression, lasso regression, and elastic net
regression, which implement three different ways to constrain the weights.

Ridge Regression
Ridge regression (also called Tikhonov regularization) is a regularized version of linear
regression: a regularization term equal to α

m
∑i = 1
n θi

2 is added to the MSE. This forces
the learning algorithm to not only fit the data but also keep the model weights
as small as possible. Note that the regularization term should only be added to
the cost function during training. Once the model is trained, you want to use the
unregularized MSE (or the RMSE) to evaluate the model’s performance.

The hyperparameter α controls how much you want to regularize the model. If α =
0, then ridge regression is just linear regression. If α is very large, then all weights
end up very close to zero and the result is a flat line going through the data’s mean.
Equation 4-8 presents the ridge regression cost function.7

Equation 4-8. Ridge regression cost function

J θ = MSE θ + α
m

∑i = 1
n θi

2

Note that the bias term θ0 is not regularized (the sum starts at i = 1, not 0). If we
define w as the vector of feature weights (θ1 to θn), then the regularization term is
equal to α(∥ w ∥2)2 / m, where ∥ w ∥2 represents the ℓ2 norm of the weight vector.8

For batch gradient descent, just add 2αw / m to the part of the MSE gradient vector
that corresponds to the feature weights, without adding anything to the gradient of
the bias term (see Equation 4-6).

It is important to scale the data (e.g., using a StandardScaler)
before performing ridge regression, as it is sensitive to the scale of
the input features. This is true of most regularized models.

Figure 4-17 shows several ridge models that were trained on some very noisy
linear data using different α values. On the left, plain ridge models are used,
leading to linear predictions. On the right, the data is first expanded using

156 | Chapter 4: Training Models

9 A square matrix full of 0s except for 1s on the main diagonal (top left to bottom right).

PolynomialFeatures(degree=10), then it is scaled using a StandardScaler, and
finally the ridge models are applied to the resulting features: this is polynomial
regression with ridge regularization. Note how increasing α leads to flatter (i.e.,
less extreme, more reasonable) predictions, thus reducing the model’s variance but
increasing its bias.

Figure 4-17. Linear (left) and a polynomial (right) models, both with various levels of
ridge regularization

As with linear regression, we can perform ridge regression either by computing a
closed-form equation or by performing gradient descent. The pros and cons are the
same. Equation 4-9 shows the closed-form solution, where A is the (n + 1) × (n + 1)
identity matrix,9 except with a 0 in the top-left cell, corresponding to the bias term.

Equation 4-9. Ridge regression closed-form solution

θ = X⊺X + αA
−1

 X⊺ y

Here is how to perform ridge regression with Scikit-Learn using a closed-form
solution (a variant of Equation 4-9 that uses a matrix factorization technique by
André-Louis Cholesky):

>>> from sklearn.linear_model import Ridge
>>> ridge_reg = Ridge(alpha=0.1, solver="cholesky")
>>> ridge_reg.fit(X, y)
>>> ridge_reg.predict([[1.5]])
array([[1.55325833]])

Regularized Linear Models | 157

10 Alternatively, you can use the Ridge class with the "sag" solver. Stochastic average GD is a variant of
stochastic GD. For more details, see the presentation “Minimizing Finite Sums with the Stochastic Average
Gradient Algorithm” by Mark Schmidt et al. from the University of British Columbia.

And using stochastic gradient descent:10

>>> sgd_reg = SGDRegressor(penalty="l2", alpha=0.1 / m, tol=None,
... max_iter=1000, eta0=0.01, random_state=42)
...
>>> sgd_reg.fit(X, y.ravel()) # y.ravel() because fit() expects 1D targets
>>> sgd_reg.predict([[1.5]])
array([1.55302613])

The penalty hyperparameter sets the type of regularization term to use. Specifying
"l2" indicates that you want SGD to add a regularization term to the MSE cost
function equal to alpha times the square of the ℓ2 norm of the weight vector. This is
just like ridge regression, except there’s no division by m in this case; that’s why we
passed alpha=0.1 / m, to get the same result as Ridge(alpha=0.1).

The RidgeCV class also performs ridge regression, but it automat‐
ically tunes hyperparameters using cross-validation. It’s roughly
equivalent to using GridSearchCV, but it’s optimized for ridge
regression and runs much faster. Several other estimators (mostly
linear) also have efficient CV variants, such as LassoCV and
ElasticNetCV.

Lasso Regression
Least absolute shrinkage and selection operator regression (usually simply called lasso
regression) is another regularized version of linear regression: just like ridge regres‐
sion, it adds a regularization term to the cost function, but it uses the ℓ1 norm of
the weight vector instead of the square of the ℓ2 norm (see Equation 4-10). Notice
that the ℓ1 norm is multiplied by 2α, whereas the ℓ2 norm was multiplied by α / m
in ridge regression. These factors were chosen to ensure that the optimal α value is
independent from the training set size: different norms lead to different factors (see
Scikit-Learn issue #15657 for more details).

Equation 4-10. Lasso regression cost function

J θ = MSE θ + 2α∑i = 1
n θi

Figure 4-18 shows the same thing as Figure 4-17 but replaces the ridge models with
lasso models and uses different α values.

158 | Chapter 4: Training Models

https://homl.info/12
https://homl.info/12
https://github.com/scikit-learn/scikit-learn/issues/15657

Figure 4-18. Linear (left) and polynomial (right) models, both using various levels of
lasso regularization

An important characteristic of lasso regression is that it tends to eliminate the weights
of the least important features (i.e., set them to zero). For example, the dashed line
in the righthand plot in Figure 4-18 (with α = 0.01) looks roughly cubic: all the
weights for the high-degree polynomial features are equal to zero. In other words,
lasso regression automatically performs feature selection and outputs a sparse model
with few nonzero feature weights.

You can get a sense of why this is the case by looking at Figure 4-19: the axes
represent two model parameters, and the background contours represent different
loss functions. In the top-left plot, the contours represent the ℓ1 loss (|θ1| + |θ2|),
which drops linearly as you get closer to any axis. For example, if you initialize the
model parameters to θ1 = 2 and θ2 = 0.5, running gradient descent will decrement
both parameters equally (as represented by the dashed yellow line); therefore θ2 will
reach 0 first (since it was closer to 0 to begin with). After that, gradient descent will
roll down the gutter until it reaches θ1 = 0 (with a bit of bouncing around, since
the gradients of ℓ1 never get close to 0: they are either –1 or 1 for each parameter).
In the top-right plot, the contours represent lasso regression’s cost function (i.e., an
MSE cost function plus an ℓ1 loss). The small white circles show the path that gradi‐
ent descent takes to optimize some model parameters that were initialized around
θ1 = 0.25 and θ2 = –1: notice once again how the path quickly reaches θ2 = 0, then
rolls down the gutter and ends up bouncing around the global optimum (represented
by the red square). If we increased α, the global optimum would move left along the
dashed yellow line, while if we decreased α, the global optimum would move right (in
this example, the optimal parameters for the unregularized MSE are θ1 = 2 and θ2 =
0.5).

Regularized Linear Models | 159

Figure 4-19. Lasso versus ridge regularization

The two bottom plots show the same thing but with an ℓ2 penalty instead. In the
bottom-left plot, you can see that the ℓ2 loss decreases as we get closer to the origin, so
gradient descent just takes a straight path toward that point. In the bottom-right plot,
the contours represent ridge regression’s cost function (i.e., an MSE cost function plus
an ℓ2 loss). As you can see, the gradients get smaller as the parameters approach the
global optimum, so gradient descent naturally slows down. This limits the bouncing
around, which helps ridge converge faster than lasso regression. Also note that the
optimal parameters (represented by the red square) get closer and closer to the origin
when you increase α, but they never get eliminated entirely.

To keep gradient descent from bouncing around the optimum at
the end when using lasso regression, you need to gradually reduce
the learning rate during training. It will still bounce around the
optimum, but the steps will get smaller and smaller, so it will
converge.

160 | Chapter 4: Training Models

11 You can think of a subgradient vector at a nondifferentiable point as an intermediate vector between the
gradient vectors around that point.

The lasso cost function is not differentiable at θi = 0 (for i = 1, 2, ⋯, n), but
gradient descent still works if you use a subgradient vector g11 instead when any θi = 0.
Equation 4-11 shows a subgradient vector equation you can use for gradient descent
with the lasso cost function.

Equation 4-11. Lasso regression subgradient vector

g θ, J = ∇θMSE θ + 2α

sign θ1

sign θ2

⋮

sign θn

 where sign θi =
−1 if θi < 0
0 if θi = 0

+1 if θi > 0

Here is a small Scikit-Learn example using the Lasso class:

>>> from sklearn.linear_model import Lasso
>>> lasso_reg = Lasso(alpha=0.1)
>>> lasso_reg.fit(X, y)
>>> lasso_reg.predict([[1.5]])
array([1.53788174])

Note that you could instead use SGDRegressor(penalty="l1", alpha=0.1).

Elastic Net Regression
Elastic net regression is a middle ground between ridge regression and lasso regres‐
sion. The regularization term is a weighted sum of both ridge and lasso’s regulariza‐
tion terms, and you can control the mix ratio r. When r = 0, elastic net is equivalent
to ridge regression, and when r = 1, it is equivalent to lasso regression (Equation
4-12).

Equation 4-12. Elastic net cost function

J θ = MSE θ + r 2α∑i = 1
n θi + 1 − r α

m
∑i = 1
n θi

2

So when should you use elastic net regression, or ridge, lasso, or plain linear regres‐
sion (i.e., without any regularization)? It is almost always preferable to have at least
a little bit of regularization, so generally you should avoid plain linear regression.
Ridge is a good default, but if you suspect that only a few features are useful, you
should prefer lasso or elastic net because they tend to reduce the useless features’
weights down to zero, as discussed earlier. In general, elastic net is preferred over

Regularized Linear Models | 161

lasso because lasso may behave erratically when the number of features is greater than
the number of training instances or when several features are strongly correlated.

Here is a short example that uses Scikit-Learn’s ElasticNet (l1_ratio corresponds to
the mix ratio r):

>>> from sklearn.linear_model import ElasticNet
>>> elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5)
>>> elastic_net.fit(X, y)
>>> elastic_net.predict([[1.5]])
array([1.54333232])

Early Stopping
A very different way to regularize iterative learning algorithms such as gradient
descent is to stop training as soon as the validation error reaches a minimum. This is
called early stopping. Figure 4-20 shows a complex model (in this case, a high-degree
polynomial regression model) being trained with batch gradient descent on the
quadratic dataset we used earlier. As the epochs go by, the algorithm learns, and its
prediction error (RMSE) on the training set goes down, along with its prediction
error on the validation set. After a while, though, the validation error stops decreas‐
ing and starts to go back up. This indicates that the model has started to overfit the
training data. With early stopping you just stop training as soon as the validation
error reaches the minimum. It is such a simple and efficient regularization technique
that Geoffrey Hinton called it a “beautiful free lunch”.

Figure 4-20. Early stopping regularization

162 | Chapter 4: Training Models

With stochastic and mini-batch gradient descent, the curves are
not so smooth, and it may be hard to know whether you have
reached the minimum or not. One solution is to stop only after the
validation error has been above the minimum for some time (when
you are confident that the model will not do any better), then roll
back the model parameters to the point where the validation error
was at a minimum.

Here is a basic implementation of early stopping:

from copy import deepcopy
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler

X_train, y_train, X_valid, y_valid = [...] # split the quadratic dataset

preprocessing = make_pipeline(PolynomialFeatures(degree=90, include_bias=False),
 StandardScaler())
X_train_prep = preprocessing.fit_transform(X_train)
X_valid_prep = preprocessing.transform(X_valid)
sgd_reg = SGDRegressor(penalty=None, eta0=0.002, random_state=42)
n_epochs = 500
best_valid_rmse = float('inf')

for epoch in range(n_epochs):
 sgd_reg.partial_fit(X_train_prep, y_train)
 y_valid_predict = sgd_reg.predict(X_valid_prep)
 val_error = mean_squared_error(y_valid, y_valid_predict, squared=False)
 if val_error < best_valid_rmse:
 best_valid_rmse = val_error
 best_model = deepcopy(sgd_reg)

This code first adds the polynomial features and scales all the input features, both
for the training set and for the validation set (the code assumes that you have split
the original training set into a smaller training set and a validation set). Then it
creates an SGDRegressor model with no regularization and a small learning rate. In
the training loop, it calls partial_fit() instead of fit(), to perform incremental
learning. At each epoch, it measures the RMSE on the validation set. If it is lower
than the lowest RMSE seen so far, it saves a copy of the model in the best_model
variable. This implementation does not actually stop training, but it lets you revert to
the best model after training. Note that the model is copied using copy.deepcopy(),
because it copies both the model’s hyperparameters and the learned parameters. In
contrast, sklearn.base.clone() only copies the model’s hyperparameters.

Regularized Linear Models | 163

Logistic Regression
As discussed in Chapter 1, some regression algorithms can be used for classification
(and vice versa). Logistic regression (also called logit regression) is commonly used to
estimate the probability that an instance belongs to a particular class (e.g., what is
the probability that this email is spam?). If the estimated probability is greater than a
given threshold (typically 50%), then the model predicts that the instance belongs to
that class (called the positive class, labeled “1”), and otherwise it predicts that it does
not (i.e., it belongs to the negative class, labeled “0”). This makes it a binary classifier.

Estimating Probabilities
So how does logistic regression work? Just like a linear regression model, a logistic
regression model computes a weighted sum of the input features (plus a bias term),
but instead of outputting the result directly like the linear regression model does, it
outputs the logistic of this result (see Equation 4-13).

Equation 4-13. Logistic regression model estimated probability (vectorized form)

p = ℎθ x = σ θ⊺x

The logistic—noted σ(·)—is a sigmoid function (i.e., S-shaped) that outputs a number
between 0 and 1. It is defined as shown in Equation 4-14 and Figure 4-21.

Equation 4-14. Logistic function

σ t = 1
1 + exp − t

Figure 4-21. Logistic function

164 | Chapter 4: Training Models

Once the logistic regression model has estimated the probability p = hθ(x) that an
instance x belongs to the positive class, it can make its prediction ŷ easily (see
Equation 4-15).

Equation 4-15. Logistic regression model prediction using a 50% threshold
probability

y =
0 if p < 0.5
1 if p ≥ 0.5

Notice that σ(t) < 0.5 when t < 0, and σ(t) ≥ 0.5 when t ≥ 0, so a logistic regression
model using the default threshold of 50% probability predicts 1 if θ⊺ x is positive and
0 if it is negative.

The score t is often called the logit. The name comes from the
fact that the logit function, defined as logit(p) = log(p / (1 – p)),
is the inverse of the logistic function. Indeed, if you compute the
logit of the estimated probability p, you will find that the result
is t. The logit is also called the log-odds, since it is the log of the
ratio between the estimated probability for the positive class and
the estimated probability for the negative class.

Training and Cost Function
Now you know how a logistic regression model estimates probabilities and makes
predictions. But how is it trained? The objective of training is to set the parameter
vector θ so that the model estimates high probabilities for positive instances (y = 1)
and low probabilities for negative instances (y = 0). This idea is captured by the cost
function shown in Equation 4-16 for a single training instance x.

Equation 4-16. Cost function of a single training instance

c θ =
−log p if y = 1

−log 1 − p if y = 0

This cost function makes sense because –log(t) grows very large when t approaches 0,
so the cost will be large if the model estimates a probability close to 0 for a positive
instance, and it will also be large if the model estimates a probability close to 1 for a
negative instance. On the other hand, –log(t) is close to 0 when t is close to 1, so the
cost will be close to 0 if the estimated probability is close to 0 for a negative instance
or close to 1 for a positive instance, which is precisely what we want.

Logistic Regression | 165

The cost function over the whole training set is the average cost over all training
instances. It can be written in a single expression called the log loss, shown in
Equation 4-17.

Equation 4-17. Logistic regression cost function (log loss)

J θ = − 1
m

∑i = 1
m y i log p

i + 1 − y i log 1 − p i

The log loss was not just pulled out of a hat. It can be shown
mathematically (using Bayesian inference) that minimizing this
loss will result in the model with the maximum likelihood of being
optimal, assuming that the instances follow a Gaussian distribution
around the mean of their class. When you use the log loss, this
is the implicit assumption you are making. The more wrong this
assumption is, the more biased the model will be. Similarly, when
we used the MSE to train linear regression models, we were implic‐
itly assuming that the data was purely linear, plus some Gaussian
noise. So, if the data is not linear (e.g., if it’s quadratic) or if the
noise is not Gaussian (e.g., if outliers are not exponentially rare),
then the model will be biased.

The bad news is that there is no known closed-form equation to compute the value of
θ that minimizes this cost function (there is no equivalent of the Normal equation).
But the good news is that this cost function is convex, so gradient descent (or any
other optimization algorithm) is guaranteed to find the global minimum (if the
learning rate is not too large and you wait long enough). The partial derivatives of the
cost function with regard to the jth model parameter θj are given by Equation 4-18.

Equation 4-18. Logistic cost function partial derivatives

∂
∂θj

J θ = 1
m

∑
i = 1

m
σ θ

⊺
x i − y i xj

i

This equation looks very much like Equation 4-5: for each instance it computes the
prediction error and multiplies it by the jth feature value, and then it computes the
average over all training instances. Once you have the gradient vector containing
all the partial derivatives, you can use it in the batch gradient descent algorithm.
That’s it: you now know how to train a logistic regression model. For stochastic GD
you would take one instance at a time, and for mini-batch GD you would use a
mini-batch at a time.

166 | Chapter 4: Training Models

12 Photos reproduced from the corresponding Wikipedia pages. Iris virginica photo by Frank Mayfield (Creative
Commons BY-SA 2.0), Iris versicolor photo by D. Gordon E. Robertson (Creative Commons BY-SA 3.0), Iris
setosa photo public domain.

Decision Boundaries
We can use the iris dataset to illustrate logistic regression. This is a famous dataset
that contains the sepal and petal length and width of 150 iris flowers of three different
species: Iris setosa, Iris versicolor, and Iris virginica (see Figure 4-22).

Figure 4-22. Flowers of three iris plant species12

Let’s try to build a classifier to detect the Iris virginica type based only on the petal
width feature. The first step is to load the data and take a quick peek:

>>> from sklearn.datasets import load_iris
>>> iris = load_iris(as_frame=True)
>>> list(iris)
['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names',
 'filename', 'data_module']
>>> iris.data.head(3)
 sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
>>> iris.target.head(3) # note that the instances are not shuffled
0 0
1 0
2 0
Name: target, dtype: int64
>>> iris.target_names
array(['setosa', 'versicolor', 'virginica'], dtype='<U10')

Logistic Regression | 167

https://creativecommons.org/licenses/by-sa/2.0
https://creativecommons.org/licenses/by-sa/2.0
https://creativecommons.org/licenses/by-sa/3.0

13 NumPy’s reshape() function allows one dimension to be –1, which means “automatic”: the value is inferred
from the length of the array and the remaining dimensions.

Next we’ll split the data and train a logistic regression model on the training set:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

X = iris.data[["petal width (cm)"]].values
y = iris.target_names[iris.target] == 'virginica'
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

log_reg = LogisticRegression(random_state=42)
log_reg.fit(X_train, y_train)

Let’s look at the model’s estimated probabilities for flowers with petal widths varying
from 0 cm to 3 cm (Figure 4-23):13

X_new = np.linspace(0, 3, 1000).reshape(-1, 1) # reshape to get a column vector
y_proba = log_reg.predict_proba(X_new)
decision_boundary = X_new[y_proba[:, 1] >= 0.5][0, 0]

plt.plot(X_new, y_proba[:, 0], "b--", linewidth=2,
 label="Not Iris virginica proba")
plt.plot(X_new, y_proba[:, 1], "g-", linewidth=2, label="Iris virginica proba")
plt.plot([decision_boundary, decision_boundary], [0, 1], "k:", linewidth=2,
 label="Decision boundary")
[...] # beautify the figure: add grid, labels, axis, legend, arrows, and samples
plt.show()

Figure 4-23. Estimated probabilities and decision boundary

The petal width of Iris virginica flowers (represented as triangles) ranges from 1.4
cm to 2.5 cm, while the other iris flowers (represented by squares) generally have
a smaller petal width, ranging from 0.1 cm to 1.8 cm. Notice that there is a bit of
overlap. Above about 2 cm the classifier is highly confident that the flower is an Iris
virginica (it outputs a high probability for that class), while below 1 cm it is highly

168 | Chapter 4: Training Models

14 It is the set of points x such that θ0 + θ1x1 + θ2x2 = 0, which defines a straight line.

confident that it is not an Iris virginica (high probability for the “Not Iris virginica”
class). In between these extremes, the classifier is unsure. However, if you ask it
to predict the class (using the predict() method rather than the predict_proba()
method), it will return whichever class is the most likely. Therefore, there is a decision
boundary at around 1.6 cm where both probabilities are equal to 50%: if the petal
width is greater than 1.6 cm the classifier will predict that the flower is an Iris
virginica, and otherwise it will predict that it is not (even if it is not very confident):

>>> decision_boundary
1.6516516516516517
>>> log_reg.predict([[1.7], [1.5]])
array([True, False])

Figure 4-24 shows the same dataset, but this time displaying two features: petal width
and length. Once trained, the logistic regression classifier can, based on these two
features, estimate the probability that a new flower is an Iris virginica. The dashed line
represents the points where the model estimates a 50% probability: this is the model’s
decision boundary. Note that it is a linear boundary.14 Each parallel line represents the
points where the model outputs a specific probability, from 15% (bottom left) to 90%
(top right). All the flowers beyond the top-right line have over 90% chance of being
Iris virginica, according to the model.

Figure 4-24. Linear decision boundary

The hyperparameter controlling the regularization strength of a
Scikit-Learn LogisticRegression model is not alpha (as in other
linear models), but its inverse: C. The higher the value of C, the less
the model is regularized.

Logistic Regression | 169

Just like the other linear models, logistic regression models can be regularized using
ℓ1 or ℓ2 penalties. Scikit-Learn actually adds an ℓ2 penalty by default.

Softmax Regression
The logistic regression model can be generalized to support multiple classes directly,
without having to train and combine multiple binary classifiers (as discussed in
Chapter 3). This is called softmax regression, or multinomial logistic regression.

The idea is simple: when given an instance x, the softmax regression model first
computes a score sk(x) for each class k, then estimates the probability of each class by
applying the softmax function (also called the normalized exponential) to the scores.
The equation to compute sk(x) should look familiar, as it is just like the equation for
linear regression prediction (see Equation 4-19).

Equation 4-19. Softmax score for class k

sk x = θ
k ⊺
x

Note that each class has its own dedicated parameter vector θ(k). All these vectors are
typically stored as rows in a parameter matrix Θ.

Once you have computed the score of every class for the instance x, you can estimate
the probability pk that the instance belongs to class k by running the scores through
the softmax function (Equation 4-20). The function computes the exponential of
every score, then normalizes them (dividing by the sum of all the exponentials). The
scores are generally called logits or log-odds (although they are actually unnormal‐
ized log-odds).

Equation 4-20. Softmax function

pk = σ s x k =
exp sk x

∑j = 1
K exp sj x

In this equation:

• K is the number of classes.•
• s(x) is a vector containing the scores of each class for the instance x.•
• σ(s(x))k is the estimated probability that the instance x belongs to class k, given•

the scores of each class for that instance.

170 | Chapter 4: Training Models

Just like the logistic regression classifier, by default the softmax regression classifier
predicts the class with the highest estimated probability (which is simply the class
with the highest score), as shown in Equation 4-21.

Equation 4-21. Softmax regression classifier prediction

y = argmax
k

σ s x k = argmax
k

sk x = argmax
k

θ
k ⊺
x

The argmax operator returns the value of a variable that maximizes a function. In this
equation, it returns the value of k that maximizes the estimated probability σ(s(x))k.

The softmax regression classifier predicts only one class at a time
(i.e., it is multiclass, not multioutput), so it should be used only
with mutually exclusive classes, such as different species of plants.
You cannot use it to recognize multiple people in one picture.

Now that you know how the model estimates probabilities and makes predictions,
let’s take a look at training. The objective is to have a model that estimates a high
probability for the target class (and consequently a low probability for the other
classes). Minimizing the cost function shown in Equation 4-22, called the cross
entropy, should lead to this objective because it penalizes the model when it estimates
a low probability for a target class. Cross entropy is frequently used to measure how
well a set of estimated class probabilities matches the target classes.

Equation 4-22. Cross entropy cost function

J Θ = − 1
m

∑i = 1
m ∑k = 1

K yk
i log pk

i

In this equation, yk
i is the target probability that the ith instance belongs to class k. In

general, it is either equal to 1 or 0, depending on whether the instance belongs to the
class or not.

Notice that when there are just two classes (K = 2), this cost function is equivalent to
the logistic regression cost function (log loss; see Equation 4-17).

Cross Entropy
Cross entropy originated from Claude Shannon’s information theory. Suppose you
want to efficiently transmit information about the weather every day. If there are eight
options (sunny, rainy, etc.), you could encode each option using 3 bits, because 23 =
8. However, if you think it will be sunny almost every day, it would be much more

Logistic Regression | 171

efficient to code “sunny” on just one bit (0) and the other seven options on four bits
(starting with a 1). Cross entropy measures the average number of bits you actually
send per option. If your assumption about the weather is perfect, cross entropy will
be equal to the entropy of the weather itself (i.e., its intrinsic unpredictability). But if
your assumption is wrong (e.g., if it rains often), cross entropy will be greater by an
amount called the Kullback–Leibler (KL) divergence.

The cross entropy between two probability distributions p and q is defined as H(p,q)
= –Σx p(x) log q(x) (at least when the distributions are discrete). For more details,
check out my video on the subject.

The gradient vector of this cost function with regard to θ(k) is given by Equation 4-23.

Equation 4-23. Cross entropy gradient vector for class k

∇θ k J Θ = 1
m

∑
i = 1

m
pk
i − yk

i x i

Now you can compute the gradient vector for every class, then use gradient descent
(or any other optimization algorithm) to find the parameter matrix Θ that minimizes
the cost function.

Let’s use softmax regression to classify the iris plants into all three classes. Scikit-
Learn’s LogisticRegression classifier uses softmax regression automatically when
you train it on more than two classes (assuming you use solver="lbfgs", which is
the default). It also applies ℓ2 regularization by default, which you can control using
the hyperparameter C, as mentioned earlier:

X = iris.data[["petal length (cm)", "petal width (cm)"]].values
y = iris["target"]
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

softmax_reg = LogisticRegression(C=30, random_state=42)
softmax_reg.fit(X_train, y_train)

So the next time you find an iris with petals that are 5 cm long and 2 cm wide, you
can ask your model to tell you what type of iris it is, and it will answer Iris virginica
(class 2) with 96% probability (or Iris versicolor with 4% probability):

>>> softmax_reg.predict([[5, 2]])
array([2])
>>> softmax_reg.predict_proba([[5, 2]]).round(2)
array([[0. , 0.04, 0.96]])

Figure 4-25 shows the resulting decision boundaries, represented by the background
colors. Notice that the decision boundaries between any two classes are linear. The
figure also shows the probabilities for the Iris versicolor class, represented by the

172 | Chapter 4: Training Models

https://homl.info/xentropy

curved lines (e.g., the line labeled with 0.30 represents the 30% probability bound‐
ary). Notice that the model can predict a class that has an estimated probability below
50%. For example, at the point where all decision boundaries meet, all classes have an
equal estimated probability of 33%.

Figure 4-25. Softmax regression decision boundaries

In this chapter, you learned various ways to train linear models, both for regression
and for classification. You used a closed-form equation to solve linear regression,
as well as gradient descent, and you learned how various penalties can be added to
the cost function during training to regularize the model. Along the way, you also
learned how to plot learning curves and analyze them, and how to implement early
stopping. Finally, you learned how logistic regression and softmax regression work.
We’ve opened up the first machine learning black boxes! In the next chapters we will
open many more, starting with support vector machines.

Exercises
1. Which linear regression training algorithm can you use if you have a training set1.

with millions of features?
2. Suppose the features in your training set have very different scales. Which algo‐2.

rithms might suffer from this, and how? What can you do about it?
3. Can gradient descent get stuck in a local minimum when training a logistic3.

regression model?
4. Do all gradient descent algorithms lead to the same model, provided you let them4.

run long enough?
5. Suppose you use batch gradient descent and you plot the validation error at every5.

epoch. If you notice that the validation error consistently goes up, what is likely
going on? How can you fix this?

Exercises | 173

6. Is it a good idea to stop mini-batch gradient descent immediately when the6.
validation error goes up?

7. Which gradient descent algorithm (among those we discussed) will reach the7.
vicinity of the optimal solution the fastest? Which will actually converge? How
can you make the others converge as well?

8. Suppose you are using polynomial regression. You plot the learning curves and8.
you notice that there is a large gap between the training error and the validation
error. What is happening? What are three ways to solve this?

9. Suppose you are using ridge regression and you notice that the training error9.
and the validation error are almost equal and fairly high. Would you say that
the model suffers from high bias or high variance? Should you increase the
regularization hyperparameter α or reduce it?

10. Why would you want to use:10.
a. Ridge regression instead of plain linear regression (i.e., without anya.

regularization)?
b. Lasso instead of ridge regression?b.
c. Elastic net instead of lasso regression?c.

11. Suppose you want to classify pictures as outdoor/indoor and daytime/nighttime.11.
Should you implement two logistic regression classifiers or one softmax regres‐
sion classifier?

12. Implement batch gradient descent with early stopping for softmax regression12.
without using Scikit-Learn, only NumPy. Use it on a classification task such as
the iris dataset.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

174 | Chapter 4: Training Models

https://homl.info/colab3

CHAPTER 5

Support Vector Machines

A support vector machine (SVM) is a powerful and versatile machine learning model,
capable of performing linear or nonlinear classification, regression, and even novelty
detection. SVMs shine with small to medium-sized nonlinear datasets (i.e., hundreds
to thousands of instances), especially for classification tasks. However, they don’t scale
very well to very large datasets, as you will see.

This chapter will explain the core concepts of SVMs, how to use them, and how they
work. Let’s jump right in!

Linear SVM Classification
The fundamental idea behind SVMs is best explained with some visuals. Figure 5-1
shows part of the iris dataset that was introduced at the end of Chapter 4. The two
classes can clearly be separated easily with a straight line (they are linearly separable).
The left plot shows the decision boundaries of three possible linear classifiers. The
model whose decision boundary is represented by the dashed line is so bad that it
does not even separate the classes properly. The other two models work perfectly
on this training set, but their decision boundaries come so close to the instances
that these models will probably not perform as well on new instances. In contrast,
the solid line in the plot on the right represents the decision boundary of an SVM
classifier; this line not only separates the two classes but also stays as far away from
the closest training instances as possible. You can think of an SVM classifier as
fitting the widest possible street (represented by the parallel dashed lines) between the
classes. This is called large margin classification.

175

Figure 5-1. Large margin classification

Notice that adding more training instances “off the street” will not affect the decision
boundary at all: it is fully determined (or “supported”) by the instances located on the
edge of the street. These instances are called the support vectors (they are circled in
Figure 5-1).

SVMs are sensitive to the feature scales, as you can see in Fig‐
ure 5-2. In the left plot, the vertical scale is much larger than the
horizontal scale, so the widest possible street is close to horizontal.
After feature scaling (e.g., using Scikit-Learn’s StandardScaler),
the decision boundary in the right plot looks much better.

Figure 5-2. Sensitivity to feature scales

Soft Margin Classification
If we strictly impose that all instances must be off the street and on the correct
side, this is called hard margin classification. There are two main issues with hard
margin classification. First, it only works if the data is linearly separable. Second, it is
sensitive to outliers. Figure 5-3 shows the iris dataset with just one additional outlier:
on the left, it is impossible to find a hard margin; on the right, the decision boundary
ends up very different from the one we saw in Figure 5-1 without the outlier, and the
model will probably not generalize as well.

176 | Chapter 5: Support Vector Machines

Figure 5-3. Hard margin sensitivity to outliers

To avoid these issues, we need to use a more flexible model. The objective is to find a
good balance between keeping the street as large as possible and limiting the margin
violations (i.e., instances that end up in the middle of the street or even on the wrong
side). This is called soft margin classification.

When creating an SVM model using Scikit-Learn, you can specify several hyperpara‐
meters, including the regularization hyperparameter C. If you set it to a low value,
then you end up with the model on the left of Figure 5-4. With a high value, you get
the model on the right. As you can see, reducing C makes the street larger, but it also
leads to more margin violations. In other words, reducing C results in more instances
supporting the street, so there’s less risk of overfitting. But if you reduce it too much,
then the model ends up underfitting, as seems to be the case here: the model with
C=100 looks like it will generalize better than the one with C=1.

Figure 5-4. Large margin (left) versus fewer margin violations (right)

If your SVM model is overfitting, you can try regularizing it by
reducing C.

The following Scikit-Learn code loads the iris dataset and trains a linear SVM classi‐
fier to detect Iris virginica flowers. The pipeline first scales the features, then uses a
LinearSVC with C=1:

Linear SVM Classification | 177

from sklearn.datasets import load_iris
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

iris = load_iris(as_frame=True)
X = iris.data[["petal length (cm)", "petal width (cm)"]].values
y = (iris.target == 2) # Iris virginica

svm_clf = make_pipeline(StandardScaler(),
 LinearSVC(C=1, random_state=42))
svm_clf.fit(X, y)

The resulting model is represented on the left in Figure 5-4.

Then, as usual, you can use the model to make predictions:

>>> X_new = [[5.5, 1.7], [5.0, 1.5]]
>>> svm_clf.predict(X_new)
array([True, False])

The first plant is classified as an Iris virginica, while the second is not. Let’s look at
the scores that the SVM used to make these predictions. These measure the signed
distance between each instance and the decision boundary:

>>> svm_clf.decision_function(X_new)
array([0.66163411, -0.22036063])

Unlike LogisticRegression, LinearSVC doesn’t have a predict_proba() method to
estimate the class probabilities. That said, if you use the SVC class (discussed shortly)
instead of LinearSVC, and if you set its probability hyperparameter to True, then
the model will fit an extra model at the end of training to map the SVM decision
function scores to estimated probabilities. Under the hood, this requires using 5-fold
cross-validation to generate out-of-sample predictions for every instance in the train‐
ing set, then training a LogisticRegression model, so it will slow down training
considerably. After that, the predict_proba() and predict_log_proba() methods
will be available.

Nonlinear SVM Classification
Although linear SVM classifiers are efficient and often work surprisingly well, many
datasets are not even close to being linearly separable. One approach to handling
nonlinear datasets is to add more features, such as polynomial features (as we did in
Chapter 4); in some cases this can result in a linearly separable dataset. Consider the
lefthand plot in Figure 5-5: it represents a simple dataset with just one feature, x1.
This dataset is not linearly separable, as you can see. But if you add a second feature
x2 = (x1)2, the resulting 2D dataset is perfectly linearly separable.

178 | Chapter 5: Support Vector Machines

Figure 5-5. Adding features to make a dataset linearly separable

To implement this idea using Scikit-Learn, you can create a pipeline containing a
PolynomialFeatures transformer (discussed in “Polynomial Regression” on page
149), followed by a StandardScaler and a LinearSVC classifier. Let’s test this on the
moons dataset, a toy dataset for binary classification in which the data points are
shaped as two interleaving crescent moons (see Figure 5-6). You can generate this
dataset using the make_moons() function:

from sklearn.datasets import make_moons
from sklearn.preprocessing import PolynomialFeatures

X, y = make_moons(n_samples=100, noise=0.15, random_state=42)

polynomial_svm_clf = make_pipeline(
 PolynomialFeatures(degree=3),
 StandardScaler(),
 LinearSVC(C=10, max_iter=10_000, random_state=42)
)
polynomial_svm_clf.fit(X, y)

Figure 5-6. Linear SVM classifier using polynomial features

Nonlinear SVM Classification | 179

Polynomial Kernel
Adding polynomial features is simple to implement and can work great with all sorts
of machine learning algorithms (not just SVMs). That said, at a low polynomial
degree this method cannot deal with very complex datasets, and with a high polyno‐
mial degree it creates a huge number of features, making the model too slow.

Fortunately, when using SVMs you can apply an almost miraculous mathematical
technique called the kernel trick (which is explained later in this chapter). The kernel
trick makes it possible to get the same result as if you had added many polynomial
features, even with a very high degree, without actually having to add them. This
means there’s no combinatorial explosion of the number of features. This trick is
implemented by the SVC class. Let’s test it on the moons dataset:

from sklearn.svm import SVC

poly_kernel_svm_clf = make_pipeline(StandardScaler(),
 SVC(kernel="poly", degree=3, coef0=1, C=5))
poly_kernel_svm_clf.fit(X, y)

This code trains an SVM classifier using a third-degree polynomial kernel, repre‐
sented on the left in Figure 5-7. On the right is another SVM classifier using a
10th-degree polynomial kernel. Obviously, if your model is overfitting, you might
want to reduce the polynomial degree. Conversely, if it is underfitting, you can try
increasing it. The hyperparameter coef0 controls how much the model is influenced
by high-degree terms versus low-degree terms.

Figure 5-7. SVM classifiers with a polynomial kernel

Although hyperparameters will generally be tuned automatically
(e.g., using randomized search), it’s good to have a sense of what
each hyperparameter actually does and how it may interact with
other hyperparameters: this way, you can narrow the search to a
much smaller space.

180 | Chapter 5: Support Vector Machines

Similarity Features
Another technique to tackle nonlinear problems is to add features computed using a
similarity function, which measures how much each instance resembles a particular
landmark, as we did in Chapter 2 when we added the geographic similarity features.
For example, let’s take the 1D dataset from earlier and add two landmarks to it at x1 =
–2 and x1 = 1 (see the left plot in Figure 5-8). Next, we’ll define the similarity function
to be the Gaussian RBF with γ = 0.3. This is a bell-shaped function varying from 0
(very far away from the landmark) to 1 (at the landmark).

Now we are ready to compute the new features. For example, let’s look at the instance
x1 = –1: it is located at a distance of 1 from the first landmark and 2 from the second
landmark. Therefore, its new features are x2 = exp(–0.3 × 12) ≈ 0.74 and x3 = exp(–0.3
× 22) ≈ 0.30. The plot on the right in Figure 5-8 shows the transformed dataset
(dropping the original features). As you can see, it is now linearly separable.

Figure 5-8. Similarity features using the Gaussian RBF

You may wonder how to select the landmarks. The simplest approach is to create a
landmark at the location of each and every instance in the dataset. Doing that creates
many dimensions and thus increases the chances that the transformed training set
will be linearly separable. The downside is that a training set with m instances and
n features gets transformed into a training set with m instances and m features
(assuming you drop the original features). If your training set is very large, you end
up with an equally large number of features.

Gaussian RBF Kernel
Just like the polynomial features method, the similarity features method can be useful
with any machine learning algorithm, but it may be computationally expensive to
compute all the additional features (especially on large training sets). Once again the
kernel trick does its SVM magic, making it possible to obtain a similar result as if you

Nonlinear SVM Classification | 181

had added many similarity features, but without actually doing so. Let’s try the SVC
class with the Gaussian RBF kernel:

rbf_kernel_svm_clf = make_pipeline(StandardScaler(),
 SVC(kernel="rbf", gamma=5, C=0.001))
rbf_kernel_svm_clf.fit(X, y)

This model is represented at the bottom left in Figure 5-9. The other plots show
models trained with different values of hyperparameters gamma (γ) and C. Increasing
gamma makes the bell-shaped curve narrower (see the lefthand plots in Figure 5-8).
As a result, each instance’s range of influence is smaller: the decision boundary ends
up being more irregular, wiggling around individual instances. Conversely, a small
gamma value makes the bell-shaped curve wider: instances have a larger range of influ‐
ence, and the decision boundary ends up smoother. So γ acts like a regularization
hyperparameter: if your model is overfitting, you should reduce γ; if it is underfitting,
you should increase γ (similar to the C hyperparameter).

Figure 5-9. SVM classifiers using an RBF kernel

Other kernels exist but are used much more rarely. Some kernels are specialized
for specific data structures. String kernels are sometimes used when classifying text
documents or DNA sequences (e.g., using the string subsequence kernel or kernels
based on the Levenshtein distance).

182 | Chapter 5: Support Vector Machines

1 Chih-Jen Lin et al., “A Dual Coordinate Descent Method for Large-Scale Linear SVM”, Proceedings of the 25th
International Conference on Machine Learning (2008): 408–415.

2 John Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines”
(Microsoft Research technical report, April 21, 1998).

With so many kernels to choose from, how can you decide
which one to use? As a rule of thumb, you should always try
the linear kernel first. The LinearSVC class is much faster than
SVC(kernel="linear"), especially if the training set is very large.
If it is not too large, you should also try kernelized SVMs, starting
with the Gaussian RBF kernel; it often works really well. Then, if
you have spare time and computing power, you can experiment
with a few other kernels using hyperparameter search. If there are
kernels specialized for your training set’s data structure, make sure
to give them a try too.

SVM Classes and Computational Complexity
The LinearSVC class is based on the liblinear library, which implements an opti‐
mized algorithm for linear SVMs.1 It does not support the kernel trick, but it scales
almost linearly with the number of training instances and the number of features.
Its training time complexity is roughly O(m × n). The algorithm takes longer if you
require very high precision. This is controlled by the tolerance hyperparameter ϵ
(called tol in Scikit-Learn). In most classification tasks, the default tolerance is fine.

The SVC class is based on the libsvm library, which implements an algorithm that
supports the kernel trick.2 The training time complexity is usually between O(m2 ×
n) and O(m3 × n). Unfortunately, this means that it gets dreadfully slow when the
number of training instances gets large (e.g., hundreds of thousands of instances), so
this algorithm is best for small or medium-sized nonlinear training sets. It scales well
with the number of features, especially with sparse features (i.e., when each instance
has few nonzero features). In this case, the algorithm scales roughly with the average
number of nonzero features per instance.

The SGDClassifier class also performs large margin classification by default, and its
hyperparameters–especially the regularization hyperparameters (alpha and penalty)
and the learning_rate–can be adjusted to produce similar results as the linear
SVMs. For training it uses stochastic gradient descent (see Chapter 4), which allows
incremental learning and uses little memory, so you can use it to train a model on
a large dataset that does not fit in RAM (i.e., for out-of-core learning). Moreover, it
scales very well, as its computational complexity is O(m × n). Table 5-1 compares
Scikit-Learn’s SVM classification classes.

Nonlinear SVM Classification | 183

https://homl.info/13
https://homl.info/13
https://homl.info/14
https://homl.info/14

Table 5-1. Comparison of Scikit-Learn classes for SVM classification

Class Time complexity Out-of-core support Scaling required Kernel trick

LinearSVC O(m × n) No Yes No

SVC O(m² × n) to O(m³ × n) No Yes Yes

SGDClassifier O(m × n) Yes Yes No

Now let’s see how the SVM algorithms can also be used for linear and nonlinear
regression.

SVM Regression
To use SVMs for regression instead of classification, the trick is to tweak the objec‐
tive: instead of trying to fit the largest possible street between two classes while
limiting margin violations, SVM regression tries to fit as many instances as possible
on the street while limiting margin violations (i.e., instances off the street). The width
of the street is controlled by a hyperparameter, ϵ. Figure 5-10 shows two linear SVM
regression models trained on some linear data, one with a small margin (ϵ = 0.5) and
the other with a larger margin (ϵ = 1.2).

Figure 5-10. SVM regression

Reducing ϵ increases the number of support vectors, which regularizes the model.
Moreover, if you add more training instances within the margin, it will not affect the
model’s predictions; thus, the model is said to be ϵ-insensitive.

You can use Scikit-Learn’s LinearSVR class to perform linear SVM regression. The
following code produces the model represented on the left in Figure 5-10:

184 | Chapter 5: Support Vector Machines

from sklearn.svm import LinearSVR

X, y = [...] # a linear dataset
svm_reg = make_pipeline(StandardScaler(),
 LinearSVR(epsilon=0.5, random_state=42))
svm_reg.fit(X, y)

To tackle nonlinear regression tasks, you can use a kernelized SVM model. Fig‐
ure 5-11 shows SVM regression on a random quadratic training set, using a second-
degree polynomial kernel. There is some regularization in the left plot (i.e., a small C
value), and much less in the right plot (i.e., a large C value).

Figure 5-11. SVM regression using a second-degree polynomial kernel

The following code uses Scikit-Learn’s SVR class (which supports the kernel trick) to
produce the model represented on the left in Figure 5-11:

from sklearn.svm import SVR

X, y = [...] # a quadratic dataset
svm_poly_reg = make_pipeline(StandardScaler(),
 SVR(kernel="poly", degree=2, C=0.01, epsilon=0.1))
svm_poly_reg.fit(X, y)

The SVR class is the regression equivalent of the SVC class, and the LinearSVR class is
the regression equivalent of the LinearSVC class. The LinearSVR class scales linearly
with the size of the training set (just like the LinearSVC class), while the SVR class gets
much too slow when the training set grows very large (just like the SVC class).

SVMs can also be used for novelty detection, as you will see in
Chapter 9.

SVM Regression | 185

The rest of this chapter explains how SVMs make predictions and how their training
algorithms work, starting with linear SVM classifiers. If you are just getting started
with machine learning, you can safely skip this and go straight to the exercises
at the end of this chapter, and come back later when you want to get a deeper
understanding of SVMs.

Under the Hood of Linear SVM Classifiers
A linear SVM classifier predicts the class of a new instance x by first computing the
decision function θ⊺ x = θ0 x0 + ⋯ + θn xn, where x0 is the bias feature (always equal to
1). If the result is positive, then the predicted class ŷ is the positive class (1); otherwise
it is the negative class (0). This is exactly like LogisticRegression (discussed in
Chapter 4).

Up to now, I have used the convention of putting all the model
parameters in one vector θ, including the bias term θ0 and the
input feature weights θ1 to θn. This required adding a bias input
x0 = 1 to all instances. Another very common convention is to
separate the bias term b (equal to θ0) and the feature weights vector
w (containing θ1 to θn). In this case, no bias feature needs to be
added to the input feature vectors, and the linear SVM’s decision
function is equal to w⊺ x + b = w1 x1 + ⋯ + wn xn + b. I will use this
convention throughout the rest of this book.

So, making predictions with a linear SVM classifier is quite straightforward. How
about training? This requires finding the weights vector w and the bias term b that
make the street, or margin, as wide as possible while limiting the number of margin
violations. Let’s start with the width of the street: to make it larger, we need to make w
smaller. This may be easier to visualize in 2D, as shown in Figure 5-12. Let’s define the
borders of the street as the points where the decision function is equal to –1 or +1. In
the left plot the weight w1 is 1, so the points at which w1 x1 = –1 or +1 are x1 = –1 and
+1: therefore the margin’s size is 2. In the right plot the weight is 0.5, so the points at
which w1 x1 = –1 or +1 are x1 = –2 and +2: the margin’s size is 4. So, we need to keep
w as small as possible. Note that the bias term b has no influence on the size of the
margin: tweaking it just shifts the margin around, without affecting its size.

186 | Chapter 5: Support Vector Machines

Figure 5-12. A smaller weight vector results in a larger margin

We also want to avoid margin violations, so we need the decision function to be
greater than 1 for all positive training instances and lower than –1 for negative
training instances. If we define t(i) = –1 for negative instances (when y(i) = 0) and t(i) =
1 for positive instances (when y(i) = 1), then we can write this constraint as t(i)(w⊺ x(i) +
b) ≥ 1 for all instances.

We can therefore express the hard margin linear SVM classifier objective as the
constrained optimization problem in Equation 5-1.

Equation 5-1. Hard margin linear SVM classifier objective

minimize
w, b

1
2w

⊺w

subject to t i w⊺x i + b ≥ 1 for i = 1, 2,⋯,m

We are minimizing ½ w⊺ w, which is equal to ½∥ w ∥2, rather than
minimizing ∥ w ∥ (the norm of w). Indeed, ½∥ w ∥2 has a nice,
simple derivative (it is just w), while ∥ w ∥ is not differentiable
at w = 0. Optimization algorithms often work much better on
differentiable functions.

Under the Hood of Linear SVM Classifiers | 187

3 Zeta (ζ) is the sixth letter of the Greek alphabet.
4 To learn more about quadratic programming, you can start by reading Stephen Boyd and Lieven Vandenber‐

ghe’s book Convex Optimization (Cambridge University Press) or watching Richard Brown’s series of video
lectures.

To get the soft margin objective, we need to introduce a slack variable ζ(i) ≥ 0 for each
instance:3 ζ(i) measures how much the ith instance is allowed to violate the margin.
We now have two conflicting objectives: make the slack variables as small as possible
to reduce the margin violations, and make ½ w⊺ w as small as possible to increase
the margin. This is where the C hyperparameter comes in: it allows us to define the
trade-off between these two objectives. This gives us the constrained optimization
problem in Equation 5-2.

Equation 5-2. Soft margin linear SVM classifier objective

minimize
w, b, ζ

1
2w

⊺w + C ∑
i = 1

m
ζ
i

subject to t i w⊺x i + b ≥ 1 − ζ i and ζ
i ≥ 0 for i = 1, 2,⋯,m

The hard margin and soft margin problems are both convex quadratic optimization
problems with linear constraints. Such problems are known as quadratic program‐
ming (QP) problems. Many off-the-shelf solvers are available to solve QP problems by
using a variety of techniques that are outside the scope of this book.4

Using a QP solver is one way to train an SVM. Another is to use gradient descent to
minimize the hinge loss or the squared hinge loss (see Figure 5-13). Given an instance
x of the positive class (i.e., with t = 1), the loss is 0 if the output s of the decision
function (s = w⊺ x + b) is greater than or equal to 1. This happens when the instance
is off the street and on the positive side. Given an instance of the negative class (i.e.,
with t = –1), the loss is 0 if s ≤ –1. This happens when the instance is off the street
and on the negative side. The further away an instance is from the correct side of the
margin, the higher the loss: it grows linearly for the hinge loss, and quadratically for
the squared hinge loss. This makes the squared hinge loss more sensitive to outliers.
However, if the dataset is clean, it tends to converge faster. By default, LinearSVC uses
the squared hinge loss, while SGDClassifier uses the hinge loss. Both classes let you
choose the loss by setting the loss hyperparameter to "hinge" or "squared_hinge".
The SVC class’s optimization algorithm finds a similar solution as minimizing the
hinge loss.

188 | Chapter 5: Support Vector Machines

https://homl.info/15
https://homl.info/16
https://homl.info/16

5 The objective function is convex, and the inequality constraints are continuously differentiable and convex
functions.

Figure 5-13. The hinge loss (left) and the squared hinge loss (right)

Next, we’ll look at yet another way to train a linear SVM classifier: solving the dual
problem.

The Dual Problem
Given a constrained optimization problem, known as the primal problem, it is possi‐
ble to express a different but closely related problem, called its dual problem. The
solution to the dual problem typically gives a lower bound to the solution of the
primal problem, but under some conditions it can have the same solution as the
primal problem. Luckily, the SVM problem happens to meet these conditions,5 so you
can choose to solve the primal problem or the dual problem; both will have the same
solution. Equation 5-3 shows the dual form of the linear SVM objective. If you are
interested in knowing how to derive the dual problem from the primal problem, see
the extra material section in this chapter’s notebook.

Equation 5-3. Dual form of the linear SVM objective

minimize
α

 1
2 ∑
i = 1

m

∑
j = 1

m
α i α j t i t j x i

⊺
x j − ∑

i = 1

m
α i

subject to α i ≥ 0 for all i = 1, 2, …,m and ∑
i = 1

m
α i t i = 0

The Dual Problem | 189

https://homl.info/colab3

6 As explained in Chapter 4, the dot product of two vectors a and b is normally noted a · b. However, in
machine learning, vectors are frequently represented as column vectors (i.e., single-column matrices), so the
dot product is achieved by computing a⊺b. To remain consistent with the rest of the book, we will use this
notation here, ignoring the fact that this technically results in a single-cell matrix rather than a scalar value.

Once you find the vector α that minimizes this equation (using a QP solver), use
Equation 5-4 to compute the w and b that minimize the primal problem. In this
equation, ns represents the number of support vectors.

Equation 5-4. From the dual solution to the primal solution

w = ∑
i = 1

m
α
i
t i x i

b = 1
ns

∑
i = 1
α
i > 0

m
t i − w⊺x i

The dual problem is faster to solve than the primal one when the number of training
instances is smaller than the number of features. More importantly, the dual problem
makes the kernel trick possible, while the primal problem does not. So what is this
kernel trick, anyway?

Kernelized SVMs
Suppose you want to apply a second-degree polynomial transformation to a two-
dimensional training set (such as the moons training set), then train a linear SVM
classifier on the transformed training set. Equation 5-5 shows the second-degree
polynomial mapping function ϕ that you want to apply.

Equation 5-5. Second-degree polynomial mapping

ϕ x = ϕ
x1

x2
=

x1
2

2 x1x2

x2
2

Notice that the transformed vector is 3D instead of 2D. Now let’s look at what
happens to a couple of 2D vectors, a and b, if we apply this second-degree polynomial
mapping and then compute the dot product6 of the transformed vectors (see Equa‐
tion 5-6).

190 | Chapter 5: Support Vector Machines

Equation 5-6. Kernel trick for a second-degree polynomial mapping

ϕ a
⊺
ϕ b =

a1
2

2 a1a2

a2
2

⊺
b1

2

2 b1b2

b2
2

= a1
2b1

2 + 2a1b1a2b2 + a2
2b2

2

= a1b1 + a2b2
2 =

a1

a2

⊺ b1

b2

2

= a⊺b
2

How about that? The dot product of the transformed vectors is equal to the square of
the dot product of the original vectors: ϕ(a)⊺ ϕ(b) = (a⊺ b)2.

Here is the key insight: if you apply the transformation ϕ to all training instances,
then the dual problem (see Equation 5-3) will contain the dot product ϕ(x(i))⊺ ϕ(x(j)).
But if ϕ is the second-degree polynomial transformation defined in Equation 5-5,

then you can replace this dot product of transformed vectors simply by x i ⊺x j
2
.

So, you don’t need to transform the training instances at all; just replace the dot
product by its square in Equation 5-3. The result will be strictly the same as if you
had gone through the trouble of transforming the training set and then fitting a linear
SVM algorithm, but this trick makes the whole process much more computationally
efficient.

The function K(a, b) = (a⊺ b)2 is a second-degree polynomial kernel. In machine
learning, a kernel is a function capable of computing the dot product ϕ(a)⊺ ϕ(b),
based only on the original vectors a and b, without having to compute (or even to
know about) the transformation ϕ. Equation 5-7 lists some of the most commonly
used kernels.

Equation 5-7. Common kernels

Linear: K a,b = a⊺b

Polynomial: K a,b = γa⊺b + r d

Gaussian RBF: K a,b = exp −γ∥ a − b ∥2

Sigmoid: K a,b = tanh γa⊺b + r

The Dual Problem | 191

Mercer’s Theorem
According to Mercer’s theorem, if a function K(a, b) respects a few mathematical
conditions called Mercer’s conditions (e.g., K must be continuous and symmetric in its
arguments so that K(a, b) = K(b, a), etc.), then there exists a function ϕ that maps a
and b into another space (possibly with much higher dimensions) such that K(a, b)
= ϕ(a)⊺ ϕ(b). You can use K as a kernel because you know ϕ exists, even if you don’t
know what ϕ is. In the case of the Gaussian RBF kernel, it can be shown that ϕ maps
each training instance to an infinite-dimensional space, so it’s a good thing you don’t
need to actually perform the mapping!

Note that some frequently used kernels (such as the sigmoid kernel) don’t respect all
of Mercer’s conditions, yet they generally work well in practice.

There is still one loose end we must tie up. Equation 5-4 shows how to go from
the dual solution to the primal solution in the case of a linear SVM classifier. But
if you apply the kernel trick, you end up with equations that include ϕ(x(i)). In fact,
w must have the same number of dimensions as ϕ(x(i)), which may be huge or even
infinite, so you can’t compute it. But how can you make predictions without knowing
w? Well, the good news is that you can plug the formula for w from Equation 5-4
into the decision function for a new instance x(n), and you get an equation with only
dot products between input vectors. This makes it possible to use the kernel trick
(Equation 5-8).

Equation 5-8. Making predictions with a kernelized SVM

ℎw, b ϕ x
n = w⊺ϕ x n + b = ∑

i = 1

m
α
i
t i ϕ x i

⊺

ϕ x n + b

= ∑
i = 1

m
α
i
t i ϕ x i

⊺
ϕ x n + b

= ∑
i = 1
α
i > 0

m
α
i
t i K x i , x n + b

Note that since α(i) ≠ 0 only for support vectors, making predictions involves comput‐
ing the dot product of the new input vector x(n) with only the support vectors, not all
the training instances. Of course, you need to use the same trick to compute the bias
term b (Equation 5-9).

192 | Chapter 5: Support Vector Machines

7 Gert Cauwenberghs and Tomaso Poggio, “Incremental and Decremental Support Vector Machine Learning”,
Proceedings of the 13th International Conference on Neural Information Processing Systems (2000): 388–394.

8 Antoine Bordes et al., “Fast Kernel Classifiers with Online and Active Learning”, Journal of Machine Learning
Research 6 (2005): 1579–1619.

Equation 5-9. Using the kernel trick to compute the bias term

b = 1
ns

∑
i = 1
α
i > 0

m
t i − w⊺ϕ x i = 1

ns
∑
i = 1
α
i > 0

m
t i − ∑

j = 1

m
α
j
t j ϕ x j

⊺

ϕ x i

= 1
ns

∑
i = 1
α
i > 0

m
t i − ∑

j = 1
α
j > 0

m
α
j
t j K x i , x j

If you are starting to get a headache, that’s perfectly normal: it’s an unfortunate side
effect of the kernel trick.

It is also possible to implement online kernelized SVMs, capable of
incremental learning, as described in the papers “Incremental and
Decremental Support Vector Machine Learning”7 and “Fast Kernel
Classifiers with Online and Active Learning”.8 These kernelized
SVMs are implemented in Matlab and C++. But for large-scale
nonlinear problems, you may want to consider using random for‐
ests (see Chapter 7) or neural networks (see Part II).

Exercises
1. What is the fundamental idea behind support vector machines?1.
2. What is a support vector?2.
3. Why is it important to scale the inputs when using SVMs?3.
4. Can an SVM classifier output a confidence score when it classifies an instance?4.

What about a probability?
5. How can you choose between LinearSVC, SVC, and SGDClassifier?5.
6. Say you’ve trained an SVM classifier with an RBF kernel, but it seems to underfit6.

the training set. Should you increase or decrease γ (gamma)? What about C?
7. What does it mean for a model to be ϵ-insensitive?7.
8. What is the point of using the kernel trick?8.

Exercises | 193

https://homl.info/17
https://homl.info/17
https://homl.info/18
https://homl.info/18

9. Train a LinearSVC on a linearly separable dataset. Then train an SVC and a9.
SGDClassifier on the same dataset. See if you can get them to produce roughly
the same model.

10. Train an SVM classifier on the wine dataset, which you can load using10.
sklearn.datasets.load_wine(). This dataset contains the chemical analyses
of 178 wine samples produced by 3 different cultivators: the goal is to train
a classification model capable of predicting the cultivator based on the wine’s
chemical analysis. Since SVM classifiers are binary classifiers, you will need to
use one-versus-all to classify all three classes. What accuracy can you reach?

11. Train and fine-tune an SVM regressor on the California housing dataset. You can11.
use the original dataset rather than the tweaked version we used in Chapter 2,
which you can load using sklearn.datasets.fetch_california_housing().
The targets represent hundreds of thousands of dollars. Since there are over
20,000 instances, SVMs can be slow, so for hyperparameter tuning you should
use far fewer instances (e.g., 2,000) to test many more hyperparameter combina‐
tions. What is your best model’s RMSE?

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

194 | Chapter 5: Support Vector Machines

https://homl.info/colab3

CHAPTER 6

Decision Trees

Decision trees are versatile machine learning algorithms that can perform both clas‐
sification and regression tasks, and even multioutput tasks. They are powerful algo‐
rithms, capable of fitting complex datasets. For example, in Chapter 2 you trained a
DecisionTreeRegressor model on the California housing dataset, fitting it perfectly
(actually, overfitting it).

Decision trees are also the fundamental components of random forests (see Chap‐
ter 7), which are among the most powerful machine learning algorithms available
today.

In this chapter we will start by discussing how to train, visualize, and make predic‐
tions with decision trees. Then we will go through the CART training algorithm
used by Scikit-Learn, and we will explore how to regularize trees and use them for
regression tasks. Finally, we will discuss some of the limitations of decision trees.

Training and Visualizing a Decision Tree
To understand decision trees, let’s build one and take a look at how it makes predic‐
tions. The following code trains a DecisionTreeClassifier on the iris dataset (see
Chapter 4):

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load_iris(as_frame=True)
X_iris = iris.data[["petal length (cm)", "petal width (cm)"]].values
y_iris = iris.target

tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf.fit(X_iris, y_iris)

195

You can visualize the trained decision tree by first using the export_graphviz()
function to output a graph definition file called iris_tree.dot:

from sklearn.tree import export_graphviz

export_graphviz(
 tree_clf,
 out_file="iris_tree.dot",
 feature_names=["petal length (cm)", "petal width (cm)"],
 class_names=iris.target_names,
 rounded=True,
 filled=True
)

Then you can use graphviz.Source.from_file() to load and display the file in a
Jupyter notebook:

from graphviz import Source

Source.from_file("iris_tree.dot")

Graphviz is an open source graph visualization software package. It also includes a
dot command-line tool to convert .dot files to a variety of formats, such as PDF or
PNG.

Your first decision tree looks like Figure 6-1.

Figure 6-1. Iris decision tree

196 | Chapter 6: Decision Trees

https://graphviz.org

Making Predictions
Let’s see how the tree represented in Figure 6-1 makes predictions. Suppose you find
an iris flower and you want to classify it based on its petals. You start at the root node
(depth 0, at the top): this node asks whether the flower’s petal length is smaller than
2.45 cm. If it is, then you move down to the root’s left child node (depth 1, left). In
this case, it is a leaf node (i.e., it does not have any child nodes), so it does not ask
any questions: simply look at the predicted class for that node, and the decision tree
predicts that your flower is an Iris setosa (class=setosa).

Now suppose you find another flower, and this time the petal length is greater than
2.45 cm. You again start at the root but now move down to its right child node (depth
1, right). This is not a leaf node, it’s a split node, so it asks another question: is the
petal width smaller than 1.75 cm? If it is, then your flower is most likely an Iris
versicolor (depth 2, left). If not, it is likely an Iris virginica (depth 2, right). It’s really
that simple.

One of the many qualities of decision trees is that they require very
little data preparation. In fact, they don’t require feature scaling or
centering at all.

A node’s samples attribute counts how many training instances it applies to. For
example, 100 training instances have a petal length greater than 2.45 cm (depth 1,
right), and of those 100, 54 have a petal width smaller than 1.75 cm (depth 2, left). A
node’s value attribute tells you how many training instances of each class this node
applies to: for example, the bottom-right node applies to 0 Iris setosa, 1 Iris versicolor,
and 45 Iris virginica. Finally, a node’s gini attribute measures its Gini impurity: a node
is “pure” (gini=0) if all training instances it applies to belong to the same class. For
example, since the depth-1 left node applies only to Iris setosa training instances, it
is pure and its Gini impurity is 0. Equation 6-1 shows how the training algorithm
computes the Gini impurity Gi of the ith node. The depth-2 left node has a Gini
impurity equal to 1 – (0/54)2 – (49/54)2 – (5/54)2 ≈ 0.168.

Equation 6-1. Gini impurity

Gi = 1 − ∑
k = 1

n
pi, k

2

Making Predictions | 197

In this equation:

• Gi is the Gini impurity of the ith node.•
• pi,k is the ratio of class k instances among the training instances in the ith node.•

Scikit-Learn uses the CART algorithm, which produces only binary
trees, meaning trees where split nodes always have exactly two
children (i.e., questions only have yes/no answers). However, other
algorithms, such as ID3, can produce decision trees with nodes that
have more than two children.

Figure 6-2 shows this decision tree’s decision boundaries. The thick vertical line
represents the decision boundary of the root node (depth 0): petal length = 2.45
cm. Since the lefthand area is pure (only Iris setosa), it cannot be split any further.
However, the righthand area is impure, so the depth-1 right node splits it at petal
width = 1.75 cm (represented by the dashed line). Since max_depth was set to 2, the
decision tree stops right there. If you set max_depth to 3, then the two depth-2 nodes
would each add another decision boundary (represented by the two vertical dotted
lines).

Figure 6-2. Decision tree decision boundaries

The tree structure, including all the information shown in Fig‐
ure 6-1, is available via the classifier’s tree_ attribute. Type
help(tree_clf.tree_) for details, and see the this chapter’s note‐
book for an example.

198 | Chapter 6: Decision Trees

https://homl.info/colab3
https://homl.info/colab3

Model Interpretation: White Box Versus Black Box
Decision trees are intuitive, and their decisions are easy to interpret. Such models are
often called white box models. In contrast, as you will see, random forests and neural
networks are generally considered black box models. They make great predictions,
and you can easily check the calculations that they performed to make these predic‐
tions; nevertheless, it is usually hard to explain in simple terms why the predictions
were made. For example, if a neural network says that a particular person appears in
a picture, it is hard to know what contributed to this prediction: Did the model recog‐
nize that person’s eyes? Their mouth? Their nose? Their shoes? Or even the couch
that they were sitting on? Conversely, decision trees provide nice, simple classification
rules that can even be applied manually if need be (e.g., for flower classification). The
field of interpretable ML aims at creating ML systems that can explain their decisions
in a way humans can understand. This is important in many domains—for example,
to ensure the system does not make unfair decisions.

Estimating Class Probabilities
A decision tree can also estimate the probability that an instance belongs to a partic‐
ular class k. First it traverses the tree to find the leaf node for this instance, and
then it returns the ratio of training instances of class k in this node. For example,
suppose you have found a flower whose petals are 5 cm long and 1.5 cm wide. The
corresponding leaf node is the depth-2 left node, so the decision tree outputs the
following probabilities: 0% for Iris setosa (0/54), 90.7% for Iris versicolor (49/54), and
9.3% for Iris virginica (5/54). And if you ask it to predict the class, it outputs Iris
versicolor (class 1) because it has the highest probability. Let’s check this:

>>> tree_clf.predict_proba([[5, 1.5]]).round(3)
array([[0. , 0.907, 0.093]])
>>> tree_clf.predict([[5, 1.5]])
array([1])

Perfect! Notice that the estimated probabilities would be identical anywhere else in
the bottom-right rectangle of Figure 6-2—for example, if the petals were 6 cm long
and 1.5 cm wide (even though it seems obvious that it would most likely be an Iris
virginica in this case).

The CART Training Algorithm
Scikit-Learn uses the Classification and Regression Tree (CART) algorithm to train
decision trees (also called “growing” trees). The algorithm works by first splitting
the training set into two subsets using a single feature k and a threshold tk (e.g.,
“petal length ≤ 2.45 cm”). How does it choose k and tk? It searches for the pair (k, tk)

Estimating Class Probabilities | 199

1 P is the set of problems that can be solved in polynomial time (i.e., a polynomial of the dataset size). NP is
the set of problems whose solutions can be verified in polynomial time. An NP-hard problem is a problem
that can be reduced to a known NP-hard problem in polynomial time. An NP-complete problem is both NP
and NP-hard. A major open mathematical question is whether or not P = NP. If P ≠ NP (which seems likely),
then no polynomial algorithm will ever be found for any NP-complete problem (except perhaps one day on a
quantum computer).

that produces the purest subsets, weighted by their size. Equation 6-2 gives the cost
function that the algorithm tries to minimize.

Equation 6-2. CART cost function for classification

J k, tk =
mleft
m
Gleft +

mright
m

Gright

where
Gleft/right measures the impurity of the left/right subset
mleft/right is the number of instances in the left/right subset

Once the CART algorithm has successfully split the training set in two, it splits
the subsets using the same logic, then the sub-subsets, and so on, recursively. It
stops recursing once it reaches the maximum depth (defined by the max_depth
hyperparameter), or if it cannot find a split that will reduce impurity. A few
other hyperparameters (described in a moment) control additional stopping con‐
ditions: min_samples_split, min_samples_leaf, min_weight_fraction_leaf, and
max_leaf_nodes.

As you can see, the CART algorithm is a greedy algorithm: it greed‐
ily searches for an optimum split at the top level, then repeats
the process at each subsequent level. It does not check whether
or not the split will lead to the lowest possible impurity several
levels down. A greedy algorithm often produces a solution that’s
reasonably good but not guaranteed to be optimal.
Unfortunately, finding the optimal tree is known to be an NP-
complete problem.1 It requires O(exp(m)) time, making the prob‐
lem intractable even for small training sets. This is why we must
settle for a “reasonably good” solution when training decision trees.

Computational Complexity
Making predictions requires traversing the decision tree from the root to a leaf.
Decision trees generally are approximately balanced, so traversing the decision tree
requires going through roughly O(log2(m)) nodes, where log2(m) is the binary loga‐
rithm of m, equal to log(m) / log(2). Since each node only requires checking the

200 | Chapter 6: Decision Trees

2 See Sebastian Raschka’s interesting analysis for more details.

value of one feature, the overall prediction complexity is O(log2(m)), independent of
the number of features. So predictions are very fast, even when dealing with large
training sets.

The training algorithm compares all features (or less if max_features is set) on all
samples at each node. Comparing all features on all samples at each node results in a
training complexity of O(n × m log2(m)).

Gini Impurity or Entropy?
By default, the DecisionTreeClassifier class uses the Gini impurity measure, but
you can select the entropy impurity measure instead by setting the criterion hyper‐
parameter to "entropy". The concept of entropy originated in thermodynamics as
a measure of molecular disorder: entropy approaches zero when molecules are still
and well ordered. Entropy later spread to a wide variety of domains, including in
Shannon’s information theory, where it measures the average information content of
a message, as we saw in Chapter 4. Entropy is zero when all messages are identical. In
machine learning, entropy is frequently used as an impurity measure: a set’s entropy
is zero when it contains instances of only one class. Equation 6-3 shows the definition
of the entropy of the ith node. For example, the depth-2 left node in Figure 6-1 has an
entropy equal to –(49/54) log2 (49/54) – (5/54) log2 (5/54) ≈ 0.445.

Equation 6-3. Entropy

H i = − ∑
k = 1
pi, k ≠ 0

n
pi, k log2 pi, k

So, should you use Gini impurity or entropy? The truth is, most of the time it does
not make a big difference: they lead to similar trees. Gini impurity is slightly faster to
compute, so it is a good default. However, when they differ, Gini impurity tends to
isolate the most frequent class in its own branch of the tree, while entropy tends to
produce slightly more balanced trees.2

Regularization Hyperparameters
Decision trees make very few assumptions about the training data (as opposed to lin‐
ear models, which assume that the data is linear, for example). If left unconstrained,
the tree structure will adapt itself to the training data, fitting it very closely—indeed,
most likely overfitting it. Such a model is often called a nonparametric model, not

Gini Impurity or Entropy? | 201

https://homl.info/19

because it does not have any parameters (it often has a lot) but because the number
of parameters is not determined prior to training, so the model structure is free to
stick closely to the data. In contrast, a parametric model, such as a linear model, has
a predetermined number of parameters, so its degree of freedom is limited, reducing
the risk of overfitting (but increasing the risk of underfitting).

To avoid overfitting the training data, you need to restrict the decision tree’s freedom
during training. As you know by now, this is called regularization. The regulariza‐
tion hyperparameters depend on the algorithm used, but generally you can at least
restrict the maximum depth of the decision tree. In Scikit-Learn, this is controlled
by the max_depth hyperparameter. The default value is None, which means unlimited.
Reducing max_depth will regularize the model and thus reduce the risk of overfitting.

The DecisionTreeClassifier class has a few other parameters that similarly restrict
the shape of the decision tree:

max_features

Maximum number of features that are evaluated for splitting at each node

max_leaf_nodes

Maximum number of leaf nodes

min_samples_split

Minimum number of samples a node must have before it can be split

min_samples_leaf

Minimum number of samples a leaf node must have to be created

min_weight_fraction_leaf

Same as min_samples_leaf but expressed as a fraction of the total number of
weighted instances

Increasing min_* hyperparameters or reducing max_* hyperparameters will regularize
the model.

Other algorithms work by first training the decision tree without
restrictions, then pruning (deleting) unnecessary nodes. A node
whose children are all leaf nodes is considered unnecessary if
the purity improvement it provides is not statistically significant.
Standard statistical tests, such as the χ2 test (chi-squared test), are
used to estimate the probability that the improvement is purely
the result of chance (which is called the null hypothesis). If this
probability, called the p-value, is higher than a given threshold
(typically 5%, controlled by a hyperparameter), then the node is
considered unnecessary and its children are deleted. The pruning
continues until all unnecessary nodes have been pruned.

202 | Chapter 6: Decision Trees

Let’s test regularization on the moons dataset, introduced in Chapter 5. We’ll train
one decision tree without regularization, and another with min_samples_leaf=5.
Here’s the code; Figure 6-3 shows the decision boundaries of each tree:

from sklearn.datasets import make_moons

X_moons, y_moons = make_moons(n_samples=150, noise=0.2, random_state=42)

tree_clf1 = DecisionTreeClassifier(random_state=42)
tree_clf2 = DecisionTreeClassifier(min_samples_leaf=5, random_state=42)
tree_clf1.fit(X_moons, y_moons)
tree_clf2.fit(X_moons, y_moons)

Figure 6-3. Decision boundaries of an unregularized tree (left) and a regularized tree
(right)

The unregularized model on the left is clearly overfitting, and the regularized model
on the right will probably generalize better. We can verify this by evaluating both
trees on a test set generated using a different random seed:

>>> X_moons_test, y_moons_test = make_moons(n_samples=1000, noise=0.2,
... random_state=43)
...
>>> tree_clf1.score(X_moons_test, y_moons_test)
0.898
>>> tree_clf2.score(X_moons_test, y_moons_test)
0.92

Indeed, the second tree has a better accuracy on the test set.

Regularization Hyperparameters | 203

Regression
Decision trees are also capable of performing regression tasks. Let’s build a regression
tree using Scikit-Learn’s DecisionTreeRegressor class, training it on a noisy quad‐
ratic dataset with max_depth=2:

import numpy as np
from sklearn.tree import DecisionTreeRegressor

np.random.seed(42)
X_quad = np.random.rand(200, 1) - 0.5 # a single random input feature
y_quad = X_quad ** 2 + 0.025 * np.random.randn(200, 1)

tree_reg = DecisionTreeRegressor(max_depth=2, random_state=42)
tree_reg.fit(X_quad, y_quad)

The resulting tree is represented in Figure 6-4.

Figure 6-4. A decision tree for regression

This tree looks very similar to the classification tree you built earlier. The main
difference is that instead of predicting a class in each node, it predicts a value. For
example, suppose you want to make a prediction for a new instance with x1 = 0.2. The
root node asks whether x1 ≤ 0.197. Since it is not, the algorithm goes to the right child
node, which asks whether x1 ≤ 0.772. Since it is, the algorithm goes to the left child
node. This is a leaf node, and it predicts value=0.111. This prediction is the average
target value of the 110 training instances associated with this leaf node, and it results
in a mean squared error equal to 0.015 over these 110 instances.

204 | Chapter 6: Decision Trees

This model’s predictions are represented on the left in Figure 6-5. If you set
max_depth=3, you get the predictions represented on the right. Notice how the
predicted value for each region is always the average target value of the instances
in that region. The algorithm splits each region in a way that makes most training
instances as close as possible to that predicted value.

Figure 6-5. Predictions of two decision tree regression models

The CART algorithm works as described earlier, except that instead of trying to split
the training set in a way that minimizes impurity, it now tries to split the training
set in a way that minimizes the MSE. Equation 6-4 shows the cost function that the
algorithm tries to minimize.

Equation 6-4. CART cost function for regression

J k, tk =
mleft
m

MSEleft +
mright
m

MSEright where
MSEnode =

∑i ∈ node ynode − y i 2

mnode

ynode =
∑i ∈ nodey

i

mnode

Just like for classification tasks, decision trees are prone to overfitting when dealing
with regression tasks. Without any regularization (i.e., using the default hyperpara‐
meters), you get the predictions on the left in Figure 6-6. These predictions are
obviously overfitting the training set very badly. Just setting min_samples_leaf=10
results in a much more reasonable model, represented on the right in Figure 6-6.

Regression | 205

Figure 6-6. Predictions of an unregularized regression tree (left) and a regularized tree
(right)

Sensitivity to Axis Orientation
Hopefully by now you are convinced that decision trees have a lot going for them:
they are relatively easy to understand and interpret, simple to use, versatile, and
powerful. However, they do have a few limitations. First, as you may have noticed,
decision trees love orthogonal decision boundaries (all splits are perpendicular to an
axis), which makes them sensitive to the data’s orientation. For example, Figure 6-7
shows a simple linearly separable dataset: on the left, a decision tree can split it easily,
while on the right, after the dataset is rotated by 45°, the decision boundary looks
unnecessarily convoluted. Although both decision trees fit the training set perfectly, it
is very likely that the model on the right will not generalize well.

Figure 6-7. Sensitivity to training set rotation

One way to limit this problem is to scale the data, then apply a principal component
analysis transformation. We will look at PCA in detail in Chapter 8, but for now

206 | Chapter 6: Decision Trees

you only need to know that it rotates the data in a way that reduces the correlation
between the features, which often (not always) makes things easier for trees.

Let’s create a small pipeline that scales the data and rotates it using PCA, then train a
DecisionTreeClassifier on that data. Figure 6-8 shows the decision boundaries of
that tree: as you can see, the rotation makes it possible to fit the dataset pretty well
using only one feature, z1, which is a linear function of the original petal length and
width. Here’s the code:

from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

pca_pipeline = make_pipeline(StandardScaler(), PCA())
X_iris_rotated = pca_pipeline.fit_transform(X_iris)
tree_clf_pca = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf_pca.fit(X_iris_rotated, y_iris)

Figure 6-8. A tree’s decision boundaries on the scaled and PCA-rotated iris dataset

Decision Trees Have a High Variance
More generally, the main issue with decision trees is that they have quite a high
variance: small changes to the hyperparameters or to the data may produce very
different models. In fact, since the training algorithm used by Scikit-Learn is stochas‐
tic—it randomly selects the set of features to evaluate at each node—even retraining
the same decision tree on the exact same data may produce a very different model,
such as the one represented in Figure 6-9 (unless you set the random_state hyper‐
parameter). As you can see, it looks very different from the previous decision tree
(Figure 6-2).

Decision Trees Have a High Variance | 207

Figure 6-9. Retraining the same model on the same data may produce a very different
model

Luckily, by averaging predictions over many trees, it’s possible to reduce variance
significantly. Such an ensemble of trees is called a random forest, and it’s one of the
most powerful types of models available today, as you will see in the next chapter.

Exercises
1. What is the approximate depth of a decision tree trained (without restrictions)1.

on a training set with one million instances?
2. Is a node’s Gini impurity generally lower or higher than its parent’s? Is it generally2.

lower/higher, or always lower/higher?
3. If a decision tree is overfitting the training set, is it a good idea to try decreasing3.

max_depth?
4. If a decision tree is underfitting the training set, is it a good idea to try scaling the4.

input features?
5. If it takes one hour to train a decision tree on a training set containing one5.

million instances, roughly how much time will it take to train another decision
tree on a training set containing ten million instances? Hint: consider the CART
algorithm’s computational complexity.

6. If it takes one hour to train a decision tree on a given training set, roughly how6.
much time will it take if you double the number of features?

7. Train and fine-tune a decision tree for the moons dataset by following these7.
steps:

208 | Chapter 6: Decision Trees

a. Use make_moons(n_samples=10000, noise=0.4) to generate a moons dataset.a.
b. Use train_test_split() to split the dataset into a training set and a test set.b.
c. Use grid search with cross-validation (with the help of the GridSearchCVc.

class) to find good hyperparameter values for a DecisionTreeClassifier.
Hint: try various values for max_leaf_nodes.

d. Train it on the full training set using these hyperparameters, and measured.
your model’s performance on the test set. You should get roughly 85% to 87%
accuracy.

8. Grow a forest by following these steps:8.
a. Continuing the previous exercise, generate 1,000 subsets of the training set,a.

each containing 100 instances selected randomly. Hint: you can use Scikit-
Learn’s ShuffleSplit class for this.

b. Train one decision tree on each subset, using the best hyperparameter valuesb.
found in the previous exercise. Evaluate these 1,000 decision trees on the test
set. Since they were trained on smaller sets, these decision trees will likely
perform worse than the first decision tree, achieving only about 80% accuracy.

c. Now comes the magic. For each test set instance, generate the predictions ofc.
the 1,000 decision trees, and keep only the most frequent prediction (you can
use SciPy’s mode() function for this). This approach gives you majority-vote
predictions over the test set.

d. Evaluate these predictions on the test set: you should obtain a slightly higherd.
accuracy than your first model (about 0.5 to 1.5% higher). Congratulations,
you have trained a random forest classifier!

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

Exercises | 209

https://homl.info/colab3

CHAPTER 7

Ensemble Learning and Random Forests

Suppose you pose a complex question to thousands of random people, then aggregate
their answers. In many cases you will find that this aggregated answer is better than
an expert’s answer. This is called the wisdom of the crowd. Similarly, if you aggregate
the predictions of a group of predictors (such as classifiers or regressors), you will
often get better predictions than with the best individual predictor. A group of
predictors is called an ensemble; thus, this technique is called ensemble learning, and
an ensemble learning algorithm is called an ensemble method.

As an example of an ensemble method, you can train a group of decision tree
classifiers, each on a different random subset of the training set. You can then obtain
the predictions of all the individual trees, and the class that gets the most votes is
the ensemble’s prediction (see the last exercise in Chapter 6). Such an ensemble of
decision trees is called a random forest, and despite its simplicity, this is one of the
most powerful machine learning algorithms available today.

As discussed in Chapter 2, you will often use ensemble methods near the end of
a project, once you have already built a few good predictors, to combine them
into an even better predictor. In fact, the winning solutions in machine learning
competitions often involve several ensemble methods—most famously in the Netflix
Prize competition.

In this chapter we will examine the most popular ensemble methods, including
voting classifiers, bagging and pasting ensembles, random forests, and boosting, and
stacking ensembles.

211

https://en.wikipedia.org/wiki/Netflix_Prize
https://en.wikipedia.org/wiki/Netflix_Prize

Voting Classifiers
Suppose you have trained a few classifiers, each one achieving about 80% accuracy.
You may have a logistic regression classifier, an SVM classifier, a random forest
classifier, a k-nearest neighbors classifier, and perhaps a few more (see Figure 7-1).

Figure 7-1. Training diverse classifiers

A very simple way to create an even better classifier is to aggregate the predictions
of each classifier: the class that gets the most votes is the ensemble’s prediction. This
majority-vote classifier is called a hard voting classifier (see Figure 7-2).

Figure 7-2. Hard voting classifier predictions

212 | Chapter 7: Ensemble Learning and Random Forests

Somewhat surprisingly, this voting classifier often achieves a higher accuracy than
the best classifier in the ensemble. In fact, even if each classifier is a weak learner
(meaning it does only slightly better than random guessing), the ensemble can still be
a strong learner (achieving high accuracy), provided there are a sufficient number of
weak learners in the ensemble and they are sufficiently diverse.

How is this possible? The following analogy can help shed some light on this mystery.
Suppose you have a slightly biased coin that has a 51% chance of coming up heads
and 49% chance of coming up tails. If you toss it 1,000 times, you will generally get
more or less 510 heads and 490 tails, and hence a majority of heads. If you do the
math, you will find that the probability of obtaining a majority of heads after 1,000
tosses is close to 75%. The more you toss the coin, the higher the probability (e.g.,
with 10,000 tosses, the probability climbs over 97%). This is due to the law of large
numbers: as you keep tossing the coin, the ratio of heads gets closer and closer to
the probability of heads (51%). Figure 7-3 shows 10 series of biased coin tosses. You
can see that as the number of tosses increases, the ratio of heads approaches 51%.
Eventually all 10 series end up so close to 51% that they are consistently above 50%.

Figure 7-3. The law of large numbers

Similarly, suppose you build an ensemble containing 1,000 classifiers that are indi‐
vidually correct only 51% of the time (barely better than random guessing). If you
predict the majority voted class, you can hope for up to 75% accuracy! However, this
is only true if all classifiers are perfectly independent, making uncorrelated errors,
which is clearly not the case because they are trained on the same data. They are likely
to make the same types of errors, so there will be many majority votes for the wrong
class, reducing the ensemble’s accuracy.

Voting Classifiers | 213

Ensemble methods work best when the predictors are as independ‐
ent from one another as possible. One way to get diverse classifiers
is to train them using very different algorithms. This increases the
chance that they will make very different types of errors, improving
the ensemble’s accuracy.

Scikit-Learn provides a VotingClassifier class that’s quite easy to use: just give
it a list of name/predictor pairs, and use it like a normal classifier. Let’s try it on
the moons dataset (introduced in Chapter 5). We will load and split the moons
dataset into a training set and a test set, then we’ll create and train a voting classifier
composed of three diverse classifiers:

from sklearn.datasets import make_moons
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

X, y = make_moons(n_samples=500, noise=0.30, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

voting_clf = VotingClassifier(
 estimators=[
 ('lr', LogisticRegression(random_state=42)),
 ('rf', RandomForestClassifier(random_state=42)),
 ('svc', SVC(random_state=42))
]
)
voting_clf.fit(X_train, y_train)

When you fit a VotingClassifier, it clones every estimator and fits the clones. The
original estimators are available via the estimators attribute, while the fitted clones
are available via the estimators_ attribute. If you prefer a dict rather than a list, you
can use named_estimators or named_estimators_ instead. To begin, let’s look at each
fitted classifier’s accuracy on the test set:

>>> for name, clf in voting_clf.named_estimators_.items():
... print(name, "=", clf.score(X_test, y_test))
...
lr = 0.864
rf = 0.896
svc = 0.896

When you call the voting classifier’s predict() method, it performs hard voting. For
example, the voting classifier predicts class 1 for the first instance of the test set,
because two out of three classifiers predict that class:

214 | Chapter 7: Ensemble Learning and Random Forests

1 Imagine picking a card randomly from a deck of cards, writing it down, then placing it back in the deck
before picking the next card: the same card could be sampled multiple times.

2 Leo Breiman, “Bagging Predictors”, Machine Learning 24, no. 2 (1996): 123–140.
3 In statistics, resampling with replacement is called bootstrapping.
4 Leo Breiman, “Pasting Small Votes for Classification in Large Databases and On-Line”, Machine Learning 36,

no. 1–2 (1999): 85–103.

>>> voting_clf.predict(X_test[:1])
array([1])
>>> [clf.predict(X_test[:1]) for clf in voting_clf.estimators_]
[array([1]), array([1]), array([0])]

Now let’s look at the performance of the voting classifier on the test set:

>>> voting_clf.score(X_test, y_test)
0.912

There you have it! The voting classifier outperforms all the individual classifiers.

If all classifiers are able to estimate class probabilities (i.e., if they all have a
predict_proba() method), then you can tell Scikit-Learn to predict the class with
the highest class probability, averaged over all the individual classifiers. This is called
soft voting. It often achieves higher performance than hard voting because it gives
more weight to highly confident votes. All you need to do is set the voting classi‐
fier’s voting hyperparameter to "soft", and ensure that all classifiers can estimate
class probabilities. This is not the case for the SVC class by default, so you need
to set its probability hyperparameter to True (this will make the SVC class use
cross-validation to estimate class probabilities, slowing down training, and it will add
a predict_proba() method). Let’s try that:

>>> voting_clf.voting = "soft"
>>> voting_clf.named_estimators["svc"].probability = True
>>> voting_clf.fit(X_train, y_train)
>>> voting_clf.score(X_test, y_test)
0.92

We reach 92% accuracy simply by using soft voting—not bad!

Bagging and Pasting
One way to get a diverse set of classifiers is to use very different training algorithms,
as just discussed. Another approach is to use the same training algorithm for every
predictor but train them on different random subsets of the training set. When
sampling is performed with replacement,1 this method is called bagging2 (short for
bootstrap aggregating3). When sampling is performed without replacement, it is called
pasting.4

Bagging and Pasting | 215

https://homl.info/20
https://homl.info/21

5 Bias and variance were introduced in Chapter 4.

In other words, both bagging and pasting allow training instances to be sampled
several times across multiple predictors, but only bagging allows training instances to
be sampled several times for the same predictor. This sampling and training process
is represented in Figure 7-4.

Figure 7-4. Bagging and pasting involve training several predictors on different random
samples of the training set

Once all predictors are trained, the ensemble can make a prediction for a new
instance by simply aggregating the predictions of all predictors. The aggregation
function is typically the statistical mode for classification (i.e., the most frequent
prediction, just like with a hard voting classifier), or the average for regression. Each
individual predictor has a higher bias than if it were trained on the original training
set, but aggregation reduces both bias and variance.5 Generally, the net result is that
the ensemble has a similar bias but a lower variance than a single predictor trained on
the original training set.

As you can see in Figure 7-4, predictors can all be trained in parallel, via different
CPU cores or even different servers. Similarly, predictions can be made in parallel.
This is one of the reasons bagging and pasting are such popular methods: they scale
very well.

216 | Chapter 7: Ensemble Learning and Random Forests

6 max_samples can alternatively be set to a float between 0.0 and 1.0, in which case the max number of sampled
instances is equal to the size of the training set times max_samples.

Bagging and Pasting in Scikit-Learn
Scikit-Learn offers a simple API for both bagging and pasting: BaggingClassifier
class (or BaggingRegressor for regression). The following code trains an ensemble
of 500 decision tree classifiers:6 each is trained on 100 training instances randomly
sampled from the training set with replacement (this is an example of bagging, but
if you want to use pasting instead, just set bootstrap=False). The n_jobs parameter
tells Scikit-Learn the number of CPU cores to use for training and predictions, and
–1 tells Scikit-Learn to use all available cores:

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier

bag_clf = BaggingClassifier(DecisionTreeClassifier(), n_estimators=500,
 max_samples=100, n_jobs=-1, random_state=42)
bag_clf.fit(X_train, y_train)

A BaggingClassifier automatically performs soft voting instead
of hard voting if the base classifier can estimate class probabilities
(i.e., if it has a predict_proba() method), which is the case with
decision tree classifiers.

Figure 7-5 compares the decision boundary of a single decision tree with the decision
boundary of a bagging ensemble of 500 trees (from the preceding code), both trained
on the moons dataset. As you can see, the ensemble’s predictions will likely generalize
much better than the single decision tree’s predictions: the ensemble has a compara‐
ble bias but a smaller variance (it makes roughly the same number of errors on the
training set, but the decision boundary is less irregular).

Bagging introduces a bit more diversity in the subsets that each predictor is trained
on, so bagging ends up with a slightly higher bias than pasting; but the extra diversity
also means that the predictors end up being less correlated, so the ensemble’s variance
is reduced. Overall, bagging often results in better models, which explains why
it’s generally preferred. But if you have spare time and CPU power, you can use
cross-validation to evaluate both bagging and pasting and select the one that works
best.

Bagging and Pasting | 217

7 As m grows, this ratio approaches 1 – exp(–1) ≈ 63%.

Figure 7-5. A single decision tree (left) versus a bagging ensemble of 500 trees (right)

Out-of-Bag Evaluation
With bagging, some training instances may be sampled several times for any given
predictor, while others may not be sampled at all. By default a BaggingClassifier
samples m training instances with replacement (bootstrap=True), where m is the
size of the training set. With this process, it can be shown mathematically that only
about 63% of the training instances are sampled on average for each predictor.7 The
remaining 37% of the training instances that are not sampled are called out-of-bag
(OOB) instances. Note that they are not the same 37% for all predictors.

A bagging ensemble can be evaluated using OOB instances, without the need for
a separate validation set: indeed, if there are enough estimators, then each instance
in the training set will likely be an OOB instance of several estimators, so these
estimators can be used to make a fair ensemble prediction for that instance. Once
you have a prediction for each instance, you can compute the ensemble’s prediction
accuracy (or any other metric).

In Scikit-Learn, you can set oob_score=True when creating a BaggingClassifier
to request an automatic OOB evaluation after training. The following code demon‐
strates this. The resulting evaluation score is available in the oob_score_ attribute:

>>> bag_clf = BaggingClassifier(DecisionTreeClassifier(), n_estimators=500,
... oob_score=True, n_jobs=-1, random_state=42)
...
>>> bag_clf.fit(X_train, y_train)
>>> bag_clf.oob_score_
0.896

218 | Chapter 7: Ensemble Learning and Random Forests

8 Gilles Louppe and Pierre Geurts, “Ensembles on Random Patches”, Lecture Notes in Computer Science 7523
(2012): 346–361.

9 Tin Kam Ho, “The Random Subspace Method for Constructing Decision Forests”, IEEE Transactions on
Pattern Analysis and Machine Intelligence 20, no. 8 (1998): 832–844.

According to this OOB evaluation, this BaggingClassifier is likely to achieve about
89.6% accuracy on the test set. Let’s verify this:

>>> from sklearn.metrics import accuracy_score
>>> y_pred = bag_clf.predict(X_test)
>>> accuracy_score(y_test, y_pred)
0.92

We get 92% accuracy on the test. The OOB evaluation was a bit too pessimistic, just
over 2% too low.

The OOB decision function for each training instance is also available through the
oob_decision_function_ attribute. Since the base estimator has a predict_proba()
method, the decision function returns the class probabilities for each training
instance. For example, the OOB evaluation estimates that the first training instance
has a 67.6% probability of belonging to the positive class and a 32.4% probability of
belonging to the negative class:

>>> bag_clf.oob_decision_function_[:3] # probas for the first 3 instances
array([[0.32352941, 0.67647059],
 [0.3375 , 0.6625],
 [1. , 0.]])

Random Patches and Random Subspaces
The BaggingClassifier class supports sampling the features as well. Sampling is
controlled by two hyperparameters: max_features and bootstrap_features. They
work the same way as max_samples and bootstrap, but for feature sampling instead
of instance sampling. Thus, each predictor will be trained on a random subset of the
input features.

This technique is particularly useful when you are dealing with high-dimensional
inputs (such as images), as it can considerably speed up training. Sampling both
training instances and features is called the random patches method.8 Keeping all
training instances (by setting bootstrap=False and max_samples=1.0) but sampling
features (by setting bootstrap_features to True and/or max_features to a value
smaller than 1.0) is called the random subspaces method.9

Sampling features results in even more predictor diversity, trading a bit more bias for
a lower variance.

Bagging and Pasting | 219

https://homl.info/22
https://homl.info/23

10 Tin Kam Ho, “Random Decision Forests”, Proceedings of the Third International Conference on Document
Analysis and Recognition 1 (1995): 278.

11 The BaggingClassifier class remains useful if you want a bag of something other than decision trees.

Random Forests
As we have discussed, a random forest10 is an ensemble of decision trees, generally
trained via the bagging method (or sometimes pasting), typically with max_samples
set to the size of the training set. Instead of building a BaggingClassifier and
passing it a DecisionTreeClassifier, you can use the RandomForestClassifier
class, which is more convenient and optimized for decision trees11 (similarly, there
is a RandomForestRegressor class for regression tasks). The following code trains a
random forest classifier with 500 trees, each limited to maximum 16 leaf nodes, using
all available CPU cores:

from sklearn.ensemble import RandomForestClassifier

rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16,
 n_jobs=-1, random_state=42)
rnd_clf.fit(X_train, y_train)

y_pred_rf = rnd_clf.predict(X_test)

With a few exceptions, a RandomForestClassifier has all the hyperparameters of
a DecisionTreeClassifier (to control how trees are grown), plus all the hyperpara‐
meters of a BaggingClassifier to control the ensemble itself.

The random forest algorithm introduces extra randomness when growing trees;
instead of searching for the very best feature when splitting a node (see Chapter 6),
it searches for the best feature among a random subset of features. By default, it
samples n features (where n is the total number of features). The algorithm results
in greater tree diversity, which (again) trades a higher bias for a lower variance,
generally yielding an overall better model. So, the following BaggingClassifier is
equivalent to the previous RandomForestClassifier:

bag_clf = BaggingClassifier(
 DecisionTreeClassifier(max_features="sqrt", max_leaf_nodes=16),
 n_estimators=500, n_jobs=-1, random_state=42)

Extra-Trees
When you are growing a tree in a random forest, at each node only a random subset
of the features is considered for splitting (as discussed earlier). It is possible to make
trees even more random by also using random thresholds for each feature rather than
searching for the best possible thresholds (like regular decision trees do). For this,
simply set splitter="random" when creating a DecisionTreeClassifier.

220 | Chapter 7: Ensemble Learning and Random Forests

https://homl.info/24

12 Pierre Geurts et al., “Extremely Randomized Trees”, Machine Learning 63, no. 1 (2006): 3–42.

A forest of such extremely random trees is called an extremely randomized trees12 (or
extra-trees for short) ensemble. Once again, this technique trades more bias for a
lower variance. It also makes extra-trees classifiers much faster to train than regular
random forests, because finding the best possible threshold for each feature at every
node is one of the most time-consuming tasks of growing a tree.

You can create an extra-trees classifier using Scikit-Learn’s ExtraTreesClassifier
class. Its API is identical to the RandomForestClassifier class, except bootstrap
defaults to False. Similarly, the ExtraTreesRegressor class has the same API as the
RandomForestRegressor class, except bootstrap defaults to False.

It is hard to tell in advance whether a RandomForestClassifier
will perform better or worse than an ExtraTreesClassifier. Gen‐
erally, the only way to know is to try both and compare them using
cross-validation.

Feature Importance
Yet another great quality of random forests is that they make it easy to measure the
relative importance of each feature. Scikit-Learn measures a feature’s importance by
looking at how much the tree nodes that use that feature reduce impurity on average,
across all trees in the forest. More precisely, it is a weighted average, where each
node’s weight is equal to the number of training samples that are associated with it
(see Chapter 6).

Scikit-Learn computes this score automatically for each feature after training, then
it scales the results so that the sum of all importances is equal to 1. You can access
the result using the feature_importances_ variable. For example, the following code
trains a RandomForestClassifier on the iris dataset (introduced in Chapter 4) and
outputs each feature’s importance. It seems that the most important features are
the petal length (44%) and width (42%), while sepal length and width are rather
unimportant in comparison (11% and 2%, respectively):

>>> from sklearn.datasets import load_iris
>>> iris = load_iris(as_frame=True)
>>> rnd_clf = RandomForestClassifier(n_estimators=500, random_state=42)
>>> rnd_clf.fit(iris.data, iris.target)
>>> for score, name in zip(rnd_clf.feature_importances_, iris.data.columns):
... print(round(score, 2), name)
...
0.11 sepal length (cm)
0.02 sepal width (cm)

Random Forests | 221

https://homl.info/25

13 Yoav Freund and Robert E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an
Application to Boosting”, Journal of Computer and System Sciences 55, no. 1 (1997): 119–139.

0.44 petal length (cm)
0.42 petal width (cm)

Similarly, if you train a random forest classifier on the MNIST dataset (introduced
in Chapter 3) and plot each pixel’s importance, you get the image represented in
Figure 7-6.

Figure 7-6. MNIST pixel importance (according to a random forest classifier)

Random forests are very handy to get a quick understanding of what features actually
matter, in particular if you need to perform feature selection.

Boosting
Boosting (originally called hypothesis boosting) refers to any ensemble method that
can combine several weak learners into a strong learner. The general idea of most
boosting methods is to train predictors sequentially, each trying to correct its prede‐
cessor. There are many boosting methods available, but by far the most popular
are AdaBoost13 (short for adaptive boosting) and gradient boosting. Let’s start with
AdaBoost.

AdaBoost
One way for a new predictor to correct its predecessor is to pay a bit more attention
to the training instances that the predecessor underfit. This results in new predictors
focusing more and more on the hard cases. This is the technique used by AdaBoost.

222 | Chapter 7: Ensemble Learning and Random Forests

https://homl.info/26

14 This is just for illustrative purposes. SVMs are generally not good base predictors for AdaBoost; they are slow
and tend to be unstable with it.

For example, when training an AdaBoost classifier, the algorithm first trains a base
classifier (such as a decision tree) and uses it to make predictions on the training set.
The algorithm then increases the relative weight of misclassified training instances.
Then it trains a second classifier, using the updated weights, and again makes predic‐
tions on the training set, updates the instance weights, and so on (see Figure 7-7).

Figure 7-8 shows the decision boundaries of five consecutive predictors on the
moons dataset (in this example, each predictor is a highly regularized SVM classifier
with an RBF kernel).14 The first classifier gets many instances wrong, so their weights
get boosted. The second classifier therefore does a better job on these instances, and
so on. The plot on the right represents the same sequence of predictors, except that
the learning rate is halved (i.e., the misclassified instance weights are boosted much
less at every iteration). As you can see, this sequential learning technique has some
similarities with gradient descent, except that instead of tweaking a single predictor’s
parameters to minimize a cost function, AdaBoost adds predictors to the ensemble,
gradually making it better.

Figure 7-7. AdaBoost sequential training with instance weight updates

Boosting | 223

15 The original AdaBoost algorithm does not use a learning rate hyperparameter.

Once all predictors are trained, the ensemble makes predictions very much like
bagging or pasting, except that predictors have different weights depending on their
overall accuracy on the weighted training set.

Figure 7-8. Decision boundaries of consecutive predictors

There is one important drawback to this sequential learning techni‐
que: training cannot be parallelized since each predictor can only
be trained after the previous predictor has been trained and evalu‐
ated. As a result, it does not scale as well as bagging or pasting.

Let’s take a closer look at the AdaBoost algorithm. Each instance weight w(i) is initially
set to 1/m. A first predictor is trained, and its weighted error rate r1 is computed on
the training set; see Equation 7-1.

Equation 7-1. Weighted error rate of the jth predictor

rj = ∑
i = 1

y j
i ≠ y i

m
w i where y j

i is the jth predictor’s prediction for the ith instance

The predictor’s weight αj is then computed using Equation 7-2, where η is the
learning rate hyperparameter (defaults to 1).15 The more accurate the predictor is, the
higher its weight will be. If it is just guessing randomly, then its weight will be close
to zero. However, if it is most often wrong (i.e., less accurate than random guessing),
then its weight will be negative.

224 | Chapter 7: Ensemble Learning and Random Forests

16 For more details, see Ji Zhu et al., “Multi-Class AdaBoost”, Statistics and Its Interface 2, no. 3 (2009): 349–360.

Equation 7-2. Predictor weight

αj = η log
1 − rj
rj

Next, the AdaBoost algorithm updates the instance weights, using Equation 7-3,
which boosts the weights of the misclassified instances.

Equation 7-3. Weight update rule

for i = 1, 2,⋯,m

w i
w i if yj

i = y i

w i exp αj if yj
i ≠ y i

Then all the instance weights are normalized (i.e., divided by ∑i = 1
m w i).

Finally, a new predictor is trained using the updated weights, and the whole process
is repeated: the new predictor’s weight is computed, the instance weights are updated,
then another predictor is trained, and so on. The algorithm stops when the desired
number of predictors is reached, or when a perfect predictor is found.

To make predictions, AdaBoost simply computes the predictions of all the predictors
and weighs them using the predictor weights αj. The predicted class is the one that
receives the majority of weighted votes (see Equation 7-4).

Equation 7-4. AdaBoost predictions

y x = argmax
k

∑
j = 1

y j x = k

N
αj where N is the number of predictors

Scikit-Learn uses a multiclass version of AdaBoost called SAMME16 (which stands for
Stagewise Additive Modeling using a Multiclass Exponential loss function). When there
are just two classes, SAMME is equivalent to AdaBoost. If the predictors can estimate
class probabilities (i.e., if they have a predict_proba() method), Scikit-Learn can use
a variant of SAMME called SAMME.R (the R stands for “Real”), which relies on class
probabilities rather than predictions and generally performs better.

Boosting | 225

https://homl.info/27

17 Gradient boosting was first introduced in Leo Breiman’s 1997 paper “Arcing the Edge” and was further
developed in the 1999 paper “Greedy Function Approximation: A Gradient Boosting Machine” by Jerome H.
Friedman.

The following code trains an AdaBoost classifier based on 30 decision stumps using
Scikit-Learn’s AdaBoostClassifier class (as you might expect, there is also an
AdaBoostRegressor class). A decision stump is a decision tree with max_depth=1—in
other words, a tree composed of a single decision node plus two leaf nodes. This is
the default base estimator for the AdaBoostClassifier class:

from sklearn.ensemble import AdaBoostClassifier

ada_clf = AdaBoostClassifier(
 DecisionTreeClassifier(max_depth=1), n_estimators=30,
 learning_rate=0.5, random_state=42)
ada_clf.fit(X_train, y_train)

If your AdaBoost ensemble is overfitting the training set, you can
try reducing the number of estimators or more strongly regulariz‐
ing the base estimator.

Gradient Boosting
Another very popular boosting algorithm is gradient boosting.17 Just like AdaBoost,
gradient boosting works by sequentially adding predictors to an ensemble, each one
correcting its predecessor. However, instead of tweaking the instance weights at every
iteration like AdaBoost does, this method tries to fit the new predictor to the residual
errors made by the previous predictor.

Let’s go through a simple regression example, using decision trees as the base predic‐
tors; this is called gradient tree boosting, or gradient boosted regression trees (GBRT).
First, let’s generate a noisy quadratic dataset and fit a DecisionTreeRegressor to it:

import numpy as np
from sklearn.tree import DecisionTreeRegressor

np.random.seed(42)
X = np.random.rand(100, 1) - 0.5
y = 3 * X[:, 0] ** 2 + 0.05 * np.random.randn(100) # y = 3x² + Gaussian noise

tree_reg1 = DecisionTreeRegressor(max_depth=2, random_state=42)
tree_reg1.fit(X, y)

226 | Chapter 7: Ensemble Learning and Random Forests

https://homl.info/arcing
https://homl.info/gradboost
https://homl.info/28

Next, we’ll train a second DecisionTreeRegressor on the residual errors made by the
first predictor:

y2 = y - tree_reg1.predict(X)
tree_reg2 = DecisionTreeRegressor(max_depth=2, random_state=43)
tree_reg2.fit(X, y2)

And then we’ll train a third regressor on the residual errors made by the second
predictor:

y3 = y2 - tree_reg2.predict(X)
tree_reg3 = DecisionTreeRegressor(max_depth=2, random_state=44)
tree_reg3.fit(X, y3)

Now we have an ensemble containing three trees. It can make predictions on a new
instance simply by adding up the predictions of all the trees:

>>> X_new = np.array([[-0.4], [0.], [0.5]])
>>> sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))
array([0.49484029, 0.04021166, 0.75026781])

Figure 7-9 represents the predictions of these three trees in the left column, and the
ensemble’s predictions in the right column. In the first row, the ensemble has just one
tree, so its predictions are exactly the same as the first tree’s predictions. In the second
row, a new tree is trained on the residual errors of the first tree. On the right you can
see that the ensemble’s predictions are equal to the sum of the predictions of the first
two trees. Similarly, in the third row another tree is trained on the residual errors of
the second tree. You can see that the ensemble’s predictions gradually get better as
trees are added to the ensemble.

You can use Scikit-Learn’s GradientBoostingRegressor class to train GBRT ensem‐
bles more easily (there’s also a GradientBoostingClassifier class for classifica‐
tion). Much like the RandomForestRegressor class, it has hyperparameters to
control the growth of decision trees (e.g., max_depth, min_samples_leaf), as well
as hyperparameters to control the ensemble training, such as the number of trees
(n_estimators). The following code creates the same ensemble as the previous one:

from sklearn.ensemble import GradientBoostingRegressor

gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=3,
 learning_rate=1.0, random_state=42)
gbrt.fit(X, y)

Boosting | 227

Figure 7-9. In this depiction of gradient boosting, the first predictor (top left) is trained
normally, then each consecutive predictor (middle left and lower left) is trained on the
previous predictor’s residuals; the right column shows the resulting ensemble’s predictions

The learning_rate hyperparameter scales the contribution of each tree. If you set
it to a low value, such as 0.05, you will need more trees in the ensemble to fit the
training set, but the predictions will usually generalize better. This is a regularization
technique called shrinkage. Figure 7-10 shows two GBRT ensembles trained with
different hyperparameters: the one on the left does not have enough trees to fit the
training set, while the one on the right has about the right amount. If we added more
trees, the GBRT would start to overfit the training set.

228 | Chapter 7: Ensemble Learning and Random Forests

Figure 7-10. GBRT ensembles with not enough predictors (left) and just enough (right)

To find the optimal number of trees, you could perform cross-validation using
GridSearchCV or RandomizedSearchCV, as usual, but there’s a simpler way: if you set
the n_iter_no_change hyperparameter to an integer value, say 10, then the Gradient
BoostingRegressor will automatically stop adding more trees during training if it
sees that the last 10 trees didn’t help. This is simply early stopping (introduced in
Chapter 4), but with a little bit of patience: it tolerates having no progress for a few
iterations before it stops. Let’s train the ensemble using early stopping:

gbrt_best = GradientBoostingRegressor(
 max_depth=2, learning_rate=0.05, n_estimators=500,
 n_iter_no_change=10, random_state=42)
gbrt_best.fit(X, y)

If you set n_iter_no_change too low, training may stop too early and the model will
underfit. But if you set it too high, it will overfit instead. We also set a fairly small
learning rate and a high number of estimators, but the actual number of estimators in
the trained ensemble is much lower, thanks to early stopping:

>>> gbrt_best.n_estimators_
92

When n_iter_no_change is set, the fit() method automatically splits the training
set into a smaller training set and a validation set: this allows it to evaluate the
model’s performance each time it adds a new tree. The size of the validation set is
controlled by the validation_fraction hyperparameter, which is 10% by default.
The tol hyperparameter determines the maximum performance improvement that
still counts as negligible. It defaults to 0.0001.

Boosting | 229

The GradientBoostingRegressor class also supports a subsample hyperparameter,
which specifies the fraction of training instances to be used for training each tree.
For example, if subsample=0.25, then each tree is trained on 25% of the training
instances, selected randomly. As you can probably guess by now, this technique
trades a higher bias for a lower variance. It also speeds up training considerably. This
is called stochastic gradient boosting.

Histogram-Based Gradient Boosting
Scikit-Learn also provides another GBRT implementation, optimized for large data‐
sets: histogram-based gradient boosting (HGB). It works by binning the input features,
replacing them with integers. The number of bins is controlled by the max_bins
hyperparameter, which defaults to 255 and cannot be set any higher than this. Bin‐
ning can greatly reduce the number of possible thresholds that the training algorithm
needs to evaluate. Moreover, working with integers makes it possible to use faster and
more memory-efficient data structures. And the way the bins are built removes the
need for sorting the features when training each tree.

As a result, this implementation has a computational complexity of O(b×m) instead
of O(n×m×log(m)), where b is the number of bins, m is the number of training
instances, and n is the number of features. In practice, this means that HGB can
train hundreds of times faster than regular GBRT on large datasets. However, binning
causes a precision loss, which acts as a regularizer: depending on the dataset, this may
help reduce overfitting, or it may cause underfitting.

Scikit-Learn provides two classes for HGB: HistGradientBoostingRegressor and
HistGradientBoostingClassifier. They’re similar to GradientBoostingRegressor
and GradientBoostingClassifier, with a few notable differences:

• Early stopping is automatically activated if the number of instances is greater•
than 10,000. You can turn early stopping always on or always off by setting the
early_stopping hyperparameter to True or False.

• Subsampling is not supported.•
• n_estimators is renamed to max_iter.•
• The only decision tree hyperparameters that can be tweaked are max_leaf_nodes,•
min_samples_leaf, and max_depth.

230 | Chapter 7: Ensemble Learning and Random Forests

The HGB classes also have two nice features: they support both categorical features
and missing values. This simplifies preprocessing quite a bit. However, the categorical
features must be represented as integers ranging from 0 to a number lower than
max_bins. You can use an OrdinalEncoder for this. For example, here’s how to
build and train a complete pipeline for the California housing dataset introduced in
Chapter 2:

from sklearn.pipeline import make_pipeline
from sklearn.compose import make_column_transformer
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.preprocessing import OrdinalEncoder

hgb_reg = make_pipeline(
 make_column_transformer((OrdinalEncoder(), ["ocean_proximity"]),
 remainder="passthrough"),
 HistGradientBoostingRegressor(categorical_features=[0], random_state=42)
)
hgb_reg.fit(housing, housing_labels)

The whole pipeline is just as short as the imports! No need for an imputer, scaler,
or a one-hot encoder, so it’s really convenient. Note that categorical_features
must be set to the categorical column indices (or a Boolean array). Without any
hyperparameter tuning, this model yields an RMSE of about 47,600, which is not too
bad.

Several other optimized implementations of gradient boosting are
available in the Python ML ecosystem: in particular, XGBoost, Cat‐
Boost, and LightGBM. These libraries have been around for several
years. They are all specialized for gradient boosting, their APIs are
very similar to Scikit-Learn’s, and they provide many additional
features, including GPU acceleration; you should definitely check
them out! Moreover, the TensorFlow Random Forests library pro‐
vides optimized implementations of a variety of random forest
algorithms, including plain random forests, extra-trees, GBRT, and
several more.

Boosting | 231

https://github.com/dmlc/xgboost
https://catboost.ai
https://catboost.ai
https://lightgbm.readthedocs.io
https://tensorflow.org/decision_forests

18 David H. Wolpert, “Stacked Generalization”, Neural Networks 5, no. 2 (1992): 241–259.

Stacking
The last ensemble method we will discuss in this chapter is called stacking (short for
stacked generalization).18 It is based on a simple idea: instead of using trivial functions
(such as hard voting) to aggregate the predictions of all predictors in an ensemble,
why don’t we train a model to perform this aggregation? Figure 7-11 shows such an
ensemble performing a regression task on a new instance. Each of the bottom three
predictors predicts a different value (3.1, 2.7, and 2.9), and then the final predictor
(called a blender, or a meta learner) takes these predictions as inputs and makes the
final prediction (3.0).

Figure 7-11. Aggregating predictions using a blending predictor

To train the blender, you first need to build the blending training set. You can
use cross_val_predict() on every predictor in the ensemble to get out-of-sample
predictions for each instance in the original training set (Figure 7-12), and use these

232 | Chapter 7: Ensemble Learning and Random Forests

https://homl.info/29

can be used as the input features to train the blender; and the targets can simply be
copied from the original training set. Note that regardless of the number of features
in the original training set (just one in this example), the blending training set will
contain one input feature per predictor (three in this example). Once the blender is
trained, the base predictors are retrained one last time on the full original training set.

Figure 7-12. Training the blender in a stacking ensemble

It is actually possible to train several different blenders this way (e.g., one using linear
regression, another using random forest regression) to get a whole layer of blenders,
and then add another blender on top of that to produce the final prediction, as shown
in Figure 7-13. You may be able to squeeze out a few more drops of performance by
doing this, but it will cost you in both training time and system complexity.

Stacking | 233

Figure 7-13. Predictions in a multilayer stacking ensemble

Scikit-Learn provides two classes for stacking ensembles: StackingClassifier and
StackingRegressor. For example, we can replace the VotingClassifier we used at
the beginning of this chapter on the moons dataset with a StackingClassifier:

from sklearn.ensemble import StackingClassifier

stacking_clf = StackingClassifier(
 estimators=[
 ('lr', LogisticRegression(random_state=42)),
 ('rf', RandomForestClassifier(random_state=42)),
 ('svc', SVC(probability=True, random_state=42))
],
 final_estimator=RandomForestClassifier(random_state=43),
 cv=5 # number of cross-validation folds
)
stacking_clf.fit(X_train, y_train)

For each predictor, the stacking classifier will call predict_proba() if available; if not
it will fall back to decision_function() or, as a last resort, call predict(). If you
don’t provide a final estimator, StackingClassifier will use LogisticRegression
and StackingRegressor will use RidgeCV.

234 | Chapter 7: Ensemble Learning and Random Forests

If you evaluate this stacking model on the test set, you will find 92.8% accuracy,
which is a bit better than the voting classifier using soft voting, which got 92%.

In conclusion, ensemble methods are versatile, powerful, and fairly simple to use.
Random forests, AdaBoost, and GBRT are among the first models you should test for
most machine learning tasks, and they particularly shine with heterogeneous tabular
data. Moreover, as they require very little preprocessing, they’re great for getting a
prototype up and running quickly. Lastly, ensemble methods like voting classifiers
and stacking classifiers can help push your system’s performance to its limits.

Exercises
1. If you have trained five different models on the exact same training data, and1.

they all achieve 95% precision, is there any chance that you can combine these
models to get better results? If so, how? If not, why?

2. What is the difference between hard and soft voting classifiers?2.
3. Is it possible to speed up training of a bagging ensemble by distributing it across3.

multiple servers? What about pasting ensembles, boosting ensembles, random
forests, or stacking ensembles?

4. What is the benefit of out-of-bag evaluation?4.
5. What makes extra-trees ensembles more random than regular random forests?5.

How can this extra randomness help? Are extra-trees classifiers slower or faster
than regular random forests?

6. If your AdaBoost ensemble underfits the training data, which hyperparameters6.
should you tweak, and how?

7. If your gradient boosting ensemble overfits the training set, should you increase7.
or decrease the learning rate?

8. Load the MNIST dataset (introduced in Chapter 3), and split it into a training8.
set, a validation set, and a test set (e.g., use 50,000 instances for training, 10,000
for validation, and 10,000 for testing). Then train various classifiers, such as a
random forest classifier, an extra-trees classifier, and an SVM classifier. Next, try
to combine them into an ensemble that outperforms each individual classifier
on the validation set, using soft or hard voting. Once you have found one, try
it on the test set. How much better does it perform compared to the individual
classifiers?

9. Run the individual classifiers from the previous exercise to make predictions on9.
the validation set, and create a new training set with the resulting predictions:
each training instance is a vector containing the set of predictions from all your
classifiers for an image, and the target is the image’s class. Train a classifier
on this new training set. Congratulations—you have just trained a blender, and

Exercises | 235

together with the classifiers it forms a stacking ensemble! Now evaluate the
ensemble on the test set. For each image in the test set, make predictions with all
your classifiers, then feed the predictions to the blender to get the ensemble’s pre‐
dictions. How does it compare to the voting classifier you trained earlier? Now
try again using a StackingClassifier instead. Do you get better performance? If
so, why?

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

236 | Chapter 7: Ensemble Learning and Random Forests

https://homl.info/colab3

CHAPTER 8

Dimensionality Reduction

Many machine learning problems involve thousands or even millions of features for
each training instance. Not only do all these features make training extremely slow,
but they can also make it much harder to find a good solution, as you will see. This
problem is often referred to as the curse of dimensionality.

Fortunately, in real-world problems, it is often possible to reduce the number of
features considerably, turning an intractable problem into a tractable one. For exam‐
ple, consider the MNIST images (introduced in Chapter 3): the pixels on the image
borders are almost always white, so you could completely drop these pixels from the
training set without losing much information. As we saw in the previous chapter,
(Figure 7-6) confirms that these pixels are utterly unimportant for the classification
task. Additionally, two neighboring pixels are often highly correlated: if you merge
them into a single pixel (e.g., by taking the mean of the two pixel intensities), you will
not lose much information.

Reducing dimensionality does cause some information loss, just
like compressing an image to JPEG can degrade its quality, so even
though it will speed up training, it may make your system perform
slightly worse. It also makes your pipelines a bit more complex and
thus harder to maintain. Therefore, I recommend you first try to
train your system with the original data before considering using
dimensionality reduction. In some cases, reducing the dimension‐
ality of the training data may filter out some noise and unnecessary
details and thus result in higher performance, but in general it
won’t; it will just speed up training.

237

1 Well, four dimensions if you count time, and a few more if you are a string theorist.
2 Watch a rotating tesseract projected into 3D space at https://homl.info/30. Image by Wikipedia user Nerd‐

Boy1392 (Creative Commons BY-SA 3.0). Reproduced from https://en.wikipedia.org/wiki/Tesseract.

Apart from speeding up training, dimensionality reduction is also extremely useful
for data visualization. Reducing the number of dimensions down to two (or three)
makes it possible to plot a condensed view of a high-dimensional training set on a
graph and often gain some important insights by visually detecting patterns, such as
clusters. Moreover, data visualization is essential to communicate your conclusions to
people who are not data scientists—in particular, decision makers who will use your
results.

In this chapter we will first discuss the curse of dimensionality and get a sense
of what goes on in high-dimensional space. Then we will consider the two main
approaches to dimensionality reduction (projection and manifold learning), and we
will go through three of the most popular dimensionality reduction techniques: PCA,
random projection, and locally linear embedding (LLE).

The Curse of Dimensionality
We are so used to living in three dimensions1 that our intuition fails us when we try
to imagine a high-dimensional space. Even a basic 4D hypercube is incredibly hard to
picture in our minds (see Figure 8-1), let alone a 200-dimensional ellipsoid bent in a
1,000-dimensional space.

Figure 8-1. Point, segment, square, cube, and tesseract (0D to 4D hypercubes)2

It turns out that many things behave very differently in high-dimensional space. For
example, if you pick a random point in a unit square (a 1 × 1 square), it will have only
about a 0.4% chance of being located less than 0.001 from a border (in other words, it
is very unlikely that a random point will be “extreme” along any dimension). But in a

238 | Chapter 8: Dimensionality Reduction

https://homl.info/30
https://creativecommons.org/licenses/by-sa/3.0
https://en.wikipedia.org/wiki/Tesseract

3 Fun fact: anyone you know is probably an extremist in at least one dimension (e.g., how much sugar they put
in their coffee), if you consider enough dimensions.

10,000-dimensional unit hypercube, this probability is greater than 99.999999%. Most
points in a high-dimensional hypercube are very close to the border.3

Here is a more troublesome difference: if you pick two points randomly in a unit
square, the distance between these two points will be, on average, roughly 0.52. If
you pick two random points in a 3D unit cube, the average distance will be roughly
0.66. But what about two points picked randomly in a 1,000,000-dimensional unit
hypercube? The average distance, believe it or not, will be about 408.25 (roughly

1, 000, 000 6)! This is counterintuitive: how can two points be so far apart when they
both lie within the same unit hypercube? Well, there’s just plenty of space in high
dimensions. As a result, high-dimensional datasets are at risk of being very sparse:
most training instances are likely to be far away from each other. This also means that
a new instance will likely be far away from any training instance, making predictions
much less reliable than in lower dimensions, since they will be based on much larger
extrapolations. In short, the more dimensions the training set has, the greater the risk
of overfitting it.

In theory, one solution to the curse of dimensionality could be to increase the size
of the training set to reach a sufficient density of training instances. Unfortunately,
in practice, the number of training instances required to reach a given density
grows exponentially with the number of dimensions. With just 100 features—signifi‐
cantly fewer than in the MNIST problem—all ranging from 0 to 1, you would need
more training instances than atoms in the observable universe in order for training
instances to be within 0.1 of each other on average, assuming they were spread out
uniformly across all dimensions.

Main Approaches for Dimensionality Reduction
Before we dive into specific dimensionality reduction algorithms, let’s take a look
at the two main approaches to reducing dimensionality: projection and manifold
learning.

Projection
In most real-world problems, training instances are not spread out uniformly across
all dimensions. Many features are almost constant, while others are highly correlated
(as discussed earlier for MNIST). As a result, all training instances lie within (or close
to) a much lower-dimensional subspace of the high-dimensional space. This sounds
very abstract, so let’s look at an example. In Figure 8-2 you can see a 3D dataset
represented by small spheres.

Main Approaches for Dimensionality Reduction | 239

Figure 8-2. A 3D dataset lying close to a 2D subspace

Notice that all training instances lie close to a plane: this is a lower-dimensional
(2D) subspace of the higher-dimensional (3D) space. If we project every training
instance perpendicularly onto this subspace (as represented by the short dashed
lines connecting the instances to the plane), we get the new 2D dataset shown in
Figure 8-3. Ta-da! We have just reduced the dataset’s dimensionality from 3D to 2D.
Note that the axes correspond to new features z1 and z2: they are the coordinates of
the projections on the plane.

Figure 8-3. The new 2D dataset after projection

240 | Chapter 8: Dimensionality Reduction

Manifold Learning
However, projection is not always the best approach to dimensionality reduction. In
many cases the subspace may twist and turn, such as in the famous Swiss roll toy
dataset represented in Figure 8-4.

Figure 8-4. Swiss roll dataset

Simply projecting onto a plane (e.g., by dropping x3) would squash different layers of
the Swiss roll together, as shown on the left side of Figure 8-5. What you probably
want instead is to unroll the Swiss roll to obtain the 2D dataset on the right side of
Figure 8-5.

Figure 8-5. Squashing by projecting onto a plane (left) versus unrolling the Swiss roll
(right)

Main Approaches for Dimensionality Reduction | 241

The Swiss roll is an example of a 2D manifold. Put simply, a 2D manifold is a 2D
shape that can be bent and twisted in a higher-dimensional space. More generally, a
d-dimensional manifold is a part of an n-dimensional space (where d < n) that locally
resembles a d-dimensional hyperplane. In the case of the Swiss roll, d = 2 and n = 3: it
locally resembles a 2D plane, but it is rolled in the third dimension.

Many dimensionality reduction algorithms work by modeling the manifold on which
the training instances lie; this is called manifold learning. It relies on the manifold
assumption, also called the manifold hypothesis, which holds that most real-world
high-dimensional datasets lie close to a much lower-dimensional manifold. This
assumption is very often empirically observed.

Once again, think about the MNIST dataset: all handwritten digit images have some
similarities. They are made of connected lines, the borders are white, and they are
more or less centered. If you randomly generated images, only a ridiculously tiny
fraction of them would look like handwritten digits. In other words, the degrees of
freedom available to you if you try to create a digit image are dramatically lower than
the degrees of freedom you have if you are allowed to generate any image you want.
These constraints tend to squeeze the dataset into a lower-dimensional manifold.

The manifold assumption is often accompanied by another implicit assumption: that
the task at hand (e.g., classification or regression) will be simpler if expressed in the
lower-dimensional space of the manifold. For example, in the top row of Figure 8-6
the Swiss roll is split into two classes: in the 3D space (on the left) the decision
boundary would be fairly complex, but in the 2D unrolled manifold space (on the
right) the decision boundary is a straight line.

However, this implicit assumption does not always hold. For example, in the bottom
row of Figure 8-6, the decision boundary is located at x1 = 5. This decision boundary
looks very simple in the original 3D space (a vertical plane), but it looks more
complex in the unrolled manifold (a collection of four independent line segments).

In short, reducing the dimensionality of your training set before training a model will
usually speed up training, but it may not always lead to a better or simpler solution; it
all depends on the dataset.

Hopefully you now have a good sense of what the curse of dimensionality is and
how dimensionality reduction algorithms can fight it, especially when the manifold
assumption holds. The rest of this chapter will go through some of the most popular
algorithms for dimensionality reduction.

242 | Chapter 8: Dimensionality Reduction

Figure 8-6. The decision boundary may not always be simpler with lower dimensions

PCA
Principal component analysis (PCA) is by far the most popular dimensionality reduc‐
tion algorithm. First it identifies the hyperplane that lies closest to the data, and then
it projects the data onto it, just like in Figure 8-2.

Preserving the Variance
Before you can project the training set onto a lower-dimensional hyperplane, you
first need to choose the right hyperplane. For example, a simple 2D dataset is repre‐
sented on the left in Figure 8-7, along with three different axes (i.e., 1D hyperplanes).
On the right is the result of the projection of the dataset onto each of these axes.
As you can see, the projection onto the solid line preserves the maximum variance
(top), while the projection onto the dotted line preserves very little variance (bottom)
and the projection onto the dashed line preserves an intermediate amount of variance
(middle).

PCA | 243

4 Karl Pearson, “On Lines and Planes of Closest Fit to Systems of Points in Space”, The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 2, no. 11 (1901): 559–572.

Figure 8-7. Selecting the subspace on which to project

It seems reasonable to select the axis that preserves the maximum amount of var‐
iance, as it will most likely lose less information than the other projections. Another
way to justify this choice is that it is the axis that minimizes the mean squared
distance between the original dataset and its projection onto that axis. This is the
rather simple idea behind PCA.4

Principal Components
PCA identifies the axis that accounts for the largest amount of variance in the
training set. In Figure 8-7, it is the solid line. It also finds a second axis, orthogonal to
the first one, that accounts for the largest amount of the remaining variance. In this
2D example there is no choice: it is the dotted line. If it were a higher-dimensional
dataset, PCA would also find a third axis, orthogonal to both previous axes, and a
fourth, a fifth, and so on—as many axes as the number of dimensions in the dataset.

The ith axis is called the ith principal component (PC) of the data. In Figure 8-7, the
first PC is the axis on which vector c1 lies, and the second PC is the axis on which
vector c2 lies. In Figure 8-2 the first two PCs are on the projection plane, and the third
PC is the axis orthogonal to that plane. After the projection, in Figure 8-3, the first
PC corresponds to the z1 axis, and the second PC corresponds to the z2 axis.

244 | Chapter 8: Dimensionality Reduction

https://homl.info/pca

For each principal component, PCA finds a zero-centered unit
vector pointing in the direction of the PC. Since two opposing
unit vectors lie on the same axis, the direction of the unit vectors
returned by PCA is not stable: if you perturb the training set
slightly and run PCA again, the unit vectors may point in the oppo‐
site direction as the original vectors. However, they will generally
still lie on the same axes. In some cases, a pair of unit vectors may
even rotate or swap (if the variances along these two axes are very
close), but the plane they define will generally remain the same.

So how can you find the principal components of a training set? Luckily, there is
a standard matrix factorization technique called singular value decomposition (SVD)
that can decompose the training set matrix X into the matrix multiplication of three
matrices U Σ V⊺, where V contains the unit vectors that define all the principal
components that you are looking for, as shown in Equation 8-1.

Equation 8-1. Principal components matrix

V =
∣ ∣ ∣

c1 c2 ⋯ cn

∣ ∣ ∣

The following Python code uses NumPy’s svd() function to obtain all the principal
components of the 3D training set represented in Figure 8-2, then it extracts the two
unit vectors that define the first two PCs:

import numpy as np

X = [...] # create a small 3D dataset
X_centered = X - X.mean(axis=0)
U, s, Vt = np.linalg.svd(X_centered)
c1 = Vt[0]
c2 = Vt[1]

PCA assumes that the dataset is centered around the origin. As
you will see, Scikit-Learn’s PCA classes take care of centering the
data for you. If you implement PCA yourself (as in the preceding
example), or if you use other libraries, don’t forget to center the
data first.

Projecting Down to d Dimensions
Once you have identified all the principal components, you can reduce the dimen‐
sionality of the dataset down to d dimensions by projecting it onto the hyperplane
defined by the first d principal components. Selecting this hyperplane ensures that

PCA | 245

the projection will preserve as much variance as possible. For example, in Figure 8-2
the 3D dataset is projected down to the 2D plane defined by the first two principal
components, preserving a large part of the dataset’s variance. As a result, the 2D
projection looks very much like the original 3D dataset.

To project the training set onto the hyperplane and obtain a reduced dataset Xd-proj of
dimensionality d, compute the matrix multiplication of the training set matrix X by
the matrix Wd, defined as the matrix containing the first d columns of V, as shown in
Equation 8-2.

Equation 8-2. Projecting the training set down to d dimensions

Xd‐proj = XWd

The following Python code projects the training set onto the plane defined by the first
two principal components:

W2 = Vt[:2].T
X2D = X_centered @ W2

There you have it! You now know how to reduce the dimensionality of any dataset by
projecting it down to any number of dimensions, while preserving as much variance
as possible.

Using Scikit-Learn
Scikit-Learn’s PCA class uses SVD to implement PCA, just like we did earlier in this
chapter. The following code applies PCA to reduce the dimensionality of the dataset
down to two dimensions (note that it automatically takes care of centering the data):

from sklearn.decomposition import PCA

pca = PCA(n_components=2)
X2D = pca.fit_transform(X)

After fitting the PCA transformer to the dataset, its components_ attribute holds the
transpose of Wd: it contains one row for each of the first d principal components.

Explained Variance Ratio
Another useful piece of information is the explained variance ratio of each princi‐
pal component, available via the explained_variance_ratio_ variable. The ratio
indicates the proportion of the dataset’s variance that lies along each principal com‐
ponent. For example, let’s look at the explained variance ratios of the first two
components of the 3D dataset represented in Figure 8-2:

>>> pca.explained_variance_ratio_
array([0.7578477 , 0.15186921])

246 | Chapter 8: Dimensionality Reduction

This output tells us that about 76% of the dataset’s variance lies along the first PC, and
about 15% lies along the second PC. This leaves about 9% for the third PC, so it is
reasonable to assume that the third PC probably carries little information.

Choosing the Right Number of Dimensions
Instead of arbitrarily choosing the number of dimensions to reduce down to, it
is simpler to choose the number of dimensions that add up to a sufficiently large
portion of the variance—say, 95% (An exception to this rule, of course, is if you are
reducing dimensionality for data visualization, in which case you will want to reduce
the dimensionality down to 2 or 3).

The following code loads and splits the MNIST dataset (introduced in Chapter 3)
and performs PCA without reducing dimensionality, then computes the minimum
number of dimensions required to preserve 95% of the training set’s variance:

from sklearn.datasets import fetch_openml

mnist = fetch_openml('mnist_784', as_frame=False)
X_train, y_train = mnist.data[:60_000], mnist.target[:60_000]
X_test, y_test = mnist.data[60_000:], mnist.target[60_000:]

pca = PCA()
pca.fit(X_train)
cumsum = np.cumsum(pca.explained_variance_ratio_)
d = np.argmax(cumsum >= 0.95) + 1 # d equals 154

You could then set n_components=d and run PCA again, but there’s a better option.
Instead of specifying the number of principal components you want to preserve,
you can set n_components to be a float between 0.0 and 1.0, indicating the ratio of
variance you wish to preserve:

pca = PCA(n_components=0.95)
X_reduced = pca.fit_transform(X_train)

The actual number of components is determined during training, and it is stored in
the n_components_ attribute:

>>> pca.n_components_
154

Yet another option is to plot the explained variance as a function of the number of
dimensions (simply plot cumsum; see Figure 8-8). There will usually be an elbow in the
curve, where the explained variance stops growing fast. In this case, you can see that
reducing the dimensionality down to about 100 dimensions wouldn’t lose too much
explained variance.

PCA | 247

Figure 8-8. Explained variance as a function of the number of dimensions

Lastly, if you are using dimensionality reduction as a preprocessing step for a super‐
vised learning task (e.g., classification), then you can tune the number of dimensions
as you would any other hyperparameter (see Chapter 2). For example, the following
code example creates a two-step pipeline, first reducing dimensionality using PCA,
then classifying using a random forest. Next, it uses RandomizedSearchCV to find
a good combination of hyperparameters for both PCA and the random forest classi‐
fier. This example does a quick search, tuning only 2 hyperparameters, training on
just 1,000 instances, and running for just 10 iterations, but feel free to do a more
thorough search if you have the time:

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import RandomizedSearchCV
from sklearn.pipeline import make_pipeline

clf = make_pipeline(PCA(random_state=42),
 RandomForestClassifier(random_state=42))
param_distrib = {
 "pca__n_components": np.arange(10, 80),
 "randomforestclassifier__n_estimators": np.arange(50, 500)
}
rnd_search = RandomizedSearchCV(clf, param_distrib, n_iter=10, cv=3,
 random_state=42)
rnd_search.fit(X_train[:1000], y_train[:1000])

Let’s look at the best hyperparameters found:

>>> print(rnd_search.best_params_)
{'randomforestclassifier__n_estimators': 465, 'pca__n_components': 23}

It’s interesting to note how low the optimal number of components is: we reduced a
784-dimensional dataset to just 23 dimensions! This is tied to the fact that we used a
random forest, which is a pretty powerful model. If we used a linear model instead,

248 | Chapter 8: Dimensionality Reduction

such as an SGDClassifier, the search would find that we need to preserve more
dimensions (about 70).

PCA for Compression
After dimensionality reduction, the training set takes up much less space. For exam‐
ple, after applying PCA to the MNIST dataset while preserving 95% of its variance,
we are left with 154 features, instead of the original 784 features. So the dataset is
now less than 20% of its original size, and we only lost 5% of its variance! This is a
reasonable compression ratio, and it’s easy to see how such a size reduction would
speed up a classification algorithm tremendously.

It is also possible to decompress the reduced dataset back to 784 dimensions by
applying the inverse transformation of the PCA projection. This won’t give you
back the original data, since the projection lost a bit of information (within the 5%
variance that was dropped), but it will likely be close to the original data. The mean
squared distance between the original data and the reconstructed data (compressed
and then decompressed) is called the reconstruction error.

The inverse_transform() method lets us decompress the reduced MNIST dataset
back to 784 dimensions:

X_recovered = pca.inverse_transform(X_reduced)

Figure 8-9 shows a few digits from the original training set (on the left), and the
corresponding digits after compression and decompression. You can see that there is
a slight image quality loss, but the digits are still mostly intact.

Figure 8-9. MNIST compression that preserves 95% of the variance

PCA | 249

5 Scikit-Learn uses the algorithm described in David A. Ross et al., “Incremental Learning for Robust Visual
Tracking”, International Journal of Computer Vision 77, no. 1–3 (2008): 125–141.

The equation for the inverse transformation is shown in Equation 8-3.

Equation 8-3. PCA inverse transformation, back to the original number of
dimensions

Xrecovered = Xd‐projWd
⊺

Randomized PCA
If you set the svd_solver hyperparameter to "randomized", Scikit-Learn uses a
stochastic algorithm called randomized PCA that quickly finds an approximation of
the first d principal components. Its computational complexity is O(m × d2) + O(d3),
instead of O(m × n2) + O(n3) for the full SVD approach, so it is dramatically faster
than full SVD when d is much smaller than n:

rnd_pca = PCA(n_components=154, svd_solver="randomized", random_state=42)
X_reduced = rnd_pca.fit_transform(X_train)

By default, svd_solver is actually set to "auto": Scikit-Learn auto‐
matically uses the randomized PCA algorithm if max(m, n) >
500 and n_components is an integer smaller than 80% of min(m,
n), or else it uses the full SVD approach. So the preceding code
would use the randomized PCA algorithm even if you removed
the svd_solver="randomized" argument, since 154 < 0.8 × 784.
If you want to force Scikit-Learn to use full SVD for a slightly
more precise result, you can set the svd_solver hyperparameter to
"full".

Incremental PCA
One problem with the preceding implementations of PCA is that they require the
whole training set to fit in memory in order for the algorithm to run. Fortunately,
incremental PCA (IPCA) algorithms have been developed that allow you to split the
training set into mini-batches and feed these in one mini-batch at a time. This is
useful for large training sets and for applying PCA online (i.e., on the fly, as new
instances arrive).

The following code splits the MNIST training set into 100 mini-batches (using Num‐
Py’s array_split() function) and feeds them to Scikit-Learn’s IncrementalPCA class5

to reduce the dimensionality of the MNIST dataset down to 154 dimensions, just like

250 | Chapter 8: Dimensionality Reduction

https://homl.info/32

before. Note that you must call the partial_fit() method with each mini-batch,
rather than the fit() method with the whole training set:

from sklearn.decomposition import IncrementalPCA

n_batches = 100
inc_pca = IncrementalPCA(n_components=154)
for X_batch in np.array_split(X_train, n_batches):
 inc_pca.partial_fit(X_batch)

X_reduced = inc_pca.transform(X_train)

Alternatively, you can use NumPy’s memmap class, which allows you to manipulate a
large array stored in a binary file on disk as if it were entirely in memory; the class
loads only the data it needs in memory, when it needs it. To demonstrate this, let’s
first create a memory-mapped (memmap) file and copy the MNIST training set to it,
then call flush() to ensure that any data still in the cache gets saved to disk. In real
life, X_train would typically not fit in memory, so you would load it chunk by chunk
and save each chunk to the right part of the memmap array:

filename = "my_mnist.mmap"
X_mmap = np.memmap(filename, dtype='float32', mode='write', shape=X_train.shape)
X_mmap[:] = X_train # could be a loop instead, saving the data chunk by chunk
X_mmap.flush()

Next, we can load the memmap file and use it like a regular NumPy array. Let’s use
the IncrementalPCA class to reduce its dimensionality. Since this algorithm uses only
a small part of the array at any given time, memory usage remains under control.
This makes it possible to call the usual fit() method instead of partial_fit(),
which is quite convenient:

X_mmap = np.memmap(filename, dtype="float32", mode="readonly").reshape(-1, 784)
batch_size = X_mmap.shape[0] // n_batches
inc_pca = IncrementalPCA(n_components=154, batch_size=batch_size)
inc_pca.fit(X_mmap)

Only the raw binary data is saved to disk, so you need to specify the
data type and shape of the array when you load it. If you omit the
shape, np.memmap() returns a 1D array.

For very high-dimensional datasets, PCA can be too slow. As you saw earlier, even if
you use randomized PCA its computational complexity is still O(m × d2) + O(d3), so
the target number of dimensions d must not be too large. If you are dealing with a
dataset with tens of thousands of features or more (e.g., images), then training may
become much too slow: in this case, you should consider using random projection
instead.

PCA | 251

6 ε is the Greek letter epsilon, often used for tiny values.

Random Projection
As its name suggests, the random projection algorithm projects the data to a lower-
dimensional space using a random linear projection. This may sound crazy, but it
turns out that such a random projection is actually very likely to preserve distances
fairly well, as was demonstrated mathematically by William B. Johnson and Joram
Lindenstrauss in a famous lemma. So, two similar instances will remain similar after
the projection, and two very different instances will remain very different.

Obviously, the more dimensions you drop, the more information is lost, and the
more distances get distorted. So how can you choose the optimal number of dimen‐
sions? Well, Johnson and Lindenstrauss came up with an equation that determines
the minimum number of dimensions to preserve in order to ensure—with high prob‐
ability—that distances won’t change by more than a given tolerance. For example,
if you have a dataset containing m = 5,000 instances with n = 20,000 features each,
and you don’t want the squared distance between any two instances to change by
more than ε = 10%,6 then you should project the data down to d dimensions, with
d ≥ 4 log(m) / (½ ε² - ⅓ ε³), which is 7,300 dimensions. That’s quite a significant
dimensionality reduction! Notice that the equation does not use n, it only relies on
m and ε. This equation is implemented by the johnson_lindenstrauss_min_dim()
function:

>>> from sklearn.random_projection import johnson_lindenstrauss_min_dim
>>> m, ε = 5_000, 0.1
>>> d = johnson_lindenstrauss_min_dim(m, eps=ε)
>>> d
7300

Now we can just generate a random matrix P of shape [d, n], where each item is
sampled randomly from a Gaussian distribution with mean 0 and variance 1 / d, and
use it to project a dataset from n dimensions down to d:

n = 20_000
np.random.seed(42)
P = np.random.randn(d, n) / np.sqrt(d) # std dev = square root of variance

X = np.random.randn(m, n) # generate a fake dataset
X_reduced = X @ P.T

That’s all there is to it! It’s simple and efficient, and no training is required: the only
thing the algorithm needs to create the random matrix is the dataset’s shape. The data
itself is not used at all.

Scikit-Learn offers a GaussianRandomProjection class to do exactly what we just
did: when you call its fit() method, it uses johnson_lindenstrauss_min_dim() to

252 | Chapter 8: Dimensionality Reduction

determine the output dimensionality, then it generates a random matrix, which it
stores in the components_ attribute. Then when you call transform(), it uses this
matrix to perform the projection. When creating the transformer, you can set eps
if you want to tweak ε (it defaults to 0.1), and n_components if you want to force a
specific target dimensionality d. The following code example gives the same result
as the preceding code (you can also verify that gaussian_rnd_proj.components_ is
equal to P):

from sklearn.random_projection import GaussianRandomProjection

gaussian_rnd_proj = GaussianRandomProjection(eps=ε, random_state=42)
X_reduced = gaussian_rnd_proj.fit_transform(X) # same result as above

Scikit-Learn also provides a second random projection transformer, known as
SparseRandomProjection. It determines the target dimensionality in the same way,
generates a random matrix of the same shape, and performs the projection identi‐
cally. The main difference is that the random matrix is sparse. This means it uses
much less memory: about 25 MB instead of almost 1.2 GB in the preceding exam‐
ple! And it’s also much faster, both to generate the random matrix and to reduce
dimensionality: about 50% faster in this case. Moreover, if the input is sparse, the
transformation keeps it sparse (unless you set dense_output=True). Lastly, it enjoys
the same distance-preserving property as the previous approach, and the quality of
the dimensionality reduction is comparable. In short, it’s usually preferable to use this
transformer instead of the first one, especially for large or sparse datasets.

The ratio r of nonzero items in the sparse random matrix is called its density. By
default, it is equal to 1/ n. With 20,000 features, this means that only 1 in ~141
cells in the random matrix is nonzero: that’s quite sparse! You can set the density
hyperparameter to another value if you prefer. Each cell in the sparse random matrix
has a probability r of being nonzero, and each nonzero value is either –v or +v (both
equally likely), where v = 1/ dr.

If you want to perform the inverse transform, you first need to compute the pseudo-
inverse of the components matrix using SciPy’s pinv() function, then multiply the
reduced data by the transpose of the pseudo-inverse:

components_pinv = np.linalg.pinv(gaussian_rnd_proj.components_)
X_recovered = X_reduced @ components_pinv.T

Computing the pseudo-inverse may take a very long time if the
components matrix is large, as the computational complexity of
pinv() is O(dn²) if d < n, or O(nd²) otherwise.

Random Projection | 253

7 Sanjoy Dasgupta et al., “A neural algorithm for a fundamental computing problem”, Science 358, no. 6364
(2017): 793–796.

8 Sam T. Roweis and Lawrence K. Saul, “Nonlinear Dimensionality Reduction by Locally Linear Embedding”,
Science 290, no. 5500 (2000): 2323–2326.

In summary, random projection is a simple, fast, memory-efficient, and surprisingly
powerful dimensionality reduction algorithm that you should keep in mind, espe‐
cially when you deal with high-dimensional datasets.

Random projection is not always used to reduce the dimensionality
of large datasets. For example, a 2017 paper7 by Sanjoy Dasgupta
et al. showed that the brain of a fruit fly implements an analog of
random projection to map dense low-dimensional olfactory inputs
to sparse high-dimensional binary outputs: for each odor, only
a small fraction of the output neurons get activated, but similar
odors activate many of the same neurons. This is similar to a
well-known algorithm called locality sensitive hashing (LSH), which
is typically used in search engines to group similar documents.

LLE
Locally linear embedding (LLE)8 is a nonlinear dimensionality reduction (NLDR) tech‐
nique. It is a manifold learning technique that does not rely on projections, unlike
PCA and random projection. In a nutshell, LLE works by first measuring how each
training instance linearly relates to its nearest neighbors, and then looking for a
low-dimensional representation of the training set where these local relationships are
best preserved (more details shortly). This approach makes it particularly good at
unrolling twisted manifolds, especially when there is not too much noise.

The following code makes a Swiss roll, then uses Scikit-Learn’s LocallyLinearEmbed
ding class to unroll it:

from sklearn.datasets import make_swiss_roll
from sklearn.manifold import LocallyLinearEmbedding

X_swiss, t = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)
lle = LocallyLinearEmbedding(n_components=2, n_neighbors=10, random_state=42)
X_unrolled = lle.fit_transform(X_swiss)

The variable t is a 1D NumPy array containing the position of each instance along
the rolled axis of the Swiss roll. We don’t use it in this example, but it can be used as a
target for a nonlinear regression task.

The resulting 2D dataset is shown in Figure 8-10. As you can see, the Swiss roll is
completely unrolled, and the distances between instances are locally well preserved.

254 | Chapter 8: Dimensionality Reduction

https://homl.info/flies
https://homl.info/lle

However, distances are not preserved on a larger scale: the unrolled Swiss roll should
be a rectangle, not this kind of stretched and twisted band. Nevertheless, LLE did a
pretty good job of modeling the manifold.

Figure 8-10. Unrolled Swiss roll using LLE

Here’s how LLE works: for each training instance x(i), the algorithm identifies its
k-nearest neighbors (in the preceding code k = 10), then tries to reconstruct x(i) as a
linear function of these neighbors. More specifically, it tries to find the weights wi,j

such that the squared distance between x(i) and ∑j = 1
m wi, jx

j is as small as possible,
assuming wi,j = 0 if x(j) is not one of the k-nearest neighbors of x(i). Thus the first step
of LLE is the constrained optimization problem described in Equation 8-4, where
W is the weight matrix containing all the weights wi,j. The second constraint simply
normalizes the weights for each training instance x(i).

Equation 8-4. LLE step 1: linearly modeling local relationships

W = argmin
W

∑
i = 1

m
x i − ∑

j = 1

m
wi, jx

j
2

subject to
wi, j = 0 if x j is not one of the k n.n. of x i

∑
j = 1

m
wi, j = 1 for i = 1, 2,⋯,m

After this step, the weight matrix W (containing the weights wi, j) encodes the local
linear relationships between the training instances. The second step is to map the
training instances into a d-dimensional space (where d < n) while preserving these

LLE | 255

local relationships as much as possible. If z(i) is the image of x(i) in this d-dimensional
space, then we want the squared distance between z(i) and ∑j = 1

m wi, jz
j to be as small

as possible. This idea leads to the unconstrained optimization problem described
in Equation 8-5. It looks very similar to the first step, but instead of keeping the
instances fixed and finding the optimal weights, we are doing the reverse: keeping
the weights fixed and finding the optimal position of the instances’ images in the
low-dimensional space. Note that Z is the matrix containing all z(i).

Equation 8-5. LLE step 2: reducing dimensionality while preserving relationships

Z = argmin
Z

∑
i = 1

m
z i − ∑

j = 1

m
wi, jz

j
2

Scikit-Learn’s LLE implementation has the following computational complexity:
O(m log(m)n log(k)) for finding the k-nearest neighbors, O(mnk3) for optimizing the
weights, and O(dm2) for constructing the low-dimensional representations. Unfortu‐
nately, the m2 in the last term makes this algorithm scale poorly to very large datasets.

As you can see, LLE is quite different from the projection techniques, and it’s sig‐
nificantly more complex, but it can also construct much better low-dimensional
representations, especially if the data is nonlinear.

Other Dimensionality Reduction Techniques
Before we conclude this chapter, let’s take a quick look at a few other popular
dimensionality reduction techniques available in Scikit-Learn:

sklearn.manifold.MDS

Multidimensional scaling (MDS) reduces dimensionality while trying to preserve
the distances between the instances. Random projection does that for high-
dimensional data, but it doesn’t work well on low-dimensional data.

sklearn.manifold.Isomap

Isomap creates a graph by connecting each instance to its nearest neighbors, then
reduces dimensionality while trying to preserve the geodesic distances between
the instances. The geodesic distance between two nodes in a graph is the number
of nodes on the shortest path between these nodes.

sklearn.manifold.TSNE

t-distributed stochastic neighbor embedding (t-SNE) reduces dimensionality while
trying to keep similar instances close and dissimilar instances apart. It is mostly
used for visualization, in particular to visualize clusters of instances in high-
dimensional space. For example, in the exercises at the end of this chapter you
will use t-SNE to visualize a 2D map of the MNIST images.

256 | Chapter 8: Dimensionality Reduction

sklearn.discriminant_analysis.LinearDiscriminantAnalysis

Linear discriminant analysis (LDA) is a linear classification algorithm that, during
training, learns the most discriminative axes between the classes. These axes can
then be used to define a hyperplane onto which to project the data. The benefit
of this approach is that the projection will keep classes as far apart as possible,
so LDA is a good technique to reduce dimensionality before running another
classification algorithm (unless LDA alone is sufficient).

Figure 8-11 shows the results of MDS, Isomap, and t-SNE on the Swiss roll. MDS
manages to flatten the Swiss roll without losing its global curvature, while Isomap
drops it entirely. Depending on the downstream task, preserving the large-scale
structure may be good or bad. t-SNE does a reasonable job of flattening the Swiss
roll, preserving a bit of curvature, and it also amplifies clusters, tearing the roll apart.
Again, this might be good or bad, depending on the downstream task.

Figure 8-11. Using various techniques to reduce the Swiss roll to 2D

Exercises
1. What are the main motivations for reducing a dataset’s dimensionality? What are1.

the main drawbacks?
2. What is the curse of dimensionality?2.
3. Once a dataset’s dimensionality has been reduced, is it possible to reverse the3.

operation? If so, how? If not, why?
4. Can PCA be used to reduce the dimensionality of a highly nonlinear dataset?4.
5. Suppose you perform PCA on a 1,000-dimensional dataset, setting the explained5.

variance ratio to 95%. How many dimensions will the resulting dataset have?
6. In what cases would you use regular PCA, incremental PCA, randomized PCA,6.

or random projection?
7. How can you evaluate the performance of a dimensionality reduction algorithm7.

on your dataset?

Exercises | 257

8. Does it make any sense to chain two different dimensionality reduction8.
algorithms?

9. Load the MNIST dataset (introduced in Chapter 3) and split it into a training9.
set and a test set (take the first 60,000 instances for training, and the remaining
10,000 for testing). Train a random forest classifier on the dataset and time how
long it takes, then evaluate the resulting model on the test set. Next, use PCA
to reduce the dataset’s dimensionality, with an explained variance ratio of 95%.
Train a new random forest classifier on the reduced dataset and see how long it
takes. Was training much faster? Next, evaluate the classifier on the test set. How
does it compare to the previous classifier? Try again with an SGDClassifier.
How much does PCA help now?

10. Use t-SNE to reduce the first 5,000 images of the MNIST dataset down to 210.
dimensions and plot the result using Matplotlib. You can use a scatterplot using
10 different colors to represent each image’s target class. Alternatively, you can
replace each dot in the scatterplot with the corresponding instance’s class (a digit
from 0 to 9), or even plot scaled-down versions of the digit images themselves
(if you plot all digits the visualization will be too cluttered, so you should either
draw a random sample or plot an instance only if no other instance has already
been plotted at a close distance). You should get a nice visualization with well-
separated clusters of digits. Try using other dimensionality reduction algorithms,
such as PCA, LLE, or MDS, and compare the resulting visualizations.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

258 | Chapter 8: Dimensionality Reduction

https://homl.info/colab3

CHAPTER 9

Unsupervised Learning Techniques

Although most of the applications of machine learning today are based on supervised
learning (and as a result, this is where most of the investments go to), the vast
majority of the available data is unlabeled: we have the input features X, but we
do not have the labels y. The computer scientist Yann LeCun famously said that “if
intelligence was a cake, unsupervised learning would be the cake, supervised learning
would be the icing on the cake, and reinforcement learning would be the cherry on
the cake.” In other words, there is a huge potential in unsupervised learning that we
have only barely started to sink our teeth into.

Say you want to create a system that will take a few pictures of each item on a
manufacturing production line and detect which items are defective. You can fairly
easily create a system that will take pictures automatically, and this might give you
thousands of pictures every day. You can then build a reasonably large dataset in just
a few weeks. But wait, there are no labels! If you want to train a regular binary classi‐
fier that will predict whether an item is defective or not, you will need to label every
single picture as “defective” or “normal”. This will generally require human experts to
sit down and manually go through all the pictures. This is a long, costly, and tedious
task, so it will usually only be done on a small subset of the available pictures. As a
result, the labeled dataset will be quite small, and the classifier’s performance will be
disappointing. Moreover, every time the company makes any change to its products,
the whole process will need to be started over from scratch. Wouldn’t it be great if
the algorithm could just exploit the unlabeled data without needing humans to label
every picture? Enter unsupervised learning.

259

In Chapter 8 we looked at the most common unsupervised learning task: dimension‐
ality reduction. In this chapter we will look at a few more unsupervised tasks:

Clustering
The goal is to group similar instances together into clusters. Clustering is a great
tool for data analysis, customer segmentation, recommender systems, search
engines, image segmentation, semi-supervised learning, dimensionality reduc‐
tion, and more.

Anomaly detection (also called outlier detection)
The objective is to learn what “normal” data looks like, and then use that to
detect abnormal instances. These instances are called anomalies, or outliers, while
the normal instances are called inliers. Anomaly detection is useful in a wide
variety of applications, such as fraud detection, detecting defective products in
manufacturing, identifying new trends in time series, or removing outliers from
a dataset before training another model, which can significantly improve the
performance of the resulting model.

Density estimation
This is the task of estimating the probability density function (PDF) of the random
process that generated the dataset. Density estimation is commonly used for
anomaly detection: instances located in very low-density regions are likely to be
anomalies. It is also useful for data analysis and visualization.

Ready for some cake? We will start with two clustering algorithms, k-means and
DBSCAN, then we’ll discuss Gaussian mixture models and see how they can be used
for density estimation, clustering, and anomaly detection.

Clustering Algorithms: k-means and DBSCAN
As you enjoy a hike in the mountains, you stumble upon a plant you have never
seen before. You look around and you notice a few more. They are not identical, yet
they are sufficiently similar for you to know that they most likely belong to the same
species (or at least the same genus). You may need a botanist to tell you what species
that is, but you certainly don’t need an expert to identify groups of similar-looking
objects. This is called clustering: it is the task of identifying similar instances and
assigning them to clusters, or groups of similar instances.

Just like in classification, each instance gets assigned to a group. However, unlike
classification, clustering is an unsupervised task. Consider Figure 9-1: on the left is
the iris dataset (introduced in Chapter 4), where each instance’s species (i.e., its class)
is represented with a different marker. It is a labeled dataset, for which classification
algorithms such as logistic regression, SVMs, or random forest classifiers are well
suited. On the right is the same dataset, but without the labels, so you cannot use a
classification algorithm anymore. This is where clustering algorithms step in: many of

260 | Chapter 9: Unsupervised Learning Techniques

them can easily detect the lower-left cluster. It is also quite easy to see with our own
eyes, but it is not so obvious that the upper-right cluster is composed of two distinct
subclusters. That said, the dataset has two additional features (sepal length and width)
that are not represented here, and clustering algorithms can make good use of all
features, so in fact they identify the three clusters fairly well (e.g., using a Gaussian
mixture model, only 5 instances out of 150 are assigned to the wrong cluster).

Figure 9-1. Classification (left) versus clustering (right)

Clustering is used in a wide variety of applications, including:

Customer segmentation
You can cluster your customers based on their purchases and their activity on
your website. This is useful to understand who your customers are and what they
need, so you can adapt your products and marketing campaigns to each segment.
For example, customer segmentation can be useful in recommender systems to
suggest content that other users in the same cluster enjoyed.

Data analysis
When you analyze a new dataset, it can be helpful to run a clustering algorithm,
and then analyze each cluster separately.

Dimensionality reduction
Once a dataset has been clustered, it is usually possible to measure each instance’s
affinity with each cluster; affinity is any measure of how well an instance fits into
a cluster. Each instance’s feature vector x can then be replaced with the vector of
its cluster affinities. If there are k clusters, then this vector is k-dimensional. The
new vector is typically much lower-dimensional than the original feature vector,
but it can preserve enough information for further processing.

Clustering Algorithms: k-means and DBSCAN | 261

Feature engineering
The cluster affinities can often be useful as extra features. For example, we used
k-means in Chapter 2 to add geographic cluster affinity features to the California
housing dataset, and they helped us get better performance.

Anomaly detection (also called outlier detection)
Any instance that has a low affinity to all the clusters is likely to be an anomaly.
For example, if you have clustered the users of your website based on their
behavior, you can detect users with unusual behavior, such as an unusual number
of requests per second.

Semi-supervised learning
If you only have a few labels, you could perform clustering and propagate the
labels to all the instances in the same cluster. This technique can greatly increase
the number of labels available for a subsequent supervised learning algorithm,
and thus improve its performance.

Search engines
Some search engines let you search for images that are similar to a reference
image. To build such a system, you would first apply a clustering algorithm to
all the images in your database; similar images would end up in the same cluster.
Then when a user provides a reference image, all you’d need to do is use the
trained clustering model to find this image’s cluster, and you could then simply
return all the images from this cluster.

Image segmentation
By clustering pixels according to their color, then replacing each pixel’s color
with the mean color of its cluster, it is possible to considerably reduce the
number of different colors in an image. Image segmentation is used in many
object detection and tracking systems, as it makes it easier to detect the contour
of each object.

There is no universal definition of what a cluster is: it really depends on the context,
and different algorithms will capture different kinds of clusters. Some algorithms
look for instances centered around a particular point, called a centroid. Others look
for continuous regions of densely packed instances: these clusters can take on any
shape. Some algorithms are hierarchical, looking for clusters of clusters. And the list
goes on.

In this section, we will look at two popular clustering algorithms, k-means and
DBSCAN, and explore some of their applications, such as nonlinear dimensionality
reduction, semi-supervised learning, and anomaly detection.

262 | Chapter 9: Unsupervised Learning Techniques

1 Stuart P. Lloyd, “Least Squares Quantization in PCM”, IEEE Transactions on Information Theory 28, no. 2
(1982): 129–137.

k-means
Consider the unlabeled dataset represented in Figure 9-2: you can clearly see five
blobs of instances. The k-means algorithm is a simple algorithm capable of clustering
this kind of dataset very quickly and efficiently, often in just a few iterations. It
was proposed by Stuart Lloyd at Bell Labs in 1957 as a technique for pulse-code
modulation, but it was only published outside of the company in 1982.1 In 1965,
Edward W. Forgy had published virtually the same algorithm, so k-means is some‐
times referred to as the Lloyd–Forgy algorithm.

Figure 9-2. An unlabeled dataset composed of five blobs of instances

Let’s train a k-means clusterer on this dataset. It will try to find each blob’s center and
assign each instance to the closest blob:

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

X, y = make_blobs([...]) # make the blobs: y contains the cluster IDs, but we
 # will not use them; that's what we want to predict
k = 5
kmeans = KMeans(n_clusters=k, random_state=42)
y_pred = kmeans.fit_predict(X)

Note that you have to specify the number of clusters k that the algorithm must find.
In this example, it is pretty obvious from looking at the data that k should be set to 5,
but in general it is not that easy. We will discuss this shortly.

Each instance will be assigned to one of the five clusters. In the context of clustering,
an instance’s label is the index of the cluster to which the algorithm assigns this
instance; this is not to be confused with the class labels in classification, which are
used as targets (remember that clustering is an unsupervised learning task). The

Clustering Algorithms: k-means and DBSCAN | 263

https://homl.info/36

KMeans instance preserves the predicted labels of the instances it was trained on,
available via the labels_ instance variable:

>>> y_pred
array([4, 0, 1, ..., 2, 1, 0], dtype=int32)
>>> y_pred is kmeans.labels_
True

We can also take a look at the five centroids that the algorithm found:

>>> kmeans.cluster_centers_
array([[-2.80389616, 1.80117999],
 [0.20876306, 2.25551336],
 [-2.79290307, 2.79641063],
 [-1.46679593, 2.28585348],
 [-2.80037642, 1.30082566]])

You can easily assign new instances to the cluster whose centroid is closest:

>>> import numpy as np
>>> X_new = np.array([[0, 2], [3, 2], [-3, 3], [-3, 2.5]])
>>> kmeans.predict(X_new)
array([1, 1, 2, 2], dtype=int32)

If you plot the cluster’s decision boundaries, you get a Voronoi tessellation: see
Figure 9-3, where each centroid is represented with an X.

Figure 9-3. k-means decision boundaries (Voronoi tessellation)

The vast majority of the instances were clearly assigned to the appropriate cluster,
but a few instances were probably mislabeled, especially near the boundary between
the top-left cluster and the central cluster. Indeed, the k-means algorithm does not
behave very well when the blobs have very different diameters because all it cares
about when assigning an instance to a cluster is the distance to the centroid.

Instead of assigning each instance to a single cluster, which is called hard clustering, it
can be useful to give each instance a score per cluster, which is called soft clustering.
The score can be the distance between the instance and the centroid or a similarity

264 | Chapter 9: Unsupervised Learning Techniques

score (or affinity), such as the Gaussian radial basis function we used in Chapter 2. In
the KMeans class, the transform() method measures the distance from each instance
to every centroid:

>>> kmeans.transform(X_new).round(2)
array([[2.81, 0.33, 2.9 , 1.49, 2.89],
 [5.81, 2.8 , 5.85, 4.48, 5.84],
 [1.21, 3.29, 0.29, 1.69, 1.71],
 [0.73, 3.22, 0.36, 1.55, 1.22]])

In this example, the first instance in X_new is located at a distance of about 2.81
from the first centroid, 0.33 from the second centroid, 2.90 from the third centroid,
1.49 from the fourth centroid, and 2.89 from the fifth centroid. If you have a high-
dimensional dataset and you transform it this way, you end up with a k-dimensional
dataset: this transformation can be a very efficient nonlinear dimensionality reduc‐
tion technique. Alternatively, you can use these distances as extra features to train
another model, as in Chapter 2.

The k-means algorithm
So, how does the algorithm work? Well, suppose you were given the centroids. You
could easily label all the instances in the dataset by assigning each of them to the
cluster whose centroid is closest. Conversely, if you were given all the instance labels,
you could easily locate each cluster’s centroid by computing the mean of the instances
in that cluster. But you are given neither the labels nor the centroids, so how can
you proceed? Start by placing the centroids randomly (e.g., by picking k instances
at random from the dataset and using their locations as centroids). Then label the
instances, update the centroids, label the instances, update the centroids, and so on
until the centroids stop moving. The algorithm is guaranteed to converge in a finite
number of steps (usually quite small). That’s because the mean squared distance
between the instances and their closest centroids can only go down at each step, and
since it cannot be negative, it’s guaranteed to converge.

You can see the algorithm in action in Figure 9-4: the centroids are initialized
randomly (top left), then the instances are labeled (top right), then the centroids are
updated (center left), the instances are relabeled (center right), and so on. As you can
see, in just three iterations the algorithm has reached a clustering that seems close to
optimal.

The computational complexity of the algorithm is generally linear
with regard to the number of instances m, the number of clusters
k, and the number of dimensions n. However, this is only true
when the data has a clustering structure. If it does not, then in
the worst-case scenario the complexity can increase exponentially
with the number of instances. In practice, this rarely happens, and
k-means is generally one of the fastest clustering algorithms.

Clustering Algorithms: k-means and DBSCAN | 265

.

Figure 9-4. The k-means algorithm

Although the algorithm is guaranteed to converge, it may not converge to the right
solution (i.e., it may converge to a local optimum): whether it does or not depends
on the centroid initialization. Figure 9-5 shows two suboptimal solutions that the
algorithm can converge to if you are not lucky with the random initialization step.

Figure 9-5. Suboptimal solutions due to unlucky centroid initializations

Let’s take a look at a few ways you can mitigate this risk by improving the centroid
initialization.

266 | Chapter 9: Unsupervised Learning Techniques

2 David Arthur and Sergei Vassilvitskii, “k-Means++: The Advantages of Careful Seeding”, Proceedings of the
18th Annual ACM-SIAM Symposium on Discrete Algorithms (2007): 1027–1035.

Centroid initialization methods
If you happen to know approximately where the centroids should be (e.g., if you ran
another clustering algorithm earlier), then you can set the init hyperparameter to a
NumPy array containing the list of centroids, and set n_init to 1:

good_init = np.array([[-3, 3], [-3, 2], [-3, 1], [-1, 2], [0, 2]])
kmeans = KMeans(n_clusters=5, init=good_init, n_init=1, random_state=42)
kmeans.fit(X)

Another solution is to run the algorithm multiple times with different random
initializations and keep the best solution. The number of random initializations is
controlled by the n_init hyperparameter: by default it is equal to 10, which means
that the whole algorithm described earlier runs 10 times when you call fit(), and
Scikit-Learn keeps the best solution. But how exactly does it know which solution is
the best? It uses a performance metric! That metric is called the model’s inertia, which
is the sum of the squared distances between the instances and their closest centroids.
It is roughly equal to 219.4 for the model on the left in Figure 9-5, 258.6 for the model
on the right in Figure 9-5, and only 211.6 for the model in Figure 9-3. The KMeans
class runs the algorithm n_init times and keeps the model with the lowest inertia.
In this example, the model in Figure 9-3 will be selected (unless we are very unlucky
with n_init consecutive random initializations). If you are curious, a model’s inertia
is accessible via the inertia_ instance variable:

>>> kmeans.inertia_
211.59853725816836

The score() method returns the negative inertia (it’s negative because a predictor’s
score() method must always respect Scikit-Learn’s “greater is better” rule: if a predic‐
tor is better than another, its score() method should return a greater score):

>>> kmeans.score(X)
-211.5985372581684

An important improvement to the k-means algorithm, k-means++, was proposed in
a 2006 paper by David Arthur and Sergei Vassilvitskii.2 They introduced a smarter
initialization step that tends to select centroids that are distant from one another,
and this improvement makes the k-means algorithm much less likely to converge to
a suboptimal solution. The paper showed that the additional computation required
for the smarter initialization step is well worth it because it makes it possible to
drastically reduce the number of times the algorithm needs to be run to find the
optimal solution. The k-means++ initialization algorithm works like this:

1. Take one centroid c(1), chosen uniformly at random from the dataset.1.

Clustering Algorithms: k-means and DBSCAN | 267

https://homl.info/37

3 Charles Elkan, “Using the Triangle Inequality to Accelerate k-Means”, Proceedings of the 20th International
Conference on Machine Learning (2003): 147–153.

4 The triangle inequality is AC ≤ AB + BC, where A, B and C are three points and AB, AC, and BC are the
distances between these points.

5 David Sculley, “Web-Scale K-Means Clustering”, Proceedings of the 19th International Conference on World
Wide Web (2010): 1177–1178.

2. Take a new centroid c(i), choosing an instance x(i) with probability D x i 2 /2.
∑j = 1
m D x j

2, where D(x(i)) is the distance between the instance x(i) and the
closest centroid that was already chosen. This probability distribution ensures
that instances farther away from already chosen centroids are much more likely
to be selected as centroids.

3. Repeat the previous step until all k centroids have been chosen.3.

The KMeans class uses this initialization method by default.

Accelerated k-means and mini-batch k-means
Another improvement to the k-means algorithm was proposed in a 2003 paper by
Charles Elkan.3 On some large datasets with many clusters, the algorithm can be
accelerated by avoiding many unnecessary distance calculations. Elkan achieved this
by exploiting the triangle inequality (i.e., that a straight line is always the shortest dis‐
tance between two points4) and by keeping track of lower and upper bounds for dis‐
tances between instances and centroids. However, Elkan’s algorithm does not always
accelerate training, and sometimes it can even slow down training significantly; it
depends on the dataset. Still, if you want to give it a try, set algorithm="elkan".

Yet another important variant of the k-means algorithm was proposed in a 2010
paper by David Sculley.5 Instead of using the full dataset at each iteration, the algo‐
rithm is capable of using mini-batches, moving the centroids just slightly at each
iteration. This speeds up the algorithm (typically by a factor of three to four) and
makes it possible to cluster huge datasets that do not fit in memory. Scikit-Learn
implements this algorithm in the MiniBatchKMeans class, which you can use just like
the KMeans class:

from sklearn.cluster import MiniBatchKMeans

minibatch_kmeans = MiniBatchKMeans(n_clusters=5, random_state=42)
minibatch_kmeans.fit(X)

If the dataset does not fit in memory, the simplest option is to use the memmap class, as
we did for incremental PCA in Chapter 8. Alternatively, you can pass one mini-batch
at a time to the partial_fit() method, but this will require much more work, since
you will need to perform multiple initializations and select the best one yourself.

268 | Chapter 9: Unsupervised Learning Techniques

https://homl.info/38
https://homl.info/39
https://homl.info/39

Although the mini-batch k-means algorithm is much faster than the regular k-means
algorithm, its inertia is generally slightly worse. You can see this in Figure 9-6: the
plot on the left compares the inertias of mini-batch k-means and regular k-means
models trained on the previous five-blobs dataset using various numbers of clusters k.
The difference between the two curves is small, but visible. In the plot on the right,
you can see that mini-batch k-means is roughly 3.5 times faster than regular k-means
on this dataset.

Figure 9-6. Mini-batch k-means has a higher inertia than k-means (left) but it is much
faster (right), especially as k increases

Finding the optimal number of clusters
So far, we’ve set the number of clusters k to 5 because it was obvious by looking at the
data that this was the correct number of clusters. But in general, it won’t be so easy to
know how to set k, and the result might be quite bad if you set it to the wrong value.
As you can see in Figure 9-7, for this dataset setting k to 3 or 8 results in fairly bad
models.

You might be thinking that you could just pick the model with the lowest inertia.
Unfortunately, it is not that simple. The inertia for k=3 is about 653.2, which is much
higher than for k=5 (211.6). But with k=8, the inertia is just 119.1. The inertia is not
a good performance metric when trying to choose k because it keeps getting lower as
we increase k. Indeed, the more clusters there are, the closer each instance will be to
its closest centroid, and therefore the lower the inertia will be. Let’s plot the inertia as
a function of k. When we do this, the curve often contains an inflexion point called
the elbow (see Figure 9-8).

Clustering Algorithms: k-means and DBSCAN | 269

Figure 9-7. Bad choices for the number of clusters: when k is too small, separate clusters
get merged (left), and when k is too large, some clusters get chopped into multiple pieces
(right)

Figure 9-8. Plotting the inertia as a function of the number of clusters k

As you can see, the inertia drops very quickly as we increase k up to 4, but then
it decreases much more slowly as we keep increasing k. This curve has roughly the
shape of an arm, and there is an elbow at k = 4. So, if we did not know better, we
might think 4 was a good choice: any lower value would be dramatic, while any
higher value would not help much, and we might just be splitting perfectly good
clusters in half for no good reason.

This technique for choosing the best value for the number of clusters is rather
coarse. A more precise (but also more computationally expensive) approach is to
use the silhouette score, which is the mean silhouette coefficient over all the instances.
An instance’s silhouette coefficient is equal to (b – a) / max(a, b), where a is the
mean distance to the other instances in the same cluster (i.e., the mean intra-cluster
distance) and b is the mean nearest-cluster distance (i.e., the mean distance to the
instances of the next closest cluster, defined as the one that minimizes b, excluding
the instance’s own cluster). The silhouette coefficient can vary between –1 and +1. A
coefficient close to +1 means that the instance is well inside its own cluster and far
from other clusters, while a coefficient close to 0 means that it is close to a cluster

270 | Chapter 9: Unsupervised Learning Techniques

boundary; finally, a coefficient close to –1 means that the instance may have been
assigned to the wrong cluster.

To compute the silhouette score, you can use Scikit-Learn’s silhouette_score()
function, giving it all the instances in the dataset and the labels they were assigned:

>>> from sklearn.metrics import silhouette_score
>>> silhouette_score(X, kmeans.labels_)
0.655517642572828

Let’s compare the silhouette scores for different numbers of clusters (see Figure 9-9).

Figure 9-9. Selecting the number of clusters k using the silhouette score

As you can see, this visualization is much richer than the previous one: although it
confirms that k = 4 is a very good choice, it also highlights the fact that k = 5 is quite
good as well, and much better than k = 6 or 7. This was not visible when comparing
inertias.

An even more informative visualization is obtained when we plot every instance’s
silhouette coefficient, sorted by the clusters they are assigned to and by the value of
the coefficient. This is called a silhouette diagram (see Figure 9-10). Each diagram
contains one knife shape per cluster. The shape’s height indicates the number of
instances in the cluster, and its width represents the sorted silhouette coefficients of
the instances in the cluster (wider is better).

The vertical dashed lines represent the mean silhouette score for each number of
clusters. When most of the instances in a cluster have a lower coefficient than this
score (i.e., if many of the instances stop short of the dashed line, ending to the left of
it), then the cluster is rather bad since this means its instances are much too close to
other clusters. Here we can see that when k = 3 or 6, we get bad clusters. But when
k = 4 or 5, the clusters look pretty good: most instances extend beyond the dashed
line, to the right and closer to 1.0. When k = 4, the cluster at index 1 (the second from
the bottom) is rather big. When k = 5, all clusters have similar sizes. So, even though
the overall silhouette score from k = 4 is slightly greater than for k = 5, it seems like a
good idea to use k = 5 to get clusters of similar sizes.

Clustering Algorithms: k-means and DBSCAN | 271

Figure 9-10. Analyzing the silhouette diagrams for various values of k

Limits of k-means
Despite its many merits, most notably being fast and scalable, k-means is not perfect.
As we saw, it is necessary to run the algorithm several times to avoid suboptimal
solutions, plus you need to specify the number of clusters, which can be quite a
hassle. Moreover, k-means does not behave very well when the clusters have varying
sizes, different densities, or nonspherical shapes. For example, Figure 9-11 shows how
k-means clusters a dataset containing three ellipsoidal clusters of different dimen‐
sions, densities, and orientations.

As you can see, neither of these solutions is any good. The solution on the left is
better, but it still chops off 25% of the middle cluster and assigns it to the cluster on
the right. The solution on the right is just terrible, even though its inertia is lower. So,
depending on the data, different clustering algorithms may perform better. On these
types of elliptical clusters, Gaussian mixture models work great.

272 | Chapter 9: Unsupervised Learning Techniques

Figure 9-11. k-means fails to cluster these ellipsoidal blobs properly

It is important to scale the input features (see Chapter 2) before you
run k-means, or the clusters may be very stretched and k-means
will perform poorly. Scaling the features does not guarantee that
all the clusters will be nice and spherical, but it generally helps
k-means.

Now let’s look at a few ways we can benefit from clustering. We will use k-means, but
feel free to experiment with other clustering algorithms.

Using Clustering for Image Segmentation
Image segmentation is the task of partitioning an image into multiple segments. There
are several variants:

• In color segmentation, pixels with a similar color get assigned to the same seg‐•
ment. This is sufficient in many applications. For example, if you want to analyze
satellite images to measure how much total forest area there is in a region, color
segmentation may be just fine.

• In semantic segmentation, all pixels that are part of the same object type get•
assigned to the same segment. For example, in a self-driving car’s vision system,
all pixels that are part of a pedestrian’s image might be assigned to the “pedes‐
trian” segment (there would be one segment containing all the pedestrians).

• In instance segmentation, all pixels that are part of the same individual object are•
assigned to the same segment. In this case there would be a different segment for
each pedestrian.

Clustering Algorithms: k-means and DBSCAN | 273

The state of the art in semantic or instance segmentation today is achieved using
complex architectures based on convolutional neural networks (see Chapter 14). In
this chapter we are going to focus on the (much simpler) color segmentation task,
using k-means.

We’ll start by importing the Pillow package (successor to the Python Imaging Library,
PIL), which we’ll then use to load the ladybug.png image (see the upper-left image in
Figure 9-12), assuming it’s located at filepath:

>>> import PIL
>>> image = np.asarray(PIL.Image.open(filepath))
>>> image.shape
(533, 800, 3)

The image is represented as a 3D array. The first dimension’s size is the height; the
second is the width; and the third is the number of color channels, in this case red,
green, and blue (RGB). In other words, for each pixel there is a 3D vector containing
the intensities of red, green, and blue as unsigned 8-bit integers between 0 and 255.
Some images may have fewer channels (such as grayscale images, which only have
one), and some images may have more channels (such as images with an additional
alpha channel for transparency, or satellite images, which often contain channels for
additional light frequencies (like infrared).

The following code reshapes the array to get a long list of RGB colors, then it
clusters these colors using k-means with eight clusters. It creates a segmented_img
array containing the nearest cluster center for each pixel (i.e., the mean color of
each pixel’s cluster), and lastly it reshapes this array to the original image shape.
The third line uses advanced NumPy indexing; for example, if the first 10 labels in
kmeans_.labels_ are equal to 1, then the first 10 colors in segmented_img are equal
to kmeans.cluster_centers_[1]:

X = image.reshape(-1, 3)
kmeans = KMeans(n_clusters=8, random_state=42).fit(X)
segmented_img = kmeans.cluster_centers_[kmeans.labels_]
segmented_img = segmented_img.reshape(image.shape)

This outputs the image shown in the upper right of Figure 9-12. You can experiment
with various numbers of clusters, as shown in the figure. When you use fewer than
eight clusters, notice that the ladybug’s flashy red color fails to get a cluster of its own:
it gets merged with colors from the environment. This is because k-means prefers
clusters of similar sizes. The ladybug is small—much smaller than the rest of the
image—so even though its color is flashy, k-means fails to dedicate a cluster to it.

274 | Chapter 9: Unsupervised Learning Techniques

Figure 9-12. Image segmentation using k-means with various numbers of color clusters

That wasn’t too hard, was it? Now let’s look at another application of clustering.

Using Clustering for Semi-Supervised Learning
Another use case for clustering is in semi-supervised learning, when we have plenty
of unlabeled instances and very few labeled instances. In this section, we’ll use the
digits dataset, which is a simple MNIST-like dataset containing 1,797 grayscale 8 × 8
images representing the digits 0 to 9. First, let’s load and split the dataset (it’s already
shuffled):

from sklearn.datasets import load_digits

X_digits, y_digits = load_digits(return_X_y=True)
X_train, y_train = X_digits[:1400], y_digits[:1400]
X_test, y_test = X_digits[1400:], y_digits[1400:]

We will pretend we only have labels for 50 instances. To get a baseline performance,
let’s train a logistic regression model on these 50 labeled instances:

from sklearn.linear_model import LogisticRegression

n_labeled = 50
log_reg = LogisticRegression(max_iter=10_000)
log_reg.fit(X_train[:n_labeled], y_train[:n_labeled])

Clustering Algorithms: k-means and DBSCAN | 275

We can then measure the accuracy of this model on the test set (note that the test set
must be labeled):

>>> log_reg.score(X_test, y_test)
0.7481108312342569

The model’s accuracy is just 74.8%. That’s not great: indeed, if you try training the
model on the full training set, you will find that it will reach about 90.7% accuracy.
Let’s see how we can do better. First, let’s cluster the training set into 50 clusters.
Then, for each cluster, we’ll find the image closest to the centroid. We’ll call these
images the representative images:

k = 50
kmeans = KMeans(n_clusters=k, random_state=42)
X_digits_dist = kmeans.fit_transform(X_train)
representative_digit_idx = np.argmin(X_digits_dist, axis=0)
X_representative_digits = X_train[representative_digit_idx]

Figure 9-13 shows the 50 representative images.

Figure 9-13. Fifty representative digit images (one per cluster)

Let’s look at each image and manually label them:

y_representative_digits = np.array([1, 3, 6, 0, 7, 9, 2, ..., 5, 1, 9, 9, 3, 7])

Now we have a dataset with just 50 labeled instances, but instead of being random
instances, each of them is a representative image of its cluster. Let’s see if the perfor‐
mance is any better:

>>> log_reg = LogisticRegression(max_iter=10_000)
>>> log_reg.fit(X_representative_digits, y_representative_digits)
>>> log_reg.score(X_test, y_test)
0.8488664987405542

Wow! We jumped from 74.8% accuracy to 84.9%, although we are still only training
the model on 50 instances. Since it is often costly and painful to label instances,
especially when it has to be done manually by experts, it is a good idea to label
representative instances rather than just random instances.

276 | Chapter 9: Unsupervised Learning Techniques

But perhaps we can go one step further: what if we propagated the labels to all the
other instances in the same cluster? This is called label propagation:

y_train_propagated = np.empty(len(X_train), dtype=np.int64)
for i in range(k):
 y_train_propagated[kmeans.labels_ == i] = y_representative_digits[i]

Now let’s train the model again and look at its performance:

>>> log_reg = LogisticRegression()
>>> log_reg.fit(X_train, y_train_propagated)
>>> log_reg.score(X_test, y_test)
0.8942065491183879

We got another significant accuracy boost! Let’s see if we can do even better by
ignoring the 1% of instances that are farthest from their cluster center: this should
eliminate some outliers. The following code first computes the distance from each
instance to its closest cluster center, then for each cluster it sets the 1% largest
distances to –1. Lastly, it creates a set without these instances marked with a –1
distance:

percentile_closest = 99

X_cluster_dist = X_digits_dist[np.arange(len(X_train)), kmeans.labels_]
for i in range(k):
 in_cluster = (kmeans.labels_ == i)
 cluster_dist = X_cluster_dist[in_cluster]
 cutoff_distance = np.percentile(cluster_dist, percentile_closest)
 above_cutoff = (X_cluster_dist > cutoff_distance)
 X_cluster_dist[in_cluster & above_cutoff] = -1

partially_propagated = (X_cluster_dist != -1)
X_train_partially_propagated = X_train[partially_propagated]
y_train_partially_propagated = y_train_propagated[partially_propagated]

Now let’s train the model again on this partially propagated dataset and see what
accuracy we get:

>>> log_reg = LogisticRegression(max_iter=10_000)
>>> log_reg.fit(X_train_partially_propagated, y_train_partially_propagated)
>>> log_reg.score(X_test, y_test)
0.9093198992443325

Nice! With just 50 labeled instances (only 5 examples per class on average!) we
got 90.9% accuracy, which is actually slightly higher than the performance we got
on the fully labeled digits dataset (90.7%). This is partly thanks to the fact that we
dropped some outliers, and partly because the propagated labels are actually pretty
good—their accuracy is about 97.5%, as the following code shows:

>>> (y_train_partially_propagated == y_train[partially_propagated]).mean()
0.9755555555555555

Clustering Algorithms: k-means and DBSCAN | 277

Scikit-Learn also offers two classes that can propagate labels
automatically: LabelSpreading and LabelPropagation in the
sklearn.semi_supervised package. Both classes construct a simi‐
larity matrix between all the instances, and iteratively propagate
labels from labeled instances to similar unlabeled instances. There’s
also a very different class called SelfTrainingClassifier in the
same package: you give it a base classifier (such as a RandomForest
Classifier) and it trains it on the labeled instances, then uses it to
predict labels for the unlabeled samples. It then updates the train‐
ing set with the labels it is most confident about, and repeats this
process of training and labeling until it cannot add labels anymore.
These techniques are not magic bullets, but they can occasionally
give your model a little boost.

Active Learning
To continue improving your model and your training set, the next step could be to
do a few rounds of active learning, which is when a human expert interacts with
the learning algorithm, providing labels for specific instances when the algorithm
requests them. There are many different strategies for active learning, but one of the
most common ones is called uncertainty sampling. Here is how it works:

1. The model is trained on the labeled instances gathered so far, and this model is1.
used to make predictions on all the unlabeled instances.

2. The instances for which the model is most uncertain (i.e., where its estimated2.
probability is lowest) are given to the expert for labeling.

3. You iterate this process until the performance improvement stops being worth3.
the labeling effort.

Other active learning strategies include labeling the instances that would result in
the largest model change or the largest drop in the model’s validation error, or the
instances that different models disagree on (e.g., an SVM and a random forest).

Before we move on to Gaussian mixture models, let’s take a look at DBSCAN,
another popular clustering algorithm that illustrates a very different approach based
on local density estimation. This approach allows the algorithm to identify clusters of
arbitrary shapes.

278 | Chapter 9: Unsupervised Learning Techniques

DBSCAN
The density-based spatial clustering of applications with noise (DBSCAN) algorithm
defines clusters as continuous regions of high density. Here is how it works:

• For each instance, the algorithm counts how many instances are located•
within a small distance ε (epsilon) from it. This region is called the instance’s
ε-neighborhood.

• If an instance has at least min_samples instances in its ε-neighborhood (includ‐•
ing itself), then it is considered a core instance. In other words, core instances are
those that are located in dense regions.

• All instances in the neighborhood of a core instance belong to the same cluster.•
This neighborhood may include other core instances; therefore, a long sequence
of neighboring core instances forms a single cluster.

• Any instance that is not a core instance and does not have one in its neighbor‐•
hood is considered an anomaly.

This algorithm works well if all the clusters are well separated by low-density regions.
The DBSCAN class in Scikit-Learn is as simple to use as you might expect. Let’s test it
on the moons dataset, introduced in Chapter 5:

from sklearn.cluster import DBSCAN
from sklearn.datasets import make_moons

X, y = make_moons(n_samples=1000, noise=0.05)
dbscan = DBSCAN(eps=0.05, min_samples=5)
dbscan.fit(X)

The labels of all the instances are now available in the labels_ instance variable:

>>> dbscan.labels_
array([0, 2, -1, -1, 1, 0, 0, 0, 2, 5, [...], 3, 3, 4, 2, 6, 3])

Notice that some instances have a cluster index equal to –1, which means that they
are considered as anomalies by the algorithm. The indices of the core instances
are available in the core_sample_indices_ instance variable, and the core instances
themselves are available in the components_ instance variable:

>>> dbscan.core_sample_indices_
array([0, 4, 5, 6, 7, 8, 10, 11, [...], 993, 995, 997, 998, 999])
>>> dbscan.components_
array([[-0.02137124, 0.40618608],
 [-0.84192557, 0.53058695],
 [...],
 [0.79419406, 0.60777171]])

Clustering Algorithms: k-means and DBSCAN | 279

This clustering is represented in the lefthand plot of Figure 9-14. As you can see, it
identified quite a lot of anomalies, plus seven different clusters. How disappointing!
Fortunately, if we widen each instance’s neighborhood by increasing eps to 0.2, we get
the clustering on the right, which looks perfect. Let’s continue with this model.

Figure 9-14. DBSCAN clustering using two different neighborhood radiuses

Surprisingly, the DBSCAN class does not have a predict() method, although it has
a fit_predict() method. In other words, it cannot predict which cluster a new
instance belongs to. This decision was made because different classification algo‐
rithms can be better for different tasks, so the authors decided to let the user choose
which one to use. Moreover, it’s not hard to implement. For example, let’s train a
KNeighborsClassifier:

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=50)
knn.fit(dbscan.components_, dbscan.labels_[dbscan.core_sample_indices_])

Now, given a few new instances, we can predict which clusters they most likely belong
to and even estimate a probability for each cluster:

>>> X_new = np.array([[-0.5, 0], [0, 0.5], [1, -0.1], [2, 1]])
>>> knn.predict(X_new)
array([1, 0, 1, 0])
>>> knn.predict_proba(X_new)
array([[0.18, 0.82],
 [1. , 0.],
 [0.12, 0.88],
 [1. , 0.]])

Note that we only trained the classifier on the core instances, but we could also have
chosen to train it on all the instances, or all but the anomalies: this choice depends on
the final task.

280 | Chapter 9: Unsupervised Learning Techniques

The decision boundary is represented in Figure 9-15 (the crosses represent the four
instances in X_new). Notice that since there is no anomaly in the training set, the
classifier always chooses a cluster, even when that cluster is far away. It is fairly
straightforward to introduce a maximum distance, in which case the two instances
that are far away from both clusters are classified as anomalies. To do this, use the
kneighbors() method of the KNeighborsClassifier. Given a set of instances, it
returns the distances and the indices of the k-nearest neighbors in the training set
(two matrices, each with k columns):

>>> y_dist, y_pred_idx = knn.kneighbors(X_new, n_neighbors=1)
>>> y_pred = dbscan.labels_[dbscan.core_sample_indices_][y_pred_idx]
>>> y_pred[y_dist > 0.2] = -1
>>> y_pred.ravel()
array([-1, 0, 1, -1])

Figure 9-15. Decision boundary between two clusters

In short, DBSCAN is a very simple yet powerful algorithm capable of identifying
any number of clusters of any shape. It is robust to outliers, and it has just two
hyperparameters (eps and min_samples). If the density varies significantly across
the clusters, however, or if there’s no sufficiently low-density region around some
clusters, DBSCAN can struggle to capture all the clusters properly. Moreover, its
computational complexity is roughly O(m2n), so it does not scale well to large
datasets.

You may also want to try hierarchical DBSCAN (HDBSCAN),
which is implemented in the scikit-learn-contrib project, as
it is usually better than DBSCAN at finding clusters of varying
densities.

Clustering Algorithms: k-means and DBSCAN | 281

https://github.com/scikit-learn-contrib/hdbscan

Other Clustering Algorithms
Scikit-Learn implements several more clustering algorithms that you should take a
look at. I cannot cover them all in detail here, but here is a brief overview:

Agglomerative clustering
A hierarchy of clusters is built from the bottom up. Think of many tiny bubbles
floating on water and gradually attaching to each other until there’s one big
group of bubbles. Similarly, at each iteration, agglomerative clustering connects
the nearest pair of clusters (starting with individual instances). If you drew a
tree with a branch for every pair of clusters that merged, you would get a binary
tree of clusters, where the leaves are the individual instances. This approach can
capture clusters of various shapes; it also produces a flexible and informative
cluster tree instead of forcing you to choose a particular cluster scale, and it
can be used with any pairwise distance. It can scale nicely to large numbers
of instances if you provide a connectivity matrix, which is a sparse m × m
matrix that indicates which pairs of instances are neighbors (e.g., returned by
sklearn.neighbors.kneighbors_graph()). Without a connectivity matrix, the
algorithm does not scale well to large datasets.

BIRCH
The balanced iterative reducing and clustering using hierarchies (BIRCH) algo‐
rithm was designed specifically for very large datasets, and it can be faster than
batch k-means, with similar results, as long as the number of features is not too
large (<20). During training, it builds a tree structure containing just enough
information to quickly assign each new instance to a cluster, without having to
store all the instances in the tree: this approach allows it to use limited memory
while handling huge datasets.

Mean-shift
This algorithm starts by placing a circle centered on each instance; then for each
circle it computes the mean of all the instances located within it, and it shifts
the circle so that it is centered on the mean. Next, it iterates this mean-shifting
step until all the circles stop moving (i.e., until each of them is centered on the
mean of the instances it contains). Mean-shift shifts the circles in the direction
of higher density, until each of them has found a local density maximum. Finally,
all the instances whose circles have settled in the same place (or close enough)
are assigned to the same cluster. Mean-shift has some of the same features as
DBSCAN, like how it can find any number of clusters of any shape, it has very
few hyperparameters (just one—the radius of the circles, called the bandwidth),
and it relies on local density estimation. But unlike DBSCAN, mean-shift tends
to chop clusters into pieces when they have internal density variations. Unfortu‐
nately, its computational complexity is O(m2n), so it is not suited for large
datasets.

282 | Chapter 9: Unsupervised Learning Techniques

Affinity propagation
In this algorithm, instances repeatedly exchange messages between one another
until every instance has elected another instance (or itself) to represent it. These
elected instances are called exemplars. Each exemplar and all the instances that
elected it form one cluster. In real-life politics, you typically want to vote for a
candidate whose opinions are similar to yours, but you also want them to win
the election, so you might choose a candidate you don’t fully agree with, but
who is more popular. You typically evaluate popularity through polls. Affinity
propagation works in a similar way, and it tends to choose exemplars located
near the center of clusters, similar to k-means. But unlike with k-means, you
don’t have to pick a number of clusters ahead of time: it is determined during
training. Moreover, affinity propagation can deal nicely with clusters of different
sizes. Sadly, this algorithm has a computational complexity of O(m2), so it is not
suited for large datasets.

Spectral clustering
This algorithm takes a similarity matrix between the instances and creates a low-
dimensional embedding from it (i.e., it reduces the matrix’s dimensionality), then
it uses another clustering algorithm in this low-dimensional space (Scikit-Learn’s
implementation uses k-means). Spectral clustering can capture complex cluster
structures, and it can also be used to cut graphs (e.g., to identify clusters of
friends on a social network). It does not scale well to large numbers of instances,
and it does not behave well when the clusters have very different sizes.

Now let’s dive into Gaussian mixture models, which can be used for density estima‐
tion, clustering, and anomaly detection.

Gaussian Mixtures
A Gaussian mixture model (GMM) is a probabilistic model that assumes that the
instances were generated from a mixture of several Gaussian distributions whose
parameters are unknown. All the instances generated from a single Gaussian distri‐
bution form a cluster that typically looks like an ellipsoid. Each cluster can have
a different ellipsoidal shape, size, density, and orientation, just like in Figure 9-11.
When you observe an instance, you know it was generated from one of the Gaussian
distributions, but you are not told which one, and you do not know what the
parameters of these distributions are.

There are several GMM variants. In the simplest variant, implemented in the
GaussianMixture class, you must know in advance the number k of Gaussian dis‐
tributions. The dataset X is assumed to have been generated through the following
probabilistic process:

Gaussian Mixtures | 283

6 Phi (ϕ or φ) is the 21st letter of the Greek alphabet.

• For each instance, a cluster is picked randomly from among k clusters. The•
probability of choosing the jth cluster is the cluster’s weight ϕ(j).6 The index of the
cluster chosen for the ith instance is noted z(i).

• If the ith instance was assigned to the jth cluster (i.e., z(i) = j), then the location x(i)•
of this instance is sampled randomly from the Gaussian distribution with mean
μ(j) and covariance matrix Σ(j). This is noted x(i) ~ N(μ(j), Σ(j)).

So what can you do with such a model? Well, given the dataset X, you typically want
to start by estimating the weights ϕ and all the distribution parameters μ(1) to μ(k) and
Σ(1) to Σ(k). Scikit-Learn’s GaussianMixture class makes this super easy:

from sklearn.mixture import GaussianMixture

gm = GaussianMixture(n_components=3, n_init=10)
gm.fit(X)

Let’s look at the parameters that the algorithm estimated:

>>> gm.weights_
array([0.39025715, 0.40007391, 0.20966893])
>>> gm.means_
array([[0.05131611, 0.07521837],
 [-1.40763156, 1.42708225],
 [3.39893794, 1.05928897]])
>>> gm.covariances_
array([[[0.68799922, 0.79606357],
 [0.79606357, 1.21236106]],

 [[0.63479409, 0.72970799],
 [0.72970799, 1.1610351]],

 [[1.14833585, -0.03256179],
 [-0.03256179, 0.95490931]]])

Great, it worked fine! Indeed, two of the three clusters were generated with 500
instances each, while the third cluster only contains 250 instances. So the true cluster
weights are 0.4, 0.4, and 0.2, respectively, and that’s roughly what the algorithm
found. Similarly, the true means and covariance matrices are quite close to those
found by the algorithm. But how? This class relies on the expectation-maximization
(EM) algorithm, which has many similarities with the k-means algorithm: it also ini‐
tializes the cluster parameters randomly, then it repeats two steps until convergence,
first assigning instances to clusters (this is called the expectation step) and then
updating the clusters (this is called the maximization step). Sounds familiar, right?
In the context of clustering, you can think of EM as a generalization of k-means
that not only finds the cluster centers (μ(1) to μ(k)), but also their size, shape, and

284 | Chapter 9: Unsupervised Learning Techniques

orientation (Σ(1) to Σ(k)), as well as their relative weights (ϕ(1) to ϕ(k)). Unlike k-means,
though, EM uses soft cluster assignments, not hard assignments. For each instance,
during the expectation step, the algorithm estimates the probability that it belongs
to each cluster (based on the current cluster parameters). Then, during the maximi‐
zation step, each cluster is updated using all the instances in the dataset, with each
instance weighted by the estimated probability that it belongs to that cluster. These
probabilities are called the responsibilities of the clusters for the instances. During the
maximization step, each cluster’s update will mostly be impacted by the instances it is
most responsible for.

Unfortunately, just like k-means, EM can end up converging to
poor solutions, so it needs to be run several times, keeping only the
best solution. This is why we set n_init to 10. Be careful: by default
n_init is set to 1.

You can check whether or not the algorithm converged and how many iterations it
took:

>>> gm.converged_
True
>>> gm.n_iter_
4

Now that you have an estimate of the location, size, shape, orientation, and relative
weight of each cluster, the model can easily assign each instance to the most likely
cluster (hard clustering) or estimate the probability that it belongs to a particular
cluster (soft clustering). Just use the predict() method for hard clustering, or the
predict_proba() method for soft clustering:

>>> gm.predict(X)
array([0, 0, 1, ..., 2, 2, 2])
>>> gm.predict_proba(X).round(3)
array([[0.977, 0. , 0.023],
 [0.983, 0.001, 0.016],
 [0. , 1. , 0.],
 ...,
 [0. , 0. , 1.],
 [0. , 0. , 1.],
 [0. , 0. , 1.]])

A Gaussian mixture model is a generative model, meaning you can sample new
instances from it (note that they are ordered by cluster index):

Gaussian Mixtures | 285

>>> X_new, y_new = gm.sample(6)
>>> X_new
array([[-0.86944074, -0.32767626],
 [0.29836051, 0.28297011],
 [-2.8014927 , -0.09047309],
 [3.98203732, 1.49951491],
 [3.81677148, 0.53095244],
 [2.84104923, -0.73858639]])
>>> y_new
array([0, 0, 1, 2, 2, 2])

It is also possible to estimate the density of the model at any given location. This
is achieved using the score_samples() method: for each instance it is given, this
method estimates the log of the probability density function (PDF) at that location.
The greater the score, the higher the density:

>>> gm.score_samples(X).round(2)
array([-2.61, -3.57, -3.33, ..., -3.51, -4.4 , -3.81])

If you compute the exponential of these scores, you get the value of the PDF at the
location of the given instances. These are not probabilities, but probability densities:
they can take on any positive value, not just a value between 0 and 1. To estimate
the probability that an instance will fall within a particular region, you would have
to integrate the PDF over that region (if you do so over the entire space of possible
instance locations, the result will be 1).

Figure 9-16 shows the cluster means, the decision boundaries (dashed lines), and the
density contours of this model.

Figure 9-16. Cluster means, decision boundaries, and density contours of a trained
Gaussian mixture model

286 | Chapter 9: Unsupervised Learning Techniques

Nice! The algorithm clearly found an excellent solution. Of course, we made its task
easy by generating the data using a set of 2D Gaussian distributions (unfortunately,
real-life data is not always so Gaussian and low-dimensional). We also gave the
algorithm the correct number of clusters. When there are many dimensions, or many
clusters, or few instances, EM can struggle to converge to the optimal solution. You
might need to reduce the difficulty of the task by limiting the number of parameters
that the algorithm has to learn. One way to do this is to limit the range of shapes and
orientations that the clusters can have. This can be achieved by imposing constraints
on the covariance matrices. To do this, set the covariance_type hyperparameter to
one of the following values:

"spherical"

All clusters must be spherical, but they can have different diameters (i.e., differ‐
ent variances).

"diag"

Clusters can take on any ellipsoidal shape of any size, but the ellipsoid’s axes must
be parallel to the coordinate axes (i.e., the covariance matrices must be diagonal).

"tied"

All clusters must have the same ellipsoidal shape, size, and orientation (i.e., all
clusters share the same covariance matrix).

By default, covariance_type is equal to "full", which means that each cluster
can take on any shape, size, and orientation (it has its own unconstrained cova‐
riance matrix). Figure 9-17 plots the solutions found by the EM algorithm when
covariance_type is set to "tied" or "spherical".

Figure 9-17. Gaussian mixtures for tied clusters (left) and spherical clusters (right)

Gaussian Mixtures | 287

The computational complexity of training a GaussianMixture
model depends on the number of instances m, the number of
dimensions n, the number of clusters k, and the constraints on
the covariance matrices. If covariance_type is "spherical" or
"diag", it is O(kmn), assuming the data has a clustering structure.
If covariance_type is "tied" or "full", it is O(kmn2 + kn3), so it
will not scale to large numbers of features.

Gaussian mixture models can also be used for anomaly detection. We’ll see how in
the next section.

Using Gaussian Mixtures for Anomaly Detection
Using a Gaussian mixture model for anomaly detection is quite simple: any instance
located in a low-density region can be considered an anomaly. You must define
what density threshold you want to use. For example, in a manufacturing company
that tries to detect defective products, the ratio of defective products is usually well
known. Say it is equal to 2%. You then set the density threshold to be the value that
results in having 2% of the instances located in areas below that threshold density. If
you notice that you get too many false positives (i.e., perfectly good products that are
flagged as defective), you can lower the threshold. Conversely, if you have too many
false negatives (i.e., defective products that the system does not flag as defective), you
can increase the threshold. This is the usual precision/recall trade-off (see Chapter 3).
Here is how you would identify the outliers using the fourth percentile lowest density
as the threshold (i.e., approximately 4% of the instances will be flagged as anomalies):

densities = gm.score_samples(X)
density_threshold = np.percentile(densities, 2)
anomalies = X[densities < density_threshold]

Figure 9-18 represents these anomalies as stars.

A closely related task is novelty detection: it differs from anomaly detection in that the
algorithm is assumed to be trained on a “clean” dataset, uncontaminated by outliers,
whereas anomaly detection does not make this assumption. Indeed, outlier detection
is often used to clean up a dataset.

Gaussian mixture models try to fit all the data, including the outli‐
ers; if you have too many of them this will bias the model’s view
of “normality”, and some outliers may wrongly be considered as
normal. If this happens, you can try to fit the model once, use it
to detect and remove the most extreme outliers, then fit the model
again on the cleaned-up dataset. Another approach is to use robust
covariance estimation methods (see the EllipticEnvelope class).

288 | Chapter 9: Unsupervised Learning Techniques

Figure 9-18. Anomaly detection using a Gaussian mixture model

Just like k-means, the GaussianMixture algorithm requires you to specify the number
of clusters. So how can you find that number?

Selecting the Number of Clusters
With k-means, you can use the inertia or the silhouette score to select the appropriate
number of clusters. But with Gaussian mixtures, it is not possible to use these metrics
because they are not reliable when the clusters are not spherical or have different
sizes. Instead, you can try to find the model that minimizes a theoretical information
criterion, such as the Bayesian information criterion (BIC) or the Akaike information
criterion (AIC), defined in Equation 9-1.

Equation 9-1. Bayesian information criterion (BIC) and Akaike information
criterion (AIC)

BIC = log m p − 2 log ℒ

AIC = 2p − 2 log ℒ

In these equations:

• m is the number of instances, as always.•
• p is the number of parameters learned by the model.•

• ℒ is the maximized value of the likelihood function of the model.•

Gaussian Mixtures | 289

Both the BIC and the AIC penalize models that have more parameters to learn (e.g.,
more clusters) and reward models that fit the data well. They often end up selecting
the same model. When they differ, the model selected by the BIC tends to be simpler
(fewer parameters) than the one selected by the AIC, but tends to not fit the data
quite as well (this is especially true for larger datasets).

Likelihood Function
The terms “probability” and “likelihood” are often used interchangeably in everyday
language, but they have very different meanings in statistics. Given a statistical model
with some parameters θ, the word “probability” is used to describe how plausible a
future outcome x is (knowing the parameter values θ), while the word “likelihood”
is used to describe how plausible a particular set of parameter values θ are, after the
outcome x is known.

Consider a 1D mixture model of two Gaussian distributions centered at –4 and +1.
For simplicity, this toy model has a single parameter θ that controls the standard devi‐
ations of both distributions. The top-left contour plot in Figure 9-19 shows the entire
model f(x; θ) as a function of both x and θ. To estimate the probability distribution of
a future outcome x, you need to set the model parameter θ. For example, if you set θ
to 1.3 (the horizontal line), you get the probability density function f(x; θ=1.3) shown
in the lower-left plot. Say you want to estimate the probability that x will fall between
–2 and +2. You must calculate the integral of the PDF on this range (i.e., the surface of
the shaded region). But what if you don’t know θ, and instead if you have observed a
single instance x=2.5 (the vertical line in the upper-left plot)? In this case, you get the
likelihood function ℒ(θ|x=2.5)=f(x=2.5; θ), represented in the upper-right plot.

Figure 9-19. A model’s parametric function (top left), and some derived functions: a PDF
(lower left), a likelihood function (top right), and a log likelihood function (lower right)

290 | Chapter 9: Unsupervised Learning Techniques

In short, the PDF is a function of x (with θ fixed), while the likelihood function is a
function of θ (with x fixed). It is important to understand that the likelihood function
is not a probability distribution: if you integrate a probability distribution over all
possible values of x, you always get 1, but if you integrate the likelihood function over
all possible values of θ the result can be any positive value.

Given a dataset X, a common task is to try to estimate the most likely values for the
model parameters. To do this, you must find the values that maximize the likelihood
function, given X. In this example, if you have observed a single instance x=2.5, the
maximum likelihood estimate (MLE) of θ is θ=1.5. If a prior probability distribution
g over θ exists, it is possible to take it into account by maximizing ℒ(θ|x)g(θ) rather
than just maximizing ℒ(θ|x). This is called maximum a-posteriori (MAP) estimation.
Since MAP constrains the parameter values, you can think of it as a regularized
version of MLE.

Notice that maximizing the likelihood function is equivalent to maximizing its loga‐
rithm (represented in the lower-right plot in Figure 9-19). Indeed, the logarithm is a
strictly increasing function, so if θ maximizes the log likelihood, it also maximizes the
likelihood. It turns out that it is generally easier to maximize the log likelihood. For
example, if you observed several independent instances x(1) to x(m), you would need to
find the value of θ that maximizes the product of the individual likelihood functions.
But it is equivalent, and much simpler, to maximize the sum (not the product) of
the log likelihood functions, thanks to the magic of the logarithm which converts
products into sums: log(ab) = log(a) + log(b).

Once you have estimated θ, the value of θ that maximizes the likelihood function,
then you are ready to compute ℒ = ℒ θ,X , which is the value used to compute the
AIC and BIC; you can think of it as a measure of how well the model fits the data.

To compute the BIC and AIC, call the bic() and aic() methods:

>>> gm.bic(X)
8189.747000497186
>>> gm.aic(X)
8102.521720382148

Figure 9-20 shows the BIC for different numbers of clusters k. As you can see, both
the BIC and the AIC are lowest when k=3, so it is most likely the best choice.

Gaussian Mixtures | 291

Figure 9-20. AIC and BIC for different numbers of clusters k

Bayesian Gaussian Mixture Models
Rather than manually searching for the optimal number of clusters, you can use
the BayesianGaussianMixture class, which is capable of giving weights equal (or
close) to zero to unnecessary clusters. Set the number of clusters n_components to
a value that you have good reason to believe is greater than the optimal number of
clusters (this assumes some minimal knowledge about the problem at hand), and the
algorithm will eliminate the unnecessary clusters automatically. For example, let’s set
the number of clusters to 10 and see what happens:

>>> from sklearn.mixture import BayesianGaussianMixture
>>> bgm = BayesianGaussianMixture(n_components=10, n_init=10, random_state=42)
>>> bgm.fit(X)
>>> bgm.weights_.round(2)
array([0.4 , 0.21, 0.4 , 0. , 0. , 0. , 0. , 0. , 0. , 0.])

Perfect: the algorithm automatically detected that only three clusters are needed, and
the resulting clusters are almost identical to the ones in Figure 9-16.

A final note about Gaussian mixture models: although they work great on clusters
with ellipsoidal shapes, they don’t do so well with clusters of very different shapes.
For example, let’s see what happens if we use a Bayesian Gaussian mixture model to
cluster the moons dataset (see Figure 9-21).

Oops! The algorithm desperately searched for ellipsoids, so it found eight different
clusters instead of two. The density estimation is not too bad, so this model could
perhaps be used for anomaly detection, but it failed to identify the two moons. To
conclude this chapter, let’s take a quick look at a few algorithms capable of dealing
with arbitrarily shaped clusters.

292 | Chapter 9: Unsupervised Learning Techniques

Figure 9-21. Fitting a Gaussian mixture to nonellipsoidal clusters

Other Algorithms for Anomaly and Novelty Detection
Scikit-Learn implements other algorithms dedicated to anomaly detection or novelty
detection:

Fast-MCD (minimum covariance determinant)
Implemented by the EllipticEnvelope class, this algorithm is useful for outlier
detection, in particular to clean up a dataset. It assumes that the normal instances
(inliers) are generated from a single Gaussian distribution (not a mixture). It also
assumes that the dataset is contaminated with outliers that were not generated
from this Gaussian distribution. When the algorithm estimates the parameters
of the Gaussian distribution (i.e., the shape of the elliptic envelope around the
inliers), it is careful to ignore the instances that are most likely outliers. This
technique gives a better estimation of the elliptic envelope and thus makes the
algorithm better at identifying the outliers.

Isolation forest
This is an efficient algorithm for outlier detection, especially in high-dimensional
datasets. The algorithm builds a random forest in which each decision tree is
grown randomly: at each node, it picks a feature randomly, then it picks a
random threshold value (between the min and max values) to split the dataset in
two. The dataset gradually gets chopped into pieces this way, until all instances
end up isolated from the other instances. Anomalies are usually far from other
instances, so on average (across all the decision trees) they tend to get isolated in
fewer steps than normal instances.

Local outlier factor (LOF)
This algorithm is also good for outlier detection. It compares the density of
instances around a given instance to the density around its neighbors. An anom‐
aly is often more isolated than its k-nearest neighbors.

Gaussian Mixtures | 293

One-class SVM
This algorithm is better suited for novelty detection. Recall that a kernelized
SVM classifier separates two classes by first (implicitly) mapping all the instances
to a high-dimensional space, then separating the two classes using a linear SVM
classifier within this high-dimensional space (see Chapter 5). Since we just have
one class of instances, the one-class SVM algorithm instead tries to separate the
instances in high-dimensional space from the origin. In the original space, this
will correspond to finding a small region that encompasses all the instances.
If a new instance does not fall within this region, it is an anomaly. There are
a few hyperparameters to tweak: the usual ones for a kernelized SVM, plus a
margin hyperparameter that corresponds to the probability of a new instance
being mistakenly considered as novel when it is in fact normal. It works great,
especially with high-dimensional datasets, but like all SVMs it does not scale to
large datasets.

PCA and other dimensionality reduction techniques with an inverse_transform()
method

If you compare the reconstruction error of a normal instance with the recon‐
struction error of an anomaly, the latter will usually be much larger. This is a
simple and often quite efficient anomaly detection approach (see this chapter’s
exercises for an example).

Exercises
1. How would you define clustering? Can you name a few clustering algorithms?1.
2. What are some of the main applications of clustering algorithms?2.
3. Describe two techniques to select the right number of clusters when using3.

k-means.
4. What is label propagation? Why would you implement it, and how?4.
5. Can you name two clustering algorithms that can scale to large datasets? And two5.

that look for regions of high density?
6. Can you think of a use case where active learning would be useful? How would6.

you implement it?
7. What is the difference between anomaly detection and novelty detection?7.
8. What is a Gaussian mixture? What tasks can you use it for?8.
9. Can you name two techniques to find the right number of clusters when using a9.

Gaussian mixture model?
10. The classic Olivetti faces dataset contains 400 grayscale 64 × 64–pixel images of10.

faces. Each image is flattened to a 1D vector of size 4,096. Forty different people
were photographed (10 times each), and the usual task is to train a model that

294 | Chapter 9: Unsupervised Learning Techniques

can predict which person is represented in each picture. Load the dataset using
the sklearn.datasets.fetch_olivetti_faces() function, then split it into a
training set, a validation set, and a test set (note that the dataset is already scaled
between 0 and 1). Since the dataset is quite small, you will probably want to
use stratified sampling to ensure that there are the same number of images per
person in each set. Next, cluster the images using k-means, and ensure that you
have a good number of clusters (using one of the techniques discussed in this
chapter). Visualize the clusters: do you see similar faces in each cluster?

11. Continuing with the Olivetti faces dataset, train a classifier to predict which11.
person is represented in each picture, and evaluate it on the validation set. Next,
use k-means as a dimensionality reduction tool, and train a classifier on the
reduced set. Search for the number of clusters that allows the classifier to get
the best performance: what performance can you reach? What if you append the
features from the reduced set to the original features (again, searching for the
best number of clusters)?

12. Train a Gaussian mixture model on the Olivetti faces dataset. To speed up the12.
algorithm, you should probably reduce the dataset’s dimensionality (e.g., use
PCA, preserving 99% of the variance). Use the model to generate some new
faces (using the sample() method), and visualize them (if you used PCA, you
will need to use its inverse_transform() method). Try to modify some images
(e.g., rotate, flip, darken) and see if the model can detect the anomalies (i.e.,
compare the output of the score_samples() method for normal images and for
anomalies).

13. Some dimensionality reduction techniques can also be used for anomaly detec‐13.
tion. For example, take the Olivetti faces dataset and reduce it with PCA, preserv‐
ing 99% of the variance. Then compute the reconstruction error for each image.
Next, take some of the modified images you built in the previous exercise and
look at their reconstruction error: notice how much larger it is. If you plot a
reconstructed image, you will see why: it tries to reconstruct a normal face.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

Exercises | 295

https://homl.info/colab3

PART II

Neural Networks and Deep Learning

1 You can get the best of both worlds by being open to biological inspirations without being afraid to create
biologically unrealistic models, as long as they work well.

CHAPTER 10

Introduction to Artificial Neural
Networks with Keras

Birds inspired us to fly, burdock plants inspired Velcro, and nature has inspired
countless more inventions. It seems only logical, then, to look at the brain’s architec‐
ture for inspiration on how to build an intelligent machine. This is the logic that
sparked artificial neural networks (ANNs), machine learning models inspired by the
networks of biological neurons found in our brains. However, although planes were
inspired by birds, they don’t have to flap their wings to fly. Similarly, ANNs have
gradually become quite different from their biological cousins. Some researchers
even argue that we should drop the biological analogy altogether (e.g., by saying
“units” rather than “neurons”), lest we restrict our creativity to biologically plausible
systems.1

ANNs are at the very core of deep learning. They are versatile, powerful, and scalable,
making them ideal to tackle large and highly complex machine learning tasks such
as classifying billions of images (e.g., Google Images), powering speech recognition
services (e.g., Apple’s Siri), recommending the best videos to watch to hundreds of
millions of users every day (e.g., YouTube), or learning to beat the world champion at
the game of Go (DeepMind’s AlphaGo).

The first part of this chapter introduces artificial neural networks, starting with a
quick tour of the very first ANN architectures and leading up to multilayer percep‐
trons, which are heavily used today (other architectures will be explored in the next
chapters). In the second part, we will look at how to implement neural networks
using TensorFlow’s Keras API. This is a beautifully designed and simple high-level

299

2 Warren S. McCulloch and Walter Pitts, “A Logical Calculus of the Ideas Immanent in Nervous Activity”, The
Bulletin of Mathematical Biology 5, no. 4 (1943): 115–113.

API for building, training, evaluating, and running neural networks. But don’t be
fooled by its simplicity: it is expressive and flexible enough to let you build a wide
variety of neural network architectures. In fact, it will probably be sufficient for most
of your use cases. And should you ever need extra flexibility, you can always write
custom Keras components using its lower-level API, or even use TensorFlow directly,
as you will see in Chapter 12.

But first, let’s go back in time to see how artificial neural networks came to be!

From Biological to Artificial Neurons
Surprisingly, ANNs have been around for quite a while: they were first introduced
back in 1943 by the neurophysiologist Warren McCulloch and the mathematician
Walter Pitts. In their landmark paper2 “A Logical Calculus of Ideas Immanent in
Nervous Activity”, McCulloch and Pitts presented a simplified computational model
of how biological neurons might work together in animal brains to perform complex
computations using propositional logic. This was the first artificial neural network
architecture. Since then many other architectures have been invented, as you will see.

The early successes of ANNs led to the widespread belief that we would soon be
conversing with truly intelligent machines. When it became clear in the 1960s that
this promise would go unfulfilled (at least for quite a while), funding flew elsewhere,
and ANNs entered a long winter. In the early 1980s, new architectures were invented
and better training techniques were developed, sparking a revival of interest in
connectionism, the study of neural networks. But progress was slow, and by the 1990s
other powerful machine learning techniques had been invented, such as support
vector machines (see Chapter 5). These techniques seemed to offer better results
and stronger theoretical foundations than ANNs, so once again the study of neural
networks was put on hold.

We are now witnessing yet another wave of interest in ANNs. Will this wave die out
like the previous ones did? Well, here are a few good reasons to believe that this time
is different and that the renewed interest in ANNs will have a much more profound
impact on our lives:

• There is now a huge quantity of data available to train neural networks, and•
ANNs frequently outperform other ML techniques on very large and complex
problems.

• The tremendous increase in computing power since the 1990s now makes it•
possible to train large neural networks in a reasonable amount of time. This is

300 | Chapter 10: Introduction to Artificial Neural Networks with Keras

https://homl.info/43

3 They are not actually attached, just so close that they can very quickly exchange chemical signals.

in part due to Moore’s law (the number of components in integrated circuits
has doubled about every 2 years over the last 50 years), but also thanks to the
gaming industry, which has stimulated the production of powerful GPU cards
by the millions. Moreover, cloud platforms have made this power accessible to
everyone.

• The training algorithms have been improved. To be fair they are only slightly•
different from the ones used in the 1990s, but these relatively small tweaks have
had a huge positive impact.

• Some theoretical limitations of ANNs have turned out to be benign in practice.•
For example, many people thought that ANN training algorithms were doomed
because they were likely to get stuck in local optima, but it turns out that this
is not a big problem in practice, especially for larger neural networks: the local
optima often perform almost as well as the global optimum.

• ANNs seem to have entered a virtuous circle of funding and progress. Amazing•
products based on ANNs regularly make the headline news, which pulls more
and more attention and funding toward them, resulting in more and more
progress and even more amazing products.

Biological Neurons
Before we discuss artificial neurons, let’s take a quick look at a biological neuron
(represented in Figure 10-1). It is an unusual-looking cell mostly found in animal
brains. It’s composed of a cell body containing the nucleus and most of the cell’s
complex components, many branching extensions called dendrites, plus one very long
extension called the axon. The axon’s length may be just a few times longer than the
cell body, or up to tens of thousands of times longer. Near its extremity the axon splits
off into many branches called telodendria, and at the tip of these branches are minus‐
cule structures called synaptic terminals (or simply synapses), which are connected
to the dendrites or cell bodies of other neurons.3 Biological neurons produce short
electrical impulses called action potentials (APs, or just signals), which travel along
the axons and make the synapses release chemical signals called neurotransmitters.
When a neuron receives a sufficient amount of these neurotransmitters within a
few milliseconds, it fires its own electrical impulses (actually, it depends on the
neurotransmitters, as some of them inhibit the neuron from firing).

From Biological to Artificial Neurons | 301

4 Image by Bruce Blaus (Creative Commons 3.0). Reproduced from https://en.wikipedia.org/wiki/Neuron.
5 In the context of machine learning, the phrase “neural networks” generally refers to ANNs, not BNNs.
6 Drawing of a cortical lamination by S. Ramon y Cajal (public domain). Reproduced from https://en.wikipe

dia.org/wiki/Cerebral_cortex.

Figure 10-1. A biological neuron4

Thus, individual biological neurons seem to behave in a simple way, but they’re
organized in a vast network of billions, with each neuron typically connected to
thousands of other neurons. Highly complex computations can be performed by
a network of fairly simple neurons, much like a complex anthill can emerge from
the combined efforts of simple ants. The architecture of biological neural networks
(BNNs)5 is the subject of active research, but some parts of the brain have been map‐
ped. These efforts show that neurons are often organized in consecutive layers, espe‐
cially in the cerebral cortex (the outer layer of the brain), as shown in Figure 10-2.

Figure 10-2. Multiple layers in a biological neural network (human cortex)6

302 | Chapter 10: Introduction to Artificial Neural Networks with Keras

https://creativecommons.org/licenses/by/3.0
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Cerebral_cortex

Logical Computations with Neurons
McCulloch and Pitts proposed a very simple model of the biological neuron, which
later became known as an artificial neuron: it has one or more binary (on/off) inputs
and one binary output. The artificial neuron activates its output when more than a
certain number of its inputs are active. In their paper, McCulloch and Pitts showed
that even with such a simplified model it is possible to build a network of artificial
neurons that can compute any logical proposition you want. To see how such a
network works, let’s build a few ANNs that perform various logical computations
(see Figure 10-3), assuming that a neuron is activated when at least two of its input
connections are active.

Figure 10-3. ANNs performing simple logical computations

Let’s see what these networks do:

• The first network on the left is the identity function: if neuron A is activated,•
then neuron C gets activated as well (since it receives two input signals from
neuron A); but if neuron A is off, then neuron C is off as well.

• The second network performs a logical AND: neuron C is activated only when•
both neurons A and B are activated (a single input signal is not enough to
activate neuron C).

• The third network performs a logical OR: neuron C gets activated if either•
neuron A or neuron B is activated (or both).

• Finally, if we suppose that an input connection can inhibit the neuron’s activity•
(which is the case with biological neurons), then the fourth network computes a
slightly more complex logical proposition: neuron C is activated only if neuron
A is active and neuron B is off. If neuron A is active all the time, then you get a
logical NOT: neuron C is active when neuron B is off, and vice versa.

You can imagine how these networks can be combined to compute complex logical
expressions (see the exercises at the end of the chapter for an example).

From Biological to Artificial Neurons | 303

The Perceptron
The perceptron is one of the simplest ANN architectures, invented in 1957 by Frank
Rosenblatt. It is based on a slightly different artificial neuron (see Figure 10-4) called
a threshold logic unit (TLU), or sometimes a linear threshold unit (LTU). The inputs
and output are numbers (instead of binary on/off values), and each input connection
is associated with a weight. The TLU first computes a linear function of its inputs: z =
w1 x1 + w2 x2 + ⋯ + wn xn + b = w⊺ x + b. Then it applies a step function to the result:
hw(x) = step(z). So it’s almost like logistic regression, except it uses a step function
instead of the logistic function (Chapter 4). Just like in logistic regression, the model
parameters are the input weights w and the bias term b.

Figure 10-4. TLU: an artificial neuron that computes a weighted sum of its inputs w⊺ x,
plus a bias term b, then applies a step function

The most common step function used in perceptrons is the Heaviside step function
(see Equation 10-1). Sometimes the sign function is used instead.

Equation 10-1. Common step functions used in perceptrons (assuming threshold = 0)

heaviside z =
0 if z < 0
1 if z ≥ 0

sgn z =
−1 if z < 0
0 if z = 0
+1 if z > 0

304 | Chapter 10: Introduction to Artificial Neural Networks with Keras

A single TLU can be used for simple linear binary classification. It computes a linear
function of its inputs, and if the result exceeds a threshold, it outputs the positive
class. Otherwise, it outputs the negative class. This may remind you of logistic regres‐
sion (Chapter 4) or linear SVM classification (Chapter 5). You could, for example, use
a single TLU to classify iris flowers based on petal length and width. Training such a
TLU would require finding the right values for w1, w2, and b (the training algorithm is
discussed shortly).

A perceptron is composed of one or more TLUs organized in a single layer, where
every TLU is connected to every input. Such a layer is called a fully connected layer,
or a dense layer. The inputs constitute the input layer. And since the layer of TLUs
produces the final outputs, it is called the output layer. For example, a perceptron
with two inputs and three outputs is represented in Figure 10-5.

Figure 10-5. Architecture of a perceptron with two inputs and three output neurons

This perceptron can classify instances simultaneously into three different binary
classes, which makes it a multilabel classifier. It may also be used for multiclass
classification.

Thanks to the magic of linear algebra, Equation 10-2 can be used to efficiently
compute the outputs of a layer of artificial neurons for several instances at once.

Equation 10-2. Computing the outputs of a fully connected layer

ℎW,b X = ϕ XW + b

From Biological to Artificial Neurons | 305

In this equation:

• As always, X represents the matrix of input features. It has one row per instance•
and one column per feature.

• The weight matrix W contains all the connection weights. It has one row per•
input and one column per neuron.

• The bias vector b contains all the bias terms: one per neuron.•
• The function ϕ is called the activation function: when the artificial neurons are•

TLUs, it is a step function (we will discuss other activation functions shortly).

In mathematics, the sum of a matrix and a vector is undefined.
However, in data science, we allow “broadcasting”: adding a vector
to a matrix means adding it to every row in the matrix. So, XW + b
first multiplies X by W—which results in a matrix with one row
per instance and one column per output—then adds the vector b
to every row of that matrix, which adds each bias term to the corre‐
sponding output, for every instance. Moreover, ϕ is then applied
itemwise to each item in the resulting matrix.

So, how is a perceptron trained? The perceptron training algorithm proposed by
Rosenblatt was largely inspired by Hebb’s rule. In his 1949 book The Organization
of Behavior (Wiley), Donald Hebb suggested that when a biological neuron triggers
another neuron often, the connection between these two neurons grows stronger. Sie‐
grid Löwel later summarized Hebb’s idea in the catchy phrase, “Cells that fire together,
wire together”; that is, the connection weight between two neurons tends to increase
when they fire simultaneously. This rule later became known as Hebb’s rule (or
Hebbian learning). Perceptrons are trained using a variant of this rule that takes into
account the error made by the network when it makes a prediction; the perceptron
learning rule reinforces connections that help reduce the error. More specifically, the
perceptron is fed one training instance at a time, and for each instance it makes its
predictions. For every output neuron that produced a wrong prediction, it reinforces
the connection weights from the inputs that would have contributed to the correct
prediction. The rule is shown in Equation 10-3.

Equation 10-3. Perceptron learning rule (weight update)

wi, j
next step = wi, j + η yj − y j xi

306 | Chapter 10: Introduction to Artificial Neural Networks with Keras

7 Note that this solution is not unique: when data points are linearly separable, there is an infinity of hyper‐
planes that can separate them.

In this equation:

• wi, j is the connection weight between the ith input and the jth neuron.•
• xi is the ith input value of the current training instance.•
• y j is the output of the jth output neuron for the current training instance.•
• yj is the target output of the jth output neuron for the current training instance.•
• η is the learning rate (see Chapter 4).•

The decision boundary of each output neuron is linear, so perceptrons are incapable
of learning complex patterns (just like logistic regression classifiers). However, if the
training instances are linearly separable, Rosenblatt demonstrated that this algorithm
would converge to a solution.7 This is called the perceptron convergence theorem.

Scikit-Learn provides a Perceptron class that can be used pretty much as you would
expect—for example, on the iris dataset (introduced in Chapter 4):

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import Perceptron

iris = load_iris(as_frame=True)
X = iris.data[["petal length (cm)", "petal width (cm)"]].values
y = (iris.target == 0) # Iris setosa

per_clf = Perceptron(random_state=42)
per_clf.fit(X, y)

X_new = [[2, 0.5], [3, 1]]
y_pred = per_clf.predict(X_new) # predicts True and False for these 2 flowers

You may have noticed that the perceptron learning algorithm strongly resembles sto‐
chastic gradient descent (introduced in Chapter 4). In fact, Scikit-Learn’s Perceptron
class is equivalent to using an SGDClassifier with the following hyperparameters:
loss="perceptron", learning_rate="constant", eta0=1 (the learning rate), and
penalty=None (no regularization).

In their 1969 monograph Perceptrons, Marvin Minsky and Seymour Papert high‐
lighted a number of serious weaknesses of perceptrons—in particular, the fact that
they are incapable of solving some trivial problems (e.g., the exclusive OR (XOR)
classification problem; see the left side of Figure 10-6). This is true of any other
linear classification model (such as logistic regression classifiers), but researchers had
expected much more from perceptrons, and some were so disappointed that they

From Biological to Artificial Neurons | 307

8 For example, when the inputs are (0, 1) the lower-left neuron computes 0 × 1 + 1 × 1 – 3 / 2 = –1 / 2, which
is negative, so it outputs 0. The lower-right neuron computes 0 × 1 + 1 × 1 – 1 / 2 = 1 / 2, which is positive,
so it outputs 1. The output neuron receives the outputs of the first two neurons as its inputs, so it computes
0 × (–1) + 1 × 1 - 1 / 2 = 1 / 2. This is positive, so it outputs 1.

dropped neural networks altogether in favor of higher-level problems such as logic,
problem solving, and search. The lack of practical applications also didn’t help.

It turns out that some of the limitations of perceptrons can be eliminated by stacking
multiple perceptrons. The resulting ANN is called a multilayer perceptron (MLP). An
MLP can solve the XOR problem, as you can verify by computing the output of the
MLP represented on the right side of Figure 10-6: with inputs (0, 0) or (1, 1), the
network outputs 0, and with inputs (0, 1) or (1, 0) it outputs 1. Try verifying that this
network indeed solves the XOR problem!8

Figure 10-6. XOR classification problem and an MLP that solves it

Contrary to logistic regression classifiers, perceptrons do not out‐
put a class probability. This is one reason to prefer logistic regres‐
sion over perceptrons. Moreover, perceptrons do not use any
regularization by default, and training stops as soon as there are no
more prediction errors on the training set, so the model typically
does not generalize as well as logistic regression or a linear SVM
classifier. However, perceptrons may train a bit faster.

308 | Chapter 10: Introduction to Artificial Neural Networks with Keras

9 In the 1990s, an ANN with more than two hidden layers was considered deep. Nowadays, it is common to see
ANNs with dozens of layers, or even hundreds, so the definition of “deep” is quite fuzzy.

The Multilayer Perceptron and Backpropagation
An MLP is composed of one input layer, one or more layers of TLUs called hidden
layers, and one final layer of TLUs called the output layer (see Figure 10-7). The layers
close to the input layer are usually called the lower layers, and the ones close to the
outputs are usually called the upper layers.

Figure 10-7. Architecture of a multilayer perceptron with two inputs, one hidden layer of
four neurons, and three output neurons

The signal flows only in one direction (from the inputs to the
outputs), so this architecture is an example of a feedforward neural
network (FNN).

When an ANN contains a deep stack of hidden layers,9 it is called a deep neural
network (DNN). The field of deep learning studies DNNs, and more generally it is
interested in models containing deep stacks of computations. Even so, many people
talk about deep learning whenever neural networks are involved (even shallow ones).

From Biological to Artificial Neurons | 309

10 David Rumelhart et al., “Learning Internal Representations by Error Propagation” (Defense Technical Infor‐
mation Center technical report, September 1985).

For many years researchers struggled to find a way to train MLPs, without success. In
the early 1960s several researchers discussed the possibility of using gradient descent
to train neural networks, but as we saw in Chapter 4, this requires computing the
gradients of the model’s error with regard to the model parameters; it wasn’t clear at
the time how to do this efficiently with such a complex model containing so many
parameters, especially with the computers they had back then.

Then, in 1970, a researcher named Seppo Linnainmaa introduced in his master’s
thesis a technique to compute all the gradients automatically and efficiently. This
algorithm is now called reverse-mode automatic differentiation (or reverse-mode auto‐
diff for short). In just two passes through the network (one forward, one backward),
it is able to compute the gradients of the neural network’s error with regard to
every single model parameter. In other words, it can find out how each connection
weight and each bias should be tweaked in order to reduce the neural network’s
error. These gradients can then be used to perform a gradient descent step. If you
repeat this process of computing the gradients automatically and taking a gradient
descent step, the neural network’s error will gradually drop until it eventually reaches
a minimum. This combination of reverse-mode autodiff and gradient descent is now
called backpropagation (or backprop for short).

There are various autodiff techniques, with different pros and cons.
Reverse-mode autodiff is well suited when the function to differ‐
entiate has many variables (e.g., connection weights and biases)
and few outputs (e.g., one loss). If you want to learn more about
autodiff, check out Appendix B.

Backpropagation can actually be applied to all sorts of computational graphs, not
just neural networks: indeed, Linnainmaa’s master’s thesis was not about neural nets,
it was more general. It was several more years before backprop started to be used
to train neural networks, but it still wasn’t mainstream. Then, in 1985, David Rumel‐
hart, Geoffrey Hinton, and Ronald Williams published a groundbreaking paper10

analyzing how backpropagation allowed neural networks to learn useful internal
representations. Their results were so impressive that backpropagation was quickly
popularized in the field. Today, it is by far the most popular training technique for
neural networks.

310 | Chapter 10: Introduction to Artificial Neural Networks with Keras

https://homl.info/44

Let’s run through how backpropagation works again in a bit more detail:

• It handles one mini-batch at a time (for example, containing 32 instances each),•
and it goes through the full training set multiple times. Each pass is called an
epoch.

• Each mini-batch enters the network through the input layer. The algorithm•
then computes the output of all the neurons in the first hidden layer, for every
instance in the mini-batch. The result is passed on to the next layer, its output
is computed and passed to the next layer, and so on until we get the output of
the last layer, the output layer. This is the forward pass: it is exactly like making
predictions, except all intermediate results are preserved since they are needed
for the backward pass.

• Next, the algorithm measures the network’s output error (i.e., it uses a loss•
function that compares the desired output and the actual output of the network,
and returns some measure of the error).

• Then it computes how much each output bias and each connection to the output•
layer contributed to the error. This is done analytically by applying the chain rule
(perhaps the most fundamental rule in calculus), which makes this step fast and
precise.

• The algorithm then measures how much of these error contributions came from•
each connection in the layer below, again using the chain rule, working backward
until it reaches the input layer. As explained earlier, this reverse pass efficiently
measures the error gradient across all the connection weights and biases in the
network by propagating the error gradient backward through the network (hence
the name of the algorithm).

• Finally, the algorithm performs a gradient descent step to tweak all the connec‐•
tion weights in the network, using the error gradients it just computed.

It is important to initialize all the hidden layers’ connection weights
randomly, or else training will fail. For example, if you initialize all
weights and biases to zero, then all neurons in a given layer will
be perfectly identical, and thus backpropagation will affect them
in exactly the same way, so they will remain identical. In other
words, despite having hundreds of neurons per layer, your model
will act as if it had only one neuron per layer: it won’t be too
smart. If instead you randomly initialize the weights, you break
the symmetry and allow backpropagation to train a diverse team of
neurons.

From Biological to Artificial Neurons | 311

11 Biological neurons seem to implement a roughly sigmoid (S-shaped) activation function, so researchers stuck
to sigmoid functions for a very long time. But it turns out that ReLU generally works better in ANNs. This is
one of the cases where the biological analogy was perhaps misleading.

In short, backpropagation makes predictions for a mini-batch (forward pass), meas‐
ures the error, then goes through each layer in reverse to measure the error contribu‐
tion from each parameter (reverse pass), and finally tweaks the connection weights
and biases to reduce the error (gradient descent step).

In order for backprop to work properly, Rumelhart and his colleagues made a key
change to the MLP’s architecture: they replaced the step function with the logistic
function, σ(z) = 1 / (1 + exp(–z)), also called the sigmoid function. This was essential
because the step function contains only flat segments, so there is no gradient to work
with (gradient descent cannot move on a flat surface), while the sigmoid function
has a well-defined nonzero derivative everywhere, allowing gradient descent to make
some progress at every step. In fact, the backpropagation algorithm works well with
many other activation functions, not just the sigmoid function. Here are two other
popular choices:

The hyperbolic tangent function: tanh(z) = 2σ(2z) – 1
Just like the sigmoid function, this activation function is S-shaped, continuous,
and differentiable, but its output value ranges from –1 to 1 (instead of 0 to 1 in
the case of the sigmoid function). That range tends to make each layer’s output
more or less centered around 0 at the beginning of training, which often helps
speed up convergence.

The rectified linear unit function: ReLU(z) = max(0, z)
The ReLU function is continuous but unfortunately not differentiable at z = 0
(the slope changes abruptly, which can make gradient descent bounce around),
and its derivative is 0 for z < 0. In practice, however, it works very well and
has the advantage of being fast to compute, so it has become the default.11

Importantly, the fact that it does not have a maximum output value helps reduce
some issues during gradient descent (we will come back to this in Chapter 11).

These popular activation functions and their derivatives are represented in Fig‐
ure 10-8. But wait! Why do we need activation functions in the first place? Well,
if you chain several linear transformations, all you get is a linear transformation. For
example, if f(x) = 2x + 3 and g(x) = 5x – 1, then chaining these two linear functions
gives you another linear function: f(g(x)) = 2(5x – 1) + 3 = 10x + 1. So if you don’t
have some nonlinearity between layers, then even a deep stack of layers is equivalent
to a single layer, and you can’t solve very complex problems with that. Conversely,
a large enough DNN with nonlinear activations can theoretically approximate any
continuous function.

312 | Chapter 10: Introduction to Artificial Neural Networks with Keras

Figure 10-8. Activation functions (left) and their derivatives (right)

OK! You know where neural nets came from, what their architecture is, and how to
compute their outputs. You’ve also learned about the backpropagation algorithm. But
what exactly can you do with neural nets?

Regression MLPs
First, MLPs can be used for regression tasks. If you want to predict a single value
(e.g., the price of a house, given many of its features), then you just need a single
output neuron: its output is the predicted value. For multivariate regression (i.e., to
predict multiple values at once), you need one output neuron per output dimension.
For example, to locate the center of an object in an image, you need to predict 2D
coordinates, so you need two output neurons. If you also want to place a bounding
box around the object, then you need two more numbers: the width and the height of
the object. So, you end up with four output neurons.

Scikit-Learn includes an MLPRegressor class, so let’s use it to build an MLP with three
hidden layers composed of 50 neurons each, and train it on the California housing
dataset. For simplicity, we will use Scikit-Learn’s fetch_california_housing() func‐
tion to load the data. This dataset is simpler than the one we used in Chapter 2,
since it contains only numerical features (there is no ocean_proximity feature), and
there are no missing values. The following code starts by fetching and splitting the
dataset, then it creates a pipeline to standardize the input features before sending
them to the MLPRegressor. This is very important for neural networks because they
are trained using gradient descent, and as we saw in Chapter 4, gradient descent
does not converge very well when the features have very different scales. Finally, the
code trains the model and evaluates its validation error. The model uses the ReLU
activation function in the hidden layers, and it uses a variant of gradient descent
called Adam (see Chapter 11) to minimize the mean squared error, with a little bit of
ℓ2 regularization (which you can control via the alpha hyperparameter):

From Biological to Artificial Neurons | 313

from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPRegressor
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

housing = fetch_california_housing()
X_train_full, X_test, y_train_full, y_test = train_test_split(
 housing.data, housing.target, random_state=42)
X_train, X_valid, y_train, y_valid = train_test_split(
 X_train_full, y_train_full, random_state=42)

mlp_reg = MLPRegressor(hidden_layer_sizes=[50, 50, 50], random_state=42)
pipeline = make_pipeline(StandardScaler(), mlp_reg)
pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_valid)
rmse = mean_squared_error(y_valid, y_pred, squared=False) # about 0.505

We get a validation RMSE of about 0.505, which is comparable to what you would get
with a random forest classifier. Not too bad for a first try!

Note that this MLP does not use any activation function for the output layer, so it’s
free to output any value it wants. This is generally fine, but if you want to guarantee
that the output will always be positive, then you should use the ReLU activation
function in the output layer, or the softplus activation function, which is a smooth
variant of ReLU: softplus(z) = log(1 + exp(z)). Softplus is close to 0 when z is
negative, and close to z when z is positive. Finally, if you want to guarantee that the
predictions will always fall within a given range of values, then you should use the
sigmoid function or the hyperbolic tangent, and scale the targets to the appropriate
range: 0 to 1 for sigmoid and –1 to 1 for tanh. Sadly, the MLPRegressor class does not
support activation functions in the output layer.

Building and training a standard MLP with Scikit-Learn in just a
few lines of code is very convenient, but the neural net features are
limited. This is why we will switch to Keras in the second part of
this chapter.

The MLPRegressor class uses the mean squared error, which is usually what you want
for regression, but if you have a lot of outliers in the training set, you may prefer to
use the mean absolute error instead. Alternatively, you may want to use the Huber
loss, which is a combination of both. It is quadratic when the error is smaller than
a threshold δ (typically 1) but linear when the error is larger than δ. The linear part
makes it less sensitive to outliers than the mean squared error, and the quadratic
part allows it to converge faster and be more precise than the mean absolute error.
However, MLPRegressor only supports the MSE.

314 | Chapter 10: Introduction to Artificial Neural Networks with Keras

Table 10-1 summarizes the typical architecture of a regression MLP.

Table 10-1. Typical regression MLP architecture

Hyperparameter Typical value
hidden layers Depends on the problem, but typically 1 to 5

neurons per hidden layer Depends on the problem, but typically 10 to 100

output neurons 1 per prediction dimension

Hidden activation ReLU

Output activation None, or ReLU/softplus (if positive outputs) or sigmoid/tanh (if bounded outputs)

Loss function MSE, or Huber if outliers

Classification MLPs
MLPs can also be used for classification tasks. For a binary classification problem,
you just need a single output neuron using the sigmoid activation function: the
output will be a number between 0 and 1, which you can interpret as the estimated
probability of the positive class. The estimated probability of the negative class is
equal to one minus that number.

MLPs can also easily handle multilabel binary classification tasks (see Chapter 3).
For example, you could have an email classification system that predicts whether
each incoming email is ham or spam, and simultaneously predicts whether it is an
urgent or nonurgent email. In this case, you would need two output neurons, both
using the sigmoid activation function: the first would output the probability that the
email is spam, and the second would output the probability that it is urgent. More
generally, you would dedicate one output neuron for each positive class. Note that the
output probabilities do not necessarily add up to 1. This lets the model output any
combination of labels: you can have nonurgent ham, urgent ham, nonurgent spam,
and perhaps even urgent spam (although that would probably be an error).

If each instance can belong only to a single class, out of three or more possible classes
(e.g., classes 0 through 9 for digit image classification), then you need to have one
output neuron per class, and you should use the softmax activation function for the
whole output layer (see Figure 10-9). The softmax function (introduced in Chapter 4)
will ensure that all the estimated probabilities are between 0 and 1 and that they
add up to 1, since the classes are exclusive. As you saw in Chapter 3, this is called
multiclass classification.

Regarding the loss function, since we are predicting probability distributions, the
cross-entropy loss (or x-entropy or log loss for short, see Chapter 4) is generally a
good choice.

From Biological to Artificial Neurons | 315

Figure 10-9. A modern MLP (including ReLU and softmax) for classification

Scikit-Learn has an MLPClassifier class in the sklearn.neural_network package.
It is almost identical to the MLPRegressor class, except that it minimizes the cross
entropy rather than the MSE. Give it a try now, for example on the iris dataset. It’s
almost a linear task, so a single layer with 5 to 10 neurons should suffice (make sure
to scale the features).

Table 10-2 summarizes the typical architecture of a classification MLP.

Table 10-2. Typical classification MLP architecture

Hyperparameter Binary classification Multilabel binary classification Multiclass classification
hidden layers Typically 1 to 5 layers, depending on the task

output neurons 1 1 per binary label 1 per class

Output layer activation Sigmoid Sigmoid Softmax

Loss function X-entropy X-entropy X-entropy

Before we go on, I recommend you go through exercise 1 at the
end of this chapter. You will play with various neural network
architectures and visualize their outputs using the TensorFlow play‐
ground. This will be very useful to better understand MLPs, includ‐
ing the effects of all the hyperparameters (number of layers and
neurons, activation functions, and more).

316 | Chapter 10: Introduction to Artificial Neural Networks with Keras

12 Project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System). Chollet joined Goo‐
gle in 2015, where he continues to lead the Keras project.

13 PyTorch’s API is quite similar to Keras’s, so once you know Keras, it is not difficult to switch to PyTorch,
if you ever want to. PyTorch’s popularity grew exponentially in 2018, largely thanks to its simplicity and
excellent documentation, which were not TensorFlow 1.x’s main strengths back then. However, TensorFlow 2
is just as simple as PyTorch, in part because it has adopted Keras as its official high-level API, and also
because the developers have greatly simplified and cleaned up the rest of the API. The documentation has
also been completely reorganized, and it is much easier to find what you need now. Similarly, PyTorch’s
main weaknesses (e.g., limited portability and no computation graph analysis) have been largely addressed in
PyTorch 1.0. Healthy competition seems beneficial to everyone.

Now you have all the concepts you need to start implementing MLPs with Keras!

Implementing MLPs with Keras
Keras is TensorFlow’s high-level deep learning API: it allows you to build, train,
evaluate, and execute all sorts of neural networks. The original Keras library was
developed by François Chollet as part of a research project12 and was released as a
standalone open source project in March 2015. It quickly gained popularity, owing to
its ease of use, flexibility, and beautiful design.

Keras used to support multiple backends, including TensorFlow,
PlaidML, Theano, and Microsoft Cognitive Toolkit (CNTK) (the
last two are sadly deprecated), but since version 2.4, Keras is
TensorFlow-only. Similarly, TensorFlow used to include multiple
high-level APIs, but Keras was officially chosen as its preferred
high-level API when TensorFlow 2 came out. Installing TensorFlow
will automatically install Keras as well, and Keras will not work
without TensorFlow installed. In short, Keras and TensorFlow fell
in love and got married. Other popular deep learning libraries
include PyTorch by Facebook and JAX by Google.13

Now let’s use Keras! We will start by building an MLP for image classification.

Colab runtimes come with recent versions of TensorFlow and
Keras preinstalled. However, if you want to install them on your
own machine, please see the installation instructions at https://
homl.info/install.

Implementing MLPs with Keras | 317

https://pytorch.org
https://github.com/google/jax
https://homl.info/install
https://homl.info/install

Building an Image Classifier Using the Sequential API
First, we need to load a dataset. We will use Fashion MNIST, which is a drop-in
replacement of MNIST (introduced in Chapter 3). It has the exact same format as
MNIST (70,000 grayscale images of 28 × 28 pixels each, with 10 classes), but the
images represent fashion items rather than handwritten digits, so each class is more
diverse, and the problem turns out to be significantly more challenging than MNIST.
For example, a simple linear model reaches about 92% accuracy on MNIST, but only
about 83% on Fashion MNIST.

Using Keras to load the dataset
Keras provides some utility functions to fetch and load common datasets, including
MNIST, Fashion MNIST, and a few more. Let’s load Fashion MNIST. It’s already
shuffled and split into a training set (60,000 images) and a test set (10,000 images),
but we’ll hold out the last 5,000 images from the training set for validation:

import tensorflow as tf

fashion_mnist = tf.keras.datasets.fashion_mnist.load_data()
(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist
X_train, y_train = X_train_full[:-5000], y_train_full[:-5000]
X_valid, y_valid = X_train_full[-5000:], y_train_full[-5000:]

TensorFlow is usually imported as tf, and the Keras API is avail‐
able via tf.keras.

When loading MNIST or Fashion MNIST using Keras rather than Scikit-Learn, one
important difference is that every image is represented as a 28 × 28 array rather than
a 1D array of size 784. Moreover, the pixel intensities are represented as integers
(from 0 to 255) rather than floats (from 0.0 to 255.0). Let’s take a look at the shape
and data type of the training set:

>>> X_train.shape
(55000, 28, 28)
>>> X_train.dtype
dtype('uint8')

For simplicity, we’ll scale the pixel intensities down to the 0–1 range by dividing them
by 255.0 (this also converts them to floats):

X_train, X_valid, X_test = X_train / 255., X_valid / 255., X_test / 255.

With MNIST, when the label is equal to 5, it means that the image represents the
handwritten digit 5. Easy. For Fashion MNIST, however, we need the list of class
names to know what we are dealing with:

318 | Chapter 10: Introduction to Artificial Neural Networks with Keras

class_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat",
 "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]

For example, the first image in the training set represents an ankle boot:

>>> class_names[y_train[0]]
'Ankle boot'

Figure 10-10 shows some samples from the Fashion MNIST dataset.

Figure 10-10. Samples from Fashion MNIST

Creating the model using the sequential API
Now let’s build the neural network! Here is a classification MLP with two hidden
layers:

tf.random.set_seed(42)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Input(shape=[28, 28]))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(300, activation="relu"))
model.add(tf.keras.layers.Dense(100, activation="relu"))
model.add(tf.keras.layers.Dense(10, activation="softmax"))

Let’s go through this code line by line:

• First, set TensorFlow’s random seed to make the results reproducible: the random•
weights of the hidden layers and the output layer will be the same every time you
run the notebook. You could also choose to use the tf.keras.utils.set_ran
dom_seed() function, which conveniently sets the random seeds for TensorFlow,
Python (random.seed()), and NumPy (np.random.seed()).

• The next line creates a Sequential model. This is the simplest kind of Keras•
model for neural networks that are just composed of a single stack of layers
connected sequentially. This is called the sequential API.

Implementing MLPs with Keras | 319

• Next, we build the first layer (an Input layer) and add it to the model. We specify•
the input shape, which doesn’t include the batch size, only the shape of the
instances. Keras needs to know the shape of the inputs so it can determine the
shape of the connection weight matrix of the first hidden layer.

• Then we add a Flatten layer. Its role is to convert each input image into a 1D•
array: for example, if it receives a batch of shape [32, 28, 28], it will reshape it to
[32, 784]. In other words, if it receives input data X, it computes X.reshape(-1,
784). This layer doesn’t have any parameters; it’s just there to do some simple
preprocessing.

• Next we add a Dense hidden layer with 300 neurons. It will use the ReLU•
activation function. Each Dense layer manages its own weight matrix, containing
all the connection weights between the neurons and their inputs. It also manages
a vector of bias terms (one per neuron). When it receives some input data, it
computes Equation 10-2.

• Then we add a second Dense hidden layer with 100 neurons, also using the ReLU•
activation function.

• Finally, we add a Dense output layer with 10 neurons (one per class), using the•
softmax activation function because the classes are exclusive.

Specifying activation="relu" is equivalent to specifying
activation=tf.keras.activations.relu. Other activation func‐
tions are available in the tf.keras.activations package. We will
use many of them in this book; see https://keras.io/api/layers/activa
tions for the full list. We will also define our own custom activation
functions in Chapter 12.

Instead of adding the layers one by one as we just did, it’s often more convenient to
pass a list of layers when creating the Sequential model. You can also drop the Input
layer and instead specify the input_shape in the first layer:

model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=[28, 28]),
 tf.keras.layers.Dense(300, activation="relu"),
 tf.keras.layers.Dense(100, activation="relu"),
 tf.keras.layers.Dense(10, activation="softmax")
])

320 | Chapter 10: Introduction to Artificial Neural Networks with Keras

https://keras.io/api/layers/activations
https://keras.io/api/layers/activations

14 You can also use tf.keras.utils.plot_model() to generate an image of your model.

The model’s summary() method displays all the model’s layers,14 including each layer’s
name (which is automatically generated unless you set it when creating the layer),
its output shape (None means the batch size can be anything), and its number of
parameters. The summary ends with the total number of parameters, including
trainable and non-trainable parameters. Here we only have trainable parameters (you
will see some non-trainable parameters later in this chapter):

>>> model.summary()
Model: "sequential"

 Layer (type) Output Shape Param #
===
 flatten (Flatten) (None, 784) 0

 dense (Dense) (None, 300) 235500

 dense_1 (Dense) (None, 100) 30100

 dense_2 (Dense) (None, 10) 1010

===
Total params: 266,610
Trainable params: 266,610
Non-trainable params: 0

Note that Dense layers often have a lot of parameters. For example, the first hidden
layer has 784 × 300 connection weights, plus 300 bias terms, which adds up to
235,500 parameters! This gives the model quite a lot of flexibility to fit the training
data, but it also means that the model runs the risk of overfitting, especially when you
do not have a lot of training data. We will come back to this later.

Each layer in a model must have a unique name (e.g., "dense_2"). You can set the
layer names explicitly using the constructor’s name argument, but generally it’s sim‐
pler to let Keras name the layers automatically, as we just did. Keras takes the layer’s
class name and converts it to snake case (e.g., a layer from the MyCoolLayer class
is named "my_cool_layer" by default). Keras also ensures that the name is globally
unique, even across models, by appending an index if needed, as in "dense_2". But
why does it bother making the names unique across models? Well, this makes it
possible to merge models easily without getting name conflicts.

Implementing MLPs with Keras | 321

All global state managed by Keras is stored in a Keras session,
which you can clear using tf.keras.backend.clear_session().
In particular, this resets the name counters.

You can easily get a model’s list of layers using the layers attribute, or use the
get_layer() method to access a layer by name:

>>> model.layers
[<keras.layers.core.flatten.Flatten at 0x7fa1dea02250>,
 <keras.layers.core.dense.Dense at 0x7fa1c8f42520>,
 <keras.layers.core.dense.Dense at 0x7fa188be7ac0>,
 <keras.layers.core.dense.Dense at 0x7fa188be7fa0>]
>>> hidden1 = model.layers[1]
>>> hidden1.name
'dense'
>>> model.get_layer('dense') is hidden1
True

All the parameters of a layer can be accessed using its get_weights() and
set_weights() methods. For a Dense layer, this includes both the connection weights
and the bias terms:

>>> weights, biases = hidden1.get_weights()
>>> weights
array([[0.02448617, -0.00877795, -0.02189048, ..., 0.03859074, -0.06889391],
 [0.00476504, -0.03105379, -0.0586676 , ..., -0.02763776, -0.04165364],
 ...,
 [0.07061854, -0.06960931, 0.07038955, ..., 0.00034875, 0.02878492],
 [-0.06022581, 0.01577859, -0.02585464, ..., 0.00272203, -0.06793761]],
 dtype=float32)
>>> weights.shape
(784, 300)
>>> biases
array([0., 0., 0., 0., 0., 0., 0., 0., 0., ..., 0., 0., 0.], dtype=float32)
>>> biases.shape
(300,)

Notice that the Dense layer initialized the connection weights randomly (which is
needed to break symmetry, as discussed earlier), and the biases were initialized to
zeros, which is fine. If you want to use a different initialization method, you can set
kernel_initializer (kernel is another name for the matrix of connection weights)
or bias_initializer when creating the layer. We’ll discuss initializers further in
Chapter 11, and the full list is at https://keras.io/api/layers/initializers.

322 | Chapter 10: Introduction to Artificial Neural Networks with Keras

https://keras.io/api/layers/initializers

The shape of the weight matrix depends on the number of inputs,
which is why we specified the input_shape when creating the
model. If you do not specify the input shape, it’s OK: Keras will
simply wait until it knows the input shape before it actually builds
the model parameters. This will happen either when you feed it
some data (e.g., during training), or when you call its build()
method. Until the model parameters are built, you will not be able
to do certain things, such as display the model summary or save the
model. So, if you know the input shape when creating the model, it
is best to specify it.

Compiling the model

After a model is created, you must call its compile() method to specify the loss
function and the optimizer to use. Optionally, you can specify a list of extra metrics to
compute during training and evaluation:

model.compile(loss="sparse_categorical_crossentropy",
 optimizer="sgd",
 metrics=["accuracy"])

Using loss="sparse_categorical_crossentropy" is the equiv‐
alent of using loss=tf.keras.losses.sparse_categorical_

crossentropy. Similarly, using optimizer="sgd" is the equiva‐
lent of using optimizer=tf.keras.optimizers.SGD(), and using
metrics=["accuracy"] is the equivalent of using metrics=

[tf.keras.metrics.sparse_categorical_accuracy] (when using
this loss). We will use many other losses, optimizers, and metrics
in this book; for the full lists, see https://keras.io/api/losses, https://
keras.io/api/optimizers, and https://keras.io/api/metrics.

This code requires explanation. We use the "sparse_categorical_crossentropy"
loss because we have sparse labels (i.e., for each instance, there is just a target class
index, from 0 to 9 in this case), and the classes are exclusive. If instead we had
one target probability per class for each instance (such as one-hot vectors, e.g.,
[0., 0., 0., 1., 0., 0., 0., 0., 0., 0.] to represent class 3), then we would
need to use the "categorical_crossentropy" loss instead. If we were doing binary
classification or multilabel binary classification, then we would use the "sigmoid"
activation function in the output layer instead of the "softmax" activation function,
and we would use the "binary_crossentropy" loss.

Implementing MLPs with Keras | 323

https://keras.io/api/losses
https://keras.io/api/optimizers
https://keras.io/api/optimizers
https://keras.io/api/metrics

If you want to convert sparse labels (i.e., class indices) to one-hot
vector labels, use the tf.keras.utils.to_categorical() func‐
tion. To go the other way round, use the np.argmax() function
with axis=1.

Regarding the optimizer, "sgd" means that we will train the model using stochastic
gradient descent. In other words, Keras will perform the backpropagation algorithm
described earlier (i.e., reverse-mode autodiff plus gradient descent). We will discuss
more efficient optimizers in Chapter 11. They improve gradient descent, not autodiff.

When using the SGD optimizer, it is important to tune the learn‐
ing rate. So, you will generally want to use optimizer=tf.keras.
optimizers.SGD(learning_rate=__???__) to set the learning rate,
rather than optimizer="sgd", which defaults to a learning rate of
0.01.

Finally, since this is a classifier, it’s useful to measure its accuracy during training and
evaluation, which is why we set metrics=["accuracy"].

Training and evaluating the model

Now the model is ready to be trained. For this we simply need to call its fit()
method:

>>> history = model.fit(X_train, y_train, epochs=30,
... validation_data=(X_valid, y_valid))
...
Epoch 1/30
1719/1719 [==============================] - 2s 989us/step
 - loss: 0.7220 - sparse_categorical_accuracy: 0.7649
 - val_loss: 0.4959 - val_sparse_categorical_accuracy: 0.8332
Epoch 2/30
1719/1719 [==============================] - 2s 964us/step
 - loss: 0.4825 - sparse_categorical_accuracy: 0.8332
 - val_loss: 0.4567 - val_sparse_categorical_accuracy: 0.8384
[...]
Epoch 30/30
1719/1719 [==============================] - 2s 963us/step
 - loss: 0.2235 - sparse_categorical_accuracy: 0.9200
 - val_loss: 0.3056 - val_sparse_categorical_accuracy: 0.8894

We pass it the input features (X_train) and the target classes (y_train), as well as the
number of epochs to train (or else it would default to just 1, which would definitely
not be enough to converge to a good solution). We also pass a validation set (this is
optional). Keras will measure the loss and the extra metrics on this set at the end of
each epoch, which is very useful to see how well the model really performs. If the
performance on the training set is much better than on the validation set, your model

324 | Chapter 10: Introduction to Artificial Neural Networks with Keras

is probably overfitting the training set, or there is a bug, such as a data mismatch
between the training set and the validation set.

Shape errors are quite common, especially when getting started,
so you should familiarize yourself with the error messages:
try fitting a model with inputs and/or labels of the wrong
shape, and see the errors you get. Similarly, try compiling
the model with loss="categorical_crossentropy" instead of
loss="sparse_categorical_crossentropy". Or you can remove
the Flatten layer.

And that’s it! The neural network is trained. At each epoch during training, Keras
displays the number of mini-batches processed so far on the left side of the progress
bar. The batch size is 32 by default, and since the training set has 55,000 images, the
model goes through 1,719 batches per epoch: 1,718 of size 32, and 1 of size 24. After
the progress bar, you can see the mean training time per sample, and the loss and
accuracy (or any other extra metrics you asked for) on both the training set and the
validation set. Notice that the training loss went down, which is a good sign, and the
validation accuracy reached 88.94% after 30 epochs. That’s slightly below the training
accuracy, so there is a little bit of overfitting going on, but not a huge amount.

Instead of passing a validation set using the validation_data
argument, you could set validation_split to the ratio of the
training set that you want Keras to use for validation. For example,
validation_split=0.1 tells Keras to use the last 10% of the data
(before shuffling) for validation.

If the training set was very skewed, with some classes being overrepresented and
others underrepresented, it would be useful to set the class_weight argument when
calling the fit() method, to give a larger weight to underrepresented classes and
a lower weight to overrepresented classes. These weights would be used by Keras
when computing the loss. If you need per-instance weights, set the sample_weight
argument. If both class_weight and sample_weight are provided, then Keras multi‐
plies them. Per-instance weights could be useful, for example, if some instances were
labeled by experts while others were labeled using a crowdsourcing platform: you
might want to give more weight to the former. You can also provide sample weights
(but not class weights) for the validation set by adding them as a third item in the
validation_data tuple.

The fit() method returns a History object containing the training parameters
(history.params), the list of epochs it went through (history.epoch), and most
importantly a dictionary (history.history) containing the loss and extra metrics

Implementing MLPs with Keras | 325

it measured at the end of each epoch on the training set and on the validation set
(if any). If you use this dictionary to create a Pandas DataFrame and call its plot()
method, you get the learning curves shown in Figure 10-11:

import matplotlib.pyplot as plt
import pandas as pd

pd.DataFrame(history.history).plot(
 figsize=(8, 5), xlim=[0, 29], ylim=[0, 1], grid=True, xlabel="Epoch",
 style=["r--", "r--.", "b-", "b-*"])
plt.show()

Figure 10-11. Learning curves: the mean training loss and accuracy measured over each
epoch, and the mean validation loss and accuracy measured at the end of each epoch

You can see that both the training accuracy and the validation accuracy steadily
increase during training, while the training loss and the validation loss decrease. This
is good. The validation curves are relatively close to each other at first, but they get
further apart over time, which shows that there’s a little bit of overfitting. In this
particular case, the model looks like it performed better on the validation set than
on the training set at the beginning of training, but that’s not actually the case. The
validation error is computed at the end of each epoch, while the training error is
computed using a running mean during each epoch, so the training curve should be
shifted by half an epoch to the left. If you do that, you will see that the training and
validation curves overlap almost perfectly at the beginning of training.

The training set performance ends up beating the validation performance, as is
generally the case when you train for long enough. You can tell that the model has not
quite converged yet, as the validation loss is still going down, so you should probably

326 | Chapter 10: Introduction to Artificial Neural Networks with Keras

continue training. This is as simple as calling the fit() method again, since Keras
just continues training where it left off: you should be able to reach about 89.8%
validation accuracy, while the training accuracy will continue to rise up to 100% (this
is not always the case).

If you are not satisfied with the performance of your model, you should go back and
tune the hyperparameters. The first one to check is the learning rate. If that doesn’t
help, try another optimizer (and always retune the learning rate after changing
any hyperparameter). If the performance is still not great, then try tuning model
hyperparameters such as the number of layers, the number of neurons per layer,
and the types of activation functions to use for each hidden layer. You can also try
tuning other hyperparameters, such as the batch size (it can be set in the fit()
method using the batch_size argument, which defaults to 32). We will get back to
hyperparameter tuning at the end of this chapter. Once you are satisfied with your
model’s validation accuracy, you should evaluate it on the test set to estimate the
generalization error before you deploy the model to production. You can easily do
this using the evaluate() method (it also supports several other arguments, such as
batch_size and sample_weight; please check the documentation for more details):

>>> model.evaluate(X_test, y_test)
313/313 [==============================] - 0s 626us/step
 - loss: 0.3243 - sparse_categorical_accuracy: 0.8864
[0.32431697845458984, 0.8863999843597412]

As you saw in Chapter 2, it is common to get slightly lower performance on the test
set than on the validation set, because the hyperparameters are tuned on the valida‐
tion set, not the test set (however, in this example, we did not do any hyperparameter
tuning, so the lower accuracy is just bad luck). Remember to resist the temptation to
tweak the hyperparameters on the test set, or else your estimate of the generalization
error will be too optimistic.

Using the model to make predictions

Now let’s use the model’s predict() method to make predictions on new instances.
Since we don’t have actual new instances, we’ll just use the first three instances of the
test set:

>>> X_new = X_test[:3]
>>> y_proba = model.predict(X_new)
>>> y_proba.round(2)
array([[0. , 0. , 0. , 0. , 0. , 0.01, 0. , 0.02, 0. , 0.97],
 [0. , 0. , 0.99, 0. , 0.01, 0. , 0. , 0. , 0. , 0.],
 [0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.]],
 dtype=float32)

For each instance the model estimates one probability per class, from class 0 to
class 9. This is similar to the output of the predict_proba() method in Scikit-Learn

Implementing MLPs with Keras | 327

classifiers. For example, for the first image it estimates that the probability of class
9 (ankle boot) is 96%, the probability of class 7 (sneaker) is 2%, the probability of
class 5 (sandal) is 1%, and the probabilities of the other classes are negligible. In other
words, it is highly confident that the first image is footwear, most likely ankle boots
but possibly sneakers or sandals. If you only care about the class with the highest
estimated probability (even if that probability is quite low), then you can use the
argmax() method to get the highest probability class index for each instance:

>>> import numpy as np
>>> y_pred = y_proba.argmax(axis=-1)
>>> y_pred
array([9, 2, 1])
>>> np.array(class_names)[y_pred]
array(['Ankle boot', 'Pullover', 'Trouser'], dtype='<U11')

Here, the classifier actually classified all three images correctly (these images are
shown in Figure 10-12):

>>> y_new = y_test[:3]
>>> y_new
array([9, 2, 1], dtype=uint8)

Figure 10-12. Correctly classified Fashion MNIST images

Now you know how to use the sequential API to build, train, and evaluate a classifica‐
tion MLP. But what about regression?

Building a Regression MLP Using the Sequential API
Let’s switch back to the California housing problem and tackle it using the same MLP
as earlier, with 3 hidden layers composed of 50 neurons each, but this time building it
with Keras.

Using the sequential API to build, train, evaluate, and use a regression MLP is quite
similar to what we did for classification. The main differences in the following code
example are the fact that the output layer has a single neuron (since we only want
to predict a single value) and it uses no activation function, the loss function is the
mean squared error, the metric is the RMSE, and we’re using an Adam optimizer like

328 | Chapter 10: Introduction to Artificial Neural Networks with Keras

15 Heng-Tze Cheng et al., “Wide & Deep Learning for Recommender Systems”, Proceedings of the First Workshop
on Deep Learning for Recommender Systems (2016): 7–10.

16 The short path can also be used to provide manually engineered features to the neural network.

Scikit-Learn’s MLPRegressor did. Moreover, in this example we don’t need a Flatten
layer, and instead we’re using a Normalization layer as the first layer: it does the
same thing as Scikit-Learn’s StandardScaler, but it must be fitted to the training data
using its adapt() method before you call the model’s fit() method. (Keras has other
preprocessing layers, which will be covered in Chapter 13). Let’s take a look:

tf.random.set_seed(42)
norm_layer = tf.keras.layers.Normalization(input_shape=X_train.shape[1:])
model = tf.keras.Sequential([
 norm_layer,
 tf.keras.layers.Dense(50, activation="relu"),
 tf.keras.layers.Dense(50, activation="relu"),
 tf.keras.layers.Dense(50, activation="relu"),
 tf.keras.layers.Dense(1)
])
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
model.compile(loss="mse", optimizer=optimizer, metrics=["RootMeanSquaredError"])
norm_layer.adapt(X_train)
history = model.fit(X_train, y_train, epochs=20,
 validation_data=(X_valid, y_valid))
mse_test, rmse_test = model.evaluate(X_test, y_test)
X_new = X_test[:3]
y_pred = model.predict(X_new)

The Normalization layer learns the feature means and standard
deviations in the training data when you call the adapt() method.
Yet when you display the model’s summary, these statistics are
listed as non-trainable. This is because these parameters are not
affected by gradient descent.

As you can see, the sequential API is quite clean and straightforward. However,
although Sequential models are extremely common, it is sometimes useful to build
neural networks with more complex topologies, or with multiple inputs or outputs.
For this purpose, Keras offers the functional API.

Building Complex Models Using the Functional API
One example of a nonsequential neural network is a Wide & Deep neural network.
This neural network architecture was introduced in a 2016 paper by Heng-Tze Cheng
et al.15 It connects all or part of the inputs directly to the output layer, as shown in
Figure 10-13. This architecture makes it possible for the neural network to learn both
deep patterns (using the deep path) and simple rules (through the short path).16 In

Implementing MLPs with Keras | 329

https://homl.info/widedeep

contrast, a regular MLP forces all the data to flow through the full stack of layers;
thus, simple patterns in the data may end up being distorted by this sequence of
transformations.

Figure 10-13. Wide & Deep neural network

Let’s build such a neural network to tackle the California housing problem:

normalization_layer = tf.keras.layers.Normalization()
hidden_layer1 = tf.keras.layers.Dense(30, activation="relu")
hidden_layer2 = tf.keras.layers.Dense(30, activation="relu")
concat_layer = tf.keras.layers.Concatenate()
output_layer = tf.keras.layers.Dense(1)

input_ = tf.keras.layers.Input(shape=X_train.shape[1:])
normalized = normalization_layer(input_)
hidden1 = hidden_layer1(normalized)
hidden2 = hidden_layer2(hidden1)
concat = concat_layer([normalized, hidden2])
output = output_layer(concat)

model = tf.keras.Model(inputs=[input_], outputs=[output])

330 | Chapter 10: Introduction to Artificial Neural Networks with Keras

At a high level, the first five lines create all the layers we need to build the model, the
next six lines use these layers just like functions to go from the input to the output,
and the last line creates a Keras Model object by pointing to the input and the output.
Let’s go through this code in more detail:

• First, we create five layers: a Normalization layer to standardize the inputs,•
two Dense layers with 30 neurons each, using the ReLU activation function, a
Concatenate layer, and one more Dense layer with a single neuron for the output
layer, without any activation function.

• Next, we create an Input object (the variable name input_ is used to avoid•
overshadowing Python’s built-in input() function). This is a specification of the
kind of input the model will get, including its shape and optionally its dtype,
which defaults to 32-bit floats. A model may actually have multiple inputs, as you
will see shortly.

• Then we use the Normalization layer just like a function, passing it the Input•
object. This is why this is called the functional API. Note that we are just telling
Keras how it should connect the layers together; no actual data is being processed
yet, as the Input object is just a data specification. In other words, it’s a symbolic
input. The output of this call is also symbolic: normalized doesn’t store any
actual data, it’s just used to construct the model.

• In the same way, we then pass normalized to hidden_layer1, which outputs•
hidden1, and we pass hidden1 to hidden_layer2, which outputs hidden2.

• So far we’ve connected the layers sequentially, but then we use the concat_layer•
to concatenate the input and the second hidden layer’s output. Again, no actual
data is concatenated yet: it’s all symbolic, to build the model.

• Then we pass concat to the output_layer, which gives us the final output.•
• Lastly, we create a Keras Model, specifying which inputs and outputs to use.•

Once you have built this Keras model, everything is exactly like earlier, so there’s no
need to repeat it here: you compile the model, adapt the Normalization layer, fit the
model, evaluate it, and use it to make predictions.

But what if you want to send a subset of the features through the wide path and
a different subset (possibly overlapping) through the deep path, as illustrated in Fig‐
ure 10-14? In this case, one solution is to use multiple inputs. For example, suppose
we want to send five features through the wide path (features 0 to 4), and six features
through the deep path (features 2 to 7). We can do this as follows:

Implementing MLPs with Keras | 331

input_wide = tf.keras.layers.Input(shape=[5]) # features 0 to 4
input_deep = tf.keras.layers.Input(shape=[6]) # features 2 to 7
norm_layer_wide = tf.keras.layers.Normalization()
norm_layer_deep = tf.keras.layers.Normalization()
norm_wide = norm_layer_wide(input_wide)
norm_deep = norm_layer_deep(input_deep)
hidden1 = tf.keras.layers.Dense(30, activation="relu")(norm_deep)
hidden2 = tf.keras.layers.Dense(30, activation="relu")(hidden1)
concat = tf.keras.layers.concatenate([norm_wide, hidden2])
output = tf.keras.layers.Dense(1)(concat)
model = tf.keras.Model(inputs=[input_wide, input_deep], outputs=[output])

Figure 10-14. Handling multiple inputs

There are a few things to note in this example, compared to the previous one:

• Each Dense layer is created and called on the same line. This is a common•
practice, as it makes the code more concise without losing clarity. However, we
can’t do this with the Normalization layer since we need a reference to the layer
to be able to call its adapt() method before fitting the model.

• We used tf.keras.layers.concatenate(), which creates a Concatenate layer•
and calls it with the given inputs.

• We specified inputs=[input_wide, input_deep] when creating the model,•
since there are two inputs.

332 | Chapter 10: Introduction to Artificial Neural Networks with Keras

Now we can compile the model as usual, but when we call the fit() method,
instead of passing a single input matrix X_train, we must pass a pair of matrices
(X_train_wide, X_train_deep), one per input. The same is true for X_valid, and
also for X_test and X_new when you call evaluate() or predict():

optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
model.compile(loss="mse", optimizer=optimizer, metrics=["RootMeanSquaredError"])

X_train_wide, X_train_deep = X_train[:, :5], X_train[:, 2:]
X_valid_wide, X_valid_deep = X_valid[:, :5], X_valid[:, 2:]
X_test_wide, X_test_deep = X_test[:, :5], X_test[:, 2:]
X_new_wide, X_new_deep = X_test_wide[:3], X_test_deep[:3]

norm_layer_wide.adapt(X_train_wide)
norm_layer_deep.adapt(X_train_deep)
history = model.fit((X_train_wide, X_train_deep), y_train, epochs=20,
 validation_data=((X_valid_wide, X_valid_deep), y_valid))
mse_test = model.evaluate((X_test_wide, X_test_deep), y_test)
y_pred = model.predict((X_new_wide, X_new_deep))

Instead of passing a tuple (X_train_wide, X_train_deep),
you can pass a dictionary {"input_wide": X_train_wide,

"input_deep": X_train_deep}, if you set name="input_wide"
and name="input_deep" when creating the inputs. This is highly
recommended when there are many inputs, to clarify the code and
avoid getting the order wrong.

There are also many use cases in which you may want to have multiple outputs:

• The task may demand it. For instance, you may want to locate and classify the•
main object in a picture. This is both a regression tasks and a classification task.

• Similarly, you may have multiple independent tasks based on the same data. Sure,•
you could train one neural network per task, but in many cases you will get
better results on all tasks by training a single neural network with one output
per task. This is because the neural network can learn features in the data that
are useful across tasks. For example, you could perform multitask classification
on pictures of faces, using one output to classify the person’s facial expression
(smiling, surprised, etc.) and another output to identify whether they are wearing
glasses or not.

• Another use case is as a regularization technique (i.e., a training constraint•
whose objective is to reduce overfitting and thus improve the model’s ability to
generalize). For example, you may want to add an auxiliary output in a neural
network architecture (see Figure 10-15) to ensure that the underlying part of the

Implementing MLPs with Keras | 333

network learns something useful on its own, without relying on the rest of the
network.

Figure 10-15. Handling multiple outputs, in this example to add an auxiliary output for
regularization

Adding an extra output is quite easy: we just connect it to the appropriate layer
and add it to the model’s list of outputs. For example, the following code builds the
network represented in Figure 10-15:

[...] # Same as above, up to the main output layer
output = tf.keras.layers.Dense(1)(concat)
aux_output = tf.keras.layers.Dense(1)(hidden2)
model = tf.keras.Model(inputs=[input_wide, input_deep],
 outputs=[output, aux_output])

Each output will need its own loss function. Therefore, when we compile the model,
we should pass a list of losses. If we pass a single loss, Keras will assume that the
same loss must be used for all outputs. By default, Keras will compute all the losses
and simply add them up to get the final loss used for training. Since we care much
more about the main output than about the auxiliary output (as it is just used for
regularization), we want to give the main output’s loss a much greater weight. Luckily,
it is possible to set all the loss weights when compiling the model:

optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
model.compile(loss=("mse", "mse"), loss_weights=(0.9, 0.1), optimizer=optimizer,
 metrics=["RootMeanSquaredError"])

334 | Chapter 10: Introduction to Artificial Neural Networks with Keras

Instead of passing a tuple loss=("mse", "mse"), you can pass
a dictionary loss={"output": "mse", "aux_output": "mse"},
assuming you created the output layers with name="output" and
name="aux_output". Just like for the inputs, this clarifies the code
and avoids errors when there are several outputs. You can also pass
a dictionary for loss_weights.

Now when we train the model, we need to provide labels for each output. In this
example, the main output and the auxiliary output should try to predict the same
thing, so they should use the same labels. So instead of passing y_train, we need
to pass (y_train, y_train), or a dictionary {"output": y_train, "aux_output":
y_train} if the outputs were named "output" and "aux_output". The same goes for
y_valid and y_test:

norm_layer_wide.adapt(X_train_wide)
norm_layer_deep.adapt(X_train_deep)
history = model.fit(
 (X_train_wide, X_train_deep), (y_train, y_train), epochs=20,
 validation_data=((X_valid_wide, X_valid_deep), (y_valid, y_valid))
)

When we evaluate the model, Keras returns the weighted sum of the losses, as well as
all the individual losses and metrics:

eval_results = model.evaluate((X_test_wide, X_test_deep), (y_test, y_test))
weighted_sum_of_losses, main_loss, aux_loss, main_rmse, aux_rmse = eval_results

If you set return_dict=True, then evaluate() will return a dictio‐
nary instead of a big tuple.

Similarly, the predict() method will return predictions for each output:

y_pred_main, y_pred_aux = model.predict((X_new_wide, X_new_deep))

The predict() method returns a tuple, and it does not have a return_dict argument
to get a dictionary instead. However, you can create one using model.output_names:

y_pred_tuple = model.predict((X_new_wide, X_new_deep))
y_pred = dict(zip(model.output_names, y_pred_tuple))

As you can see, you can build all sorts of architectures with the functional API. Next,
we’ll look at one last way you can build Keras models.

Implementing MLPs with Keras | 335

17 Keras models have an output attribute, so we cannot use that name for the main output layer, which is why
we renamed it to main_output.

Using the Subclassing API to Build Dynamic Models
Both the sequential API and the functional API are declarative: you start by declaring
which layers you want to use and how they should be connected, and only then
can you start feeding the model some data for training or inference. This has many
advantages: the model can easily be saved, cloned, and shared; its structure can be
displayed and analyzed; the framework can infer shapes and check types, so errors
can be caught early (i.e., before any data ever goes through the model). It’s also fairly
straightforward to debug, since the whole model is a static graph of layers. But the
flip side is just that: it’s static. Some models involve loops, varying shapes, conditional
branching, and other dynamic behaviors. For such cases, or simply if you prefer a
more imperative programming style, the subclassing API is for you.

With this approach, you subclass the Model class, create the layers you need in the
constructor, and use them to perform the computations you want in the call()
method. For example, creating an instance of the following WideAndDeepModel class
gives us an equivalent model to the one we just built with the functional API:

class WideAndDeepModel(tf.keras.Model):
 def __init__(self, units=30, activation="relu", **kwargs):
 super().__init__(**kwargs) # needed to support naming the model
 self.norm_layer_wide = tf.keras.layers.Normalization()
 self.norm_layer_deep = tf.keras.layers.Normalization()
 self.hidden1 = tf.keras.layers.Dense(units, activation=activation)
 self.hidden2 = tf.keras.layers.Dense(units, activation=activation)
 self.main_output = tf.keras.layers.Dense(1)
 self.aux_output = tf.keras.layers.Dense(1)

 def call(self, inputs):
 input_wide, input_deep = inputs
 norm_wide = self.norm_layer_wide(input_wide)
 norm_deep = self.norm_layer_deep(input_deep)
 hidden1 = self.hidden1(norm_deep)
 hidden2 = self.hidden2(hidden1)
 concat = tf.keras.layers.concatenate([norm_wide, hidden2])
 output = self.main_output(concat)
 aux_output = self.aux_output(hidden2)
 return output, aux_output

model = WideAndDeepModel(30, activation="relu", name="my_cool_model")

This example looks like the previous one, except we separate the creation of the
layers17 in the constructor from their usage in the call() method. And we don’t need
to create the Input objects: we can use the input argument to the call() method.

336 | Chapter 10: Introduction to Artificial Neural Networks with Keras

18 This is currently the default, but the Keras team is working on a new format that may become the default in
upcoming versions, so I prefer to set the format explicitly to be future-proof.

Now that we have a model instance, we can compile it, adapt its normal‐
ization layers (e.g., using model.norm_layer_wide.adapt(...) and model.norm_
layer_deep.adapt(...)), fit it, evaluate it, and use it to make predictions, exactly
like we did with the functional API.

The big difference with this API is that you can include pretty much anything
you want in the call() method: for loops, if statements, low-level TensorFlow
operations—your imagination is the limit (see Chapter 12)! This makes it a great
API when experimenting with new ideas, especially for researchers. However, this
extra flexibility does come at a cost: your model’s architecture is hidden within the
call() method, so Keras cannot easily inspect it; the model cannot be cloned using
tf.keras.models.clone_model(); and when you call the summary() method, you
only get a list of layers, without any information on how they are connected to each
other. Moreover, Keras cannot check types and shapes ahead of time, and it is easier
to make mistakes. So unless you really need that extra flexibility, you should probably
stick to the sequential API or the functional API.

Keras models can be used just like regular layers, so you can easily
combine them to build complex architectures.

Now that you know how to build and train neural nets using Keras, you will want to
save them!

Saving and Restoring a Model
Saving a trained Keras model is as simple as it gets:

model.save("my_keras_model", save_format="tf")

When you set save_format="tf",18 Keras saves the model using TensorFlow’s Saved‐
Model format: this is a directory (with the given name) containing several files and
subdirectories. In particular, the saved_model.pb file contains the model’s architecture
and logic in the form of a serialized computation graph, so you don’t need to
deploy the model’s source code in order to use it in production; the SavedModel
is sufficient (you will see how this works in Chapter 12). The keras_metadata.pb file
contains extra information needed by Keras. The variables subdirectory contains all
the parameter values (including the connection weights, the biases, the normalization
statistics, and the optimizer’s parameters), possibly split across multiple files if the

Implementing MLPs with Keras | 337

model is very large. Lastly, the assets directory may contain extra files, such as data
samples, feature names, class names, and so on. By default, the assets directory is
empty. Since the optimizer is also saved, including its hyperparameters and any state
it may have, after loading the model you can continue training if you want.

If you set save_format="h5" or use a filename that ends
with .h5, .hdf5, or .keras, then Keras will save the model to a single
file using a Keras-specific format based on the HDF5 format. How‐
ever, most TensorFlow deployment tools require the SavedModel
format instead.

You will typically have a script that trains a model and saves it, and one or more
scripts (or web services) that load the model and use it to evaluate it or to make
predictions. Loading the model is just as easy as saving it:

model = tf.keras.models.load_model("my_keras_model")
y_pred_main, y_pred_aux = model.predict((X_new_wide, X_new_deep))

You can also use save_weights() and load_weights() to save and load only the
parameter values. This includes the connection weights, biases, preprocessing stats,
optimizer state, etc. The parameter values are saved in one or more files such as
my_weights.data-00004-of-00052, plus an index file like my_weights.index.

Saving just the weights is faster and uses less disk space than saving the whole model,
so it’s perfect to save quick checkpoints during training. If you’re training a big model,
and it takes hours or days, then you must save checkpoints regularly in case the
computer crashes. But how can you tell the fit() method to save checkpoints? Use
callbacks.

Using Callbacks
The fit() method accepts a callbacks argument that lets you specify a list of objects
that Keras will call before and after training, before and after each epoch, and even
before and after processing each batch. For example, the ModelCheckpoint callback
saves checkpoints of your model at regular intervals during training, by default at the
end of each epoch:

checkpoint_cb = tf.keras.callbacks.ModelCheckpoint("my_checkpoints",
 save_weights_only=True)
history = model.fit([...], callbacks=[checkpoint_cb])

338 | Chapter 10: Introduction to Artificial Neural Networks with Keras

Moreover, if you use a validation set during training, you can set save_

best_only=True when creating the ModelCheckpoint. In this case, it will only save
your model when its performance on the validation set is the best so far. This way,
you do not need to worry about training for too long and overfitting the training
set: simply restore the last saved model after training, and this will be the best model
on the validation set. This is one way to implement early stopping (introduced in
Chapter 4), but it won’t actually stop training.

Another way is to use the EarlyStopping callback. It will interrupt training when
it measures no progress on the validation set for a number of epochs (defined by
the patience argument), and if you set restore_best_weights=True it will roll back
to the best model at the end of training. You can combine both callbacks to save
checkpoints of your model in case your computer crashes, and interrupt training
early when there is no more progress, to avoid wasting time and resources and to
reduce overfitting:

early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=10,
 restore_best_weights=True)
history = model.fit([...], callbacks=[checkpoint_cb, early_stopping_cb])

The number of epochs can be set to a large value since training will stop automati‐
cally when there is no more progress (just make sure the learning rate is not too
small, or else it might keep making slow progress until the end). The EarlyStopping
callback will store the weights of the best model in RAM, and it will restore them for
you at the end of training.

Many other callbacks are available in the tf.keras.callbacks
package.

If you need extra control, you can easily write your own custom callbacks. For
example, the following custom callback will display the ratio between the validation
loss and the training loss during training (e.g., to detect overfitting):

class PrintValTrainRatioCallback(tf.keras.callbacks.Callback):
 def on_epoch_end(self, epoch, logs):
 ratio = logs["val_loss"] / logs["loss"]
 print(f"Epoch={epoch}, val/train={ratio:.2f}")

Implementing MLPs with Keras | 339

https://keras.io/api/callbacks
https://keras.io/api/callbacks

As you might expect, you can implement on_train_begin(), on_train_end(),
on_epoch_begin(), on_epoch_end(), on_batch_begin(), and on_batch_end(). Call‐
backs can also be used during evaluation and predictions, should you ever need
them (e.g., for debugging). For evaluation, you should implement on_test_begin(),
on_test_end(), on_test_batch_begin(), or on_test_batch_end(), which are called
by evaluate(). For prediction, you should implement on_predict_begin(),
on_predict_end(), on_predict_batch_begin(), or on_predict_batch_end(),
which are called by predict().

Now let’s take a look at one more tool you should definitely have in your toolbox
when using Keras: TensorBoard.

Using TensorBoard for Visualization
TensorBoard is a great interactive visualization tool that you can use to view the
learning curves during training, compare curves and metrics between multiple runs,
visualize the computation graph, analyze training statistics, view images generated
by your model, visualize complex multidimensional data projected down to 3D
and automatically clustered for you, profile your network (i.e., measure its speed to
identify bottlenecks), and more!

TensorBoard is installed automatically when you install TensorFlow. However, you
will need a TensorBoard plug-in to visualize profiling data. If you followed the
installation instructions at https://homl.info/install to run everything locally, then you
already have the plug-in installed, but if you are using Colab, then you must run the
following command:

%pip install -q -U tensorboard-plugin-profile

To use TensorBoard, you must modify your program so that it outputs the data you
want to visualize to special binary logfiles called event files. Each binary data record
is called a summary. The TensorBoard server will monitor the log directory, and it
will automatically pick up the changes and update the visualizations: this allows you
to visualize live data (with a short delay), such as the learning curves during training.
In general, you want to point the TensorBoard server to a root log directory and
configure your program so that it writes to a different subdirectory every time it
runs. This way, the same TensorBoard server instance will allow you to visualize and
compare data from multiple runs of your program, without getting everything mixed
up.

Let’s name the root log directory my_logs, and let’s define a little function that
generates the path of the log subdirectory based on the current date and time, so that
it’s different at every run:

340 | Chapter 10: Introduction to Artificial Neural Networks with Keras

https://homl.info/install

from pathlib import Path
from time import strftime

def get_run_logdir(root_logdir="my_logs"):
 return Path(root_logdir) / strftime("run_%Y_%m_%d_%H_%M_%S")

run_logdir = get_run_logdir() # e.g., my_logs/run_2022_08_01_17_25_59

The good news is that Keras provides a convenient TensorBoard() callback that will
take care of creating the log directory for you (along with its parent directories if
needed), and it will create event files and write summaries to them during training. It
will measure your model’s training and validation loss and metrics (in this case, the
MSE and RMSE), and it will also profile your neural network. It is straightforward to
use:

tensorboard_cb = tf.keras.callbacks.TensorBoard(run_logdir,
 profile_batch=(100, 200))
history = model.fit([...], callbacks=[tensorboard_cb])

That’s all there is to it! In this example, it will profile the network between batches
100 and 200 during the first epoch. Why 100 and 200? Well, it often takes a few
batches for the neural network to “warm up”, so you don’t want to profile too early,
and profiling uses resources, so it’s best not to do it for every batch.

Next, try changing the learning rate from 0.001 to 0.002, and run the code again, with
a new log subdirectory. You will end up with a directory structure similar to this one:

my_logs
├── run_2022_08_01_17_25_59
│ ├── train
│ │ ├── events.out.tfevents.1659331561.my_host_name.42042.0.v2
│ │ ├── events.out.tfevents.1659331562.my_host_name.profile-empty
│ │ └── plugins
│ │ └── profile
│ │ └── 2022_08_01_17_26_02
│ │ ├── my_host_name.input_pipeline.pb
│ │ └── [...]
│ └── validation
│ └── events.out.tfevents.1659331562.my_host_name.42042.1.v2
└── run_2022_08_01_17_31_12
 └── [...]

There’s one directory per run, each containing one subdirectory for training logs and
one for validation logs. Both contain event files, and the training logs also include
profiling traces.

Implementing MLPs with Keras | 341

Now that you have the event files ready, it’s time to start the TensorBoard server.
This can be done directly within Jupyter or Colab using the Jupyter extension for
TensorBoard, which gets installed along with the TensorBoard library. This extension
is preinstalled in Colab. The following code loads the Jupyter extension for Tensor‐
Board, and the second line starts a TensorBoard server for the my_logs directory,
connects to this server and displays the user interface directly inside of Jupyter. The
server, listens on the first available TCP port greater than or equal to 6006 (or you can
set the port you want using the --port option).

%load_ext tensorboard
%tensorboard --logdir=./my_logs

If you’re running everything on your own machine, it’s possible to
start TensorBoard by executing tensorboard --logdir=./my_logs
in a terminal. You must first activate the Conda environment in
which you installed TensorBoard, and go to the handson-ml3 direc‐
tory. Once the server is started, visit http://localhost:6006.

Now you should see TensorBoard’s user interface. Click the SCALARS tab to view
the learning curves (see Figure 10-16). At the bottom left, select the logs you want
to visualize (e.g., the training logs from the first and second run), and click the
epoch_loss scalar. Notice that the training loss went down nicely during both runs,
but in the second run it went down a bit faster thanks to the higher learning rate.

Figure 10-16. Visualizing learning curves with TensorBoard

342 | Chapter 10: Introduction to Artificial Neural Networks with Keras

http://localhost:6006

You can also visualize the whole computation graph in the GRAPHS tab, the learned
weights projected to 3D in the PROJECTOR tab, and the profiling traces in the
PROFILE tab. The TensorBoard() callback has options to log extra data too (see
the documentation for more details). You can click the refresh button (⟳) at the top
right to make TensorBoard refresh data, and you can click the settings button (⚙) to
activate auto-refresh and specify the refresh interval.

Additionally, TensorFlow offers a lower-level API in the tf.summary package. The
following code creates a SummaryWriter using the create_file_writer() function,
and it uses this writer as a Python context to log scalars, histograms, images, audio,
and text, all of which can then be visualized using TensorBoard:

test_logdir = get_run_logdir()
writer = tf.summary.create_file_writer(str(test_logdir))
with writer.as_default():
 for step in range(1, 1000 + 1):
 tf.summary.scalar("my_scalar", np.sin(step / 10), step=step)

 data = (np.random.randn(100) + 2) * step / 100 # gets larger
 tf.summary.histogram("my_hist", data, buckets=50, step=step)

 images = np.random.rand(2, 32, 32, 3) * step / 1000 # gets brighter
 tf.summary.image("my_images", images, step=step)

 texts = ["The step is " + str(step), "Its square is " + str(step ** 2)]
 tf.summary.text("my_text", texts, step=step)

 sine_wave = tf.math.sin(tf.range(12000) / 48000 * 2 * np.pi * step)
 audio = tf.reshape(tf.cast(sine_wave, tf.float32), [1, -1, 1])
 tf.summary.audio("my_audio", audio, sample_rate=48000, step=step)

If you run this code and click the refresh button in TensorBoard, you will see several
tabs appear: IMAGES, AUDIO, DISTRIBUTIONS, HISTOGRAMS, and TEXT. Try
clicking the IMAGES tab, and use the slider above each image to view the images at
different time steps. Similarly, go to the AUDIO tab and try listening to the audio
at different time steps. As you can see, TensorBoard is a useful tool even beyond
TensorFlow or deep learning.

You can share your results online by publishing them to https://
tensorboard.dev. For this, just run !tensorboard dev upload

--logdir ./my_logs. The first time, it will ask you to accept the
terms and conditions and authenticate. Then your logs will be
uploaded, and you will get a permanent link to view your results in
a TensorBoard interface.

Implementing MLPs with Keras | 343

https://tensorboard.dev
https://tensorboard.dev

Let’s summarize what you’ve learned so far in this chapter: you now know where
neural nets came from, what an MLP is and how you can use it for classification
and regression, how to use Keras’s sequential API to build MLPs, and how to use the
functional API or the subclassing API to build more complex model architectures
(including Wide & Deep models, as well as models with multiple inputs and outputs).
You also learned how to save and restore a model and how to use callbacks for check‐
pointing, early stopping, and more. Finally, you learned how to use TensorBoard
for visualization. You can already go ahead and use neural networks to tackle many
problems! However, you may wonder how to choose the number of hidden layers, the
number of neurons in the network, and all the other hyperparameters. Let’s look at
this now.

Fine-Tuning Neural Network Hyperparameters
The flexibility of neural networks is also one of their main drawbacks: there are
many hyperparameters to tweak. Not only can you use any imaginable network
architecture, but even in a basic MLP you can change the number of layers, the
number of neurons and the type of activation function to use in each layer, the weight
initialization logic, the type of optimizer to use, its learning rate, the batch size, and
more. How do you know what combination of hyperparameters is the best for your
task?

One option is to convert your Keras model to a Scikit-Learn estimator, and then
use GridSearchCV or RandomizedSearchCV to fine-tune the hyperparameters, as you
did in Chapter 2. For this, you can use the KerasRegressor and KerasClassifier
wrapper classes from the SciKeras library (see https://github.com/adriangb/scikeras for
more details). However, there’s a better way: you can use the Keras Tuner library,
which is a hyperparameter tuning library for Keras models. It offers several tuning
strategies, it’s highly customizable, and it has excellent integration with TensorBoard.
Let’s see how to use it.

If you followed the installation instructions at https://homl.info/install to run every‐
thing locally, then you already have Keras Tuner installed, but if you are using Colab,
you’ll need to run %pip install -q -U keras-tuner. Next, import keras_tuner,
usually as kt, then write a function that builds, compiles, and returns a Keras model.
The function must take a kt.HyperParameters object as an argument, which it can
use to define hyperparameters (integers, floats, strings, etc.) along with their range
of possible values, and these hyperparameters may be used to build and compile
the model. For example, the following function builds and compiles an MLP to clas‐
sify Fashion MNIST images, using hyperparameters such as the number of hidden
layers (n_hidden), the number of neurons per layer (n_neurons), the learning rate
(learning_rate), and the type of optimizer to use (optimizer):

344 | Chapter 10: Introduction to Artificial Neural Networks with Keras

https://github.com/adriangb/scikeras
https://homl.info/install

import keras_tuner as kt

def build_model(hp):
 n_hidden = hp.Int("n_hidden", min_value=0, max_value=8, default=2)
 n_neurons = hp.Int("n_neurons", min_value=16, max_value=256)
 learning_rate = hp.Float("learning_rate", min_value=1e-4, max_value=1e-2,
 sampling="log")
 optimizer = hp.Choice("optimizer", values=["sgd", "adam"])
 if optimizer == "sgd":
 optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)
 else:
 optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

 model = tf.keras.Sequential()
 model.add(tf.keras.layers.Flatten())
 for _ in range(n_hidden):
 model.add(tf.keras.layers.Dense(n_neurons, activation="relu"))
 model.add(tf.keras.layers.Dense(10, activation="softmax"))
 model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer,
 metrics=["accuracy"])
 return model

The first part of the function defines the hyperparameters. For example,
hp.Int("n_hidden", min_value=0, max_value=8, default=2) checks whether a
hyperparameter named "n_hidden" is already present in the HyperParameters object
hp, and if so it returns its value. If not, then it registers a new integer hyperparameter
named "n_hidden", whose possible values range from 0 to 8 (inclusive), and it
returns the default value, which is 2 in this case (when default is not set, then
min_value is returned). The "n_neurons" hyperparameter is registered in a similar
way. The "learning_rate" hyperparameter is registered as a float ranging from 10–4

to 10–2, and since sampling="log", learning rates of all scales will be sampled equally.
Lastly, the optimizer hyperparameter is registered with two possible values: "sgd"
or "adam" (the default value is the first one, which is "sgd" in this case). Depending
on the value of optimizer, we create an SGD optimizer or an Adam optimizer with the
given learning rate.

The second part of the function just builds the model using the hyperparameter
values. It creates a Sequential model starting with a Flatten layer, followed by the
requested number of hidden layers (as determined by the n_hidden hyperparameter)
using the ReLU activation function, and an output layer with 10 neurons (one per
class) using the softmax activation function. Lastly, the function compiles the model
and returns it.

Now if you want to do a basic random search, you can create a kt.RandomSearch
tuner, passing the build_model function to the constructor, and call the tuner’s
search() method:

Fine-Tuning Neural Network Hyperparameters | 345

random_search_tuner = kt.RandomSearch(
 build_model, objective="val_accuracy", max_trials=5, overwrite=True,
 directory="my_fashion_mnist", project_name="my_rnd_search", seed=42)
random_search_tuner.search(X_train, y_train, epochs=10,
 validation_data=(X_valid, y_valid))

The RandomSearch tuner first calls build_model() once with an empty
Hyperparameters object, just to gather all the hyperparameter specifications. Then,
in this example, it runs 5 trials; for each trial it builds a model using hyperparame‐
ters sampled randomly within their respective ranges, then it trains that model for
10 epochs and saves it to a subdirectory of the my_fashion_mnist/my_rnd_search
directory. Since overwrite=True, the my_rnd_search directory is deleted before train‐
ing starts. If you run this code a second time but with overwrite=False and max_
trials=10, the tuner will continue tuning where it left off, running 5 more trials: this
means you don’t have to run all the trials in one shot. Lastly, since objective is set to
"val_accuracy", the tuner prefers models with a higher validation accuracy, so once
the tuner has finished searching, you can get the best models like this:

top3_models = random_search_tuner.get_best_models(num_models=3)
best_model = top3_models[0]

You can also call get_best_hyperparameters() to get the kt.HyperParameters of
the best models:

>>> top3_params = random_search_tuner.get_best_hyperparameters(num_trials=3)
>>> top3_params[0].values # best hyperparameter values
{'n_hidden': 5,
 'n_neurons': 70,
 'learning_rate': 0.00041268008323824807,
 'optimizer': 'adam'}

Each tuner is guided by a so-called oracle: before each trial, the tuner asks the oracle
to tell it what the next trial should be. The RandomSearch tuner uses a RandomSearch
Oracle, which is pretty basic: it just picks the next trial randomly, as we saw earlier.
Since the oracle keeps track of all the trials, you can ask it to give you the best one,
and you can display a summary of that trial:

>>> best_trial = random_search_tuner.oracle.get_best_trials(num_trials=1)[0]
>>> best_trial.summary()
Trial summary
Hyperparameters:
n_hidden: 5
n_neurons: 70
learning_rate: 0.00041268008323824807
optimizer: adam
Score: 0.8736000061035156

346 | Chapter 10: Introduction to Artificial Neural Networks with Keras

This shows the best hyperparameters (like earlier), as well as the validation accuracy.
You can also access all the metrics directly:

>>> best_trial.metrics.get_last_value("val_accuracy")
0.8736000061035156

If you are happy with the best model’s performance, you may continue training it for
a few epochs on the full training set (X_train_full and y_train_full), then evaluate
it on the test set, and deploy it to production (see Chapter 19):

best_model.fit(X_train_full, y_train_full, epochs=10)
test_loss, test_accuracy = best_model.evaluate(X_test, y_test)

In some cases, you may want to fine-tune data preprocessing hyperparameters, or
model.fit() arguments, such as the batch size. For this, you must use a slightly
different technique: instead of writing a build_model() function, you must subclass
the kt.HyperModel class and define two methods, build() and fit(). The build()
method does the exact same thing as the build_model() function. The fit() method
takes a HyperParameters object and a compiled model as an argument, as well as
all the model.fit() arguments, and fits the model and returns the History object.
Crucially, the fit() method may use hyperparameters to decide how to preprocess
the data, tweak the batch size, and more. For example, the following class builds the
same model as before, with the same hyperparameters, but it also uses a Boolean
"normalize" hyperparameter to control whether or not to standardize the training
data before fitting the model:

class MyClassificationHyperModel(kt.HyperModel):
 def build(self, hp):
 return build_model(hp)

 def fit(self, hp, model, X, y, **kwargs):
 if hp.Boolean("normalize"):
 norm_layer = tf.keras.layers.Normalization()
 X = norm_layer(X)
 return model.fit(X, y, **kwargs)

You can then pass an instance of this class to the tuner of your choice, instead of
passing the build_model function. For example, let’s build a kt.Hyperband tuner
based on a MyClassificationHyperModel instance:

hyperband_tuner = kt.Hyperband(
 MyClassificationHyperModel(), objective="val_accuracy", seed=42,
 max_epochs=10, factor=3, hyperband_iterations=2,
 overwrite=True, directory="my_fashion_mnist", project_name="hyperband")

This tuner is similar to the HalvingRandomSearchCV class we discussed in Chapter 2:
it starts by training many different models for few epochs, then it eliminates the
worst models and keeps only the top 1 / factor models (i.e., the top third in this

Fine-Tuning Neural Network Hyperparameters | 347

19 Hyperband is actually a bit more sophisticated than successive halving; see the paper by Lisha Li et al.,
“Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization”, Journal of Machine Learning
Research 18 (April 2018): 1–52.

case), repeating this selection process until a single model is left.19 The max_epochs
argument controls the max number of epochs that the best model will be trained
for. The whole process is repeated twice in this case (hyperband_iterations=2).
The total number of training epochs across all models for each hyperband iteration
is about max_epochs * (log(max_epochs) / log(factor)) ** 2, so it’s about 44
epochs in this example. The other arguments are the same as for kt.RandomSearch.

Let’s run the Hyperband tuner now. We’ll use the TensorBoard callback, this time
pointing to the root log directory (the tuner will take care of using a different
subdirectory for each trial), as well as an EarlyStopping callback:

root_logdir = Path(hyperband_tuner.project_dir) / "tensorboard"
tensorboard_cb = tf.keras.callbacks.TensorBoard(root_logdir)
early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=2)
hyperband_tuner.search(X_train, y_train, epochs=10,
 validation_data=(X_valid, y_valid),
 callbacks=[early_stopping_cb, tensorboard_cb])

Now if you open TensorBoard, pointing --logdir to the my_fashion_mnist/hyper‐
band/tensorboard directory, you will see all the trial results as they unfold. Make
sure to visit the HPARAMS tab: it contains a summary of all the hyperparameter
combinations that were tried, along with the corresponding metrics. Notice that
there are three tabs inside the HPARAMS tab: a table view, a parallel coordinates
view, and a scatterplot matrix view. In the lower part of the left panel, uncheck
all metrics except for validation.epoch_accuracy: this will make the graphs
clearer. In the parallel coordinates view, try selecting a range of high values in
the validation.epoch_accuracy column: this will filter only the hyperparameter
combinations that reached a good performance. Click one of the hyperparameter
combinations, and the corresponding learning curves will appear at the bottom of
the page. Take some time to go through each tab; this will help you understand the
effect of each hyperparameter on performance, as well as the interactions between the
hyperparameters.

Hyperband is smarter than pure random search in the way it allocates resources,
but at its core it still explores the hyperparameter space randomly; it’s fast, but
coarse. However, Keras Tuner also includes a kt.BayesianOptimization tuner: this
algorithm gradually learns which regions of the hyperparameter space are most
promising by fitting a probabilistic model called a Gaussian process. This allows it to
gradually zoom in on the best hyperparameters. The downside is that the algorithm
has its own hyperparameters: alpha represents the level of noise you expect in the
performance measures across trials (it defaults to 10–4), and beta specifies how much

348 | Chapter 10: Introduction to Artificial Neural Networks with Keras

https://homl.info/hyperband

20 Max Jaderberg et al., “Population Based Training of Neural Networks”, arXiv preprint arXiv:1711.09846
(2017).

you want the algorithm to explore, instead of simply exploiting the known good
regions of hyperparameter space (it defaults to 2.6). Other than that, this tuner can be
used just like the previous ones:

bayesian_opt_tuner = kt.BayesianOptimization(
 MyClassificationHyperModel(), objective="val_accuracy", seed=42,
 max_trials=10, alpha=1e-4, beta=2.6,
 overwrite=True, directory="my_fashion_mnist", project_name="bayesian_opt")
bayesian_opt_tuner.search([...])

Hyperparameter tuning is still an active area of research, and many other approaches
are being explored. For example, check out DeepMind’s excellent 2017 paper,20 where
the authors used an evolutionary algorithm to jointly optimize a population of mod‐
els and their hyperparameters. Google has also used an evolutionary approach, not
just to search for hyperparameters but also to explore all sorts of model architectures:
it powers their AutoML service on Google Vertex AI (see Chapter 19). The term
AutoML refers to any system that takes care of a large part of the ML workflow.
Evolutionary algorithms have even been used successfully to train individual neural
networks, replacing the ubiquitous gradient descent! For an example, see the 2017
post by Uber where the authors introduce their Deep Neuroevolution technique.

But despite all this exciting progress and all these tools and services, it still helps to
have an idea of what values are reasonable for each hyperparameter so that you can
build a quick prototype and restrict the search space. The following sections provide
guidelines for choosing the number of hidden layers and neurons in an MLP and for
selecting good values for some of the main hyperparameters.

Number of Hidden Layers
For many problems, you can begin with a single hidden layer and get reasonable
results. An MLP with just one hidden layer can theoretically model even the most
complex functions, provided it has enough neurons. But for complex problems, deep
networks have a much higher parameter efficiency than shallow ones: they can model
complex functions using exponentially fewer neurons than shallow nets, allowing
them to reach much better performance with the same amount of training data.

To understand why, suppose you are asked to draw a forest using some drawing soft‐
ware, but you are forbidden to copy and paste anything. It would take an enormous
amount of time: you would have to draw each tree individually, branch by branch,
leaf by leaf. If you could instead draw one leaf, copy and paste it to draw a branch,
then copy and paste that branch to create a tree, and finally copy and paste this tree to
make a forest, you would be finished in no time. Real-world data is often structured

Fine-Tuning Neural Network Hyperparameters | 349

https://homl.info/pbt
https://homl.info/neuroevol
https://homl.info/neuroevol

in such a hierarchical way, and deep neural networks automatically take advantage of
this fact: lower hidden layers model low-level structures (e.g., line segments of various
shapes and orientations), intermediate hidden layers combine these low-level struc‐
tures to model intermediate-level structures (e.g., squares, circles), and the highest
hidden layers and the output layer combine these intermediate structures to model
high-level structures (e.g., faces).

Not only does this hierarchical architecture help DNNs converge faster to a good
solution, but it also improves their ability to generalize to new datasets. For example,
if you have already trained a model to recognize faces in pictures and you now want
to train a new neural network to recognize hairstyles, you can kickstart the training
by reusing the lower layers of the first network. Instead of randomly initializing the
weights and biases of the first few layers of the new neural network, you can initialize
them to the values of the weights and biases of the lower layers of the first network.
This way the network will not have to learn from scratch all the low-level structures
that occur in most pictures; it will only have to learn the higher-level structures (e.g.,
hairstyles). This is called transfer learning.

In summary, for many problems you can start with just one or two hidden layers
and the neural network will work just fine. For instance, you can easily reach above
97% accuracy on the MNIST dataset using just one hidden layer with a few hundred
neurons, and above 98% accuracy using two hidden layers with the same total
number of neurons, in roughly the same amount of training time. For more complex
problems, you can ramp up the number of hidden layers until you start overfitting
the training set. Very complex tasks, such as large image classification or speech
recognition, typically require networks with dozens of layers (or even hundreds, but
not fully connected ones, as you will see in Chapter 14), and they need a huge amount
of training data. You will rarely have to train such networks from scratch: it is much
more common to reuse parts of a pretrained state-of-the-art network that performs
a similar task. Training will then be a lot faster and require much less data (we will
discuss this in Chapter 11).

Number of Neurons per Hidden Layer
The number of neurons in the input and output layers is determined by the type of
input and output your task requires. For example, the MNIST task requires 28 × 28 =
784 inputs and 10 output neurons.

As for the hidden layers, it used to be common to size them to form a pyramid,
with fewer and fewer neurons at each layer—the rationale being that many low-level
features can coalesce into far fewer high-level features. A typical neural network for
MNIST might have 3 hidden layers, the first with 300 neurons, the second with 200,
and the third with 100. However, this practice has been largely abandoned because
it seems that using the same number of neurons in all hidden layers performs just

350 | Chapter 10: Introduction to Artificial Neural Networks with Keras

as well in most cases, or even better; plus, there is only one hyperparameter to tune,
instead of one per layer. That said, depending on the dataset, it can sometimes help to
make the first hidden layer bigger than the others.

Just like the number of layers, you can try increasing the number of neurons gradu‐
ally until the network starts overfitting. Alternatively, you can try building a model
with slightly more layers and neurons than you actually need, then use early stopping
and other regularization techniques to prevent it from overfitting too much. Vincent
Vanhoucke, a scientist at Google, has dubbed this the “stretch pants” approach:
instead of wasting time looking for pants that perfectly match your size, just use large
stretch pants that will shrink down to the right size. With this approach, you avoid
bottleneck layers that could ruin your model. Indeed, if a layer has too few neurons,
it will not have enough representational power to preserve all the useful information
from the inputs (e.g., a layer with two neurons can only output 2D data, so if it gets
3D data as input, some information will be lost). No matter how big and powerful the
rest of the network is, that information will never be recovered.

In general you will get more bang for your buck by increasing the
number of layers instead of the number of neurons per layer.

Learning Rate, Batch Size, and Other Hyperparameters
The number of hidden layers and neurons are not the only hyperparameters you can
tweak in an MLP. Here are some of the most important ones, as well as tips on how to
set them:

Learning rate
The learning rate is arguably the most important hyperparameter. In general, the
optimal learning rate is about half of the maximum learning rate (i.e., the learn‐
ing rate above which the training algorithm diverges, as we saw in Chapter 4).
One way to find a good learning rate is to train the model for a few hundred iter‐
ations, starting with a very low learning rate (e.g., 10–5) and gradually increasing
it up to a very large value (e.g., 10). This is done by multiplying the learning rate
by a constant factor at each iteration (e.g., by (10 / 10-5)1 / 500 to go from 10–5 to
10 in 500 iterations). If you plot the loss as a function of the learning rate (using
a log scale for the learning rate), you should see it dropping at first. But after
a while, the learning rate will be too large, so the loss will shoot back up: the
optimal learning rate will be a bit lower than the point at which the loss starts
to climb (typically about 10 times lower than the turning point). You can then
reinitialize your model and train it normally using this good learning rate. We
will look at more learning rate optimization techniques in Chapter 11.

Fine-Tuning Neural Network Hyperparameters | 351

21 Dominic Masters and Carlo Luschi, “Revisiting Small Batch Training for Deep Neural Networks”, arXiv
preprint arXiv:1804.07612 (2018).

22 Elad Hoffer et al., “Train Longer, Generalize Better: Closing the Generalization Gap in Large Batch Training
of Neural Networks”, Proceedings of the 31st International Conference on Neural Information Processing Systems
(2017): 1729–1739.

23 Priya Goyal et al., “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv preprint
arXiv:1706.02677 (2017).

Optimizer
Choosing a better optimizer than plain old mini-batch gradient descent (and
tuning its hyperparameters) is also quite important. We will examine several
advanced optimizers in Chapter 11.

Batch size
The batch size can have a significant impact on your model’s performance and
training time. The main benefit of using large batch sizes is that hardware accel‐
erators like GPUs can process them efficiently (see Chapter 19), so the training
algorithm will see more instances per second. Therefore, many researchers and
practitioners recommend using the largest batch size that can fit in GPU RAM.
There’s a catch, though: in practice, large batch sizes often lead to training
instabilities, especially at the beginning of training, and the resulting model may
not generalize as well as a model trained with a small batch size. In April 2018,
Yann LeCun even tweeted “Friends don’t let friends use mini-batches larger than
32”, citing a 2018 paper21 by Dominic Masters and Carlo Luschi which concluded
that using small batches (from 2 to 32) was preferable because small batches
led to better models in less training time. Other research points in the opposite
direction, however. For example, in 2017, papers by Elad Hoffer et al.22 and Priya
Goyal et al.23 showed that it was possible to use very large batch sizes (up to
8,192) along with various techniques such as warming up the learning rate (i.e.,
starting training with a small learning rate, then ramping it up, as discussed in
Chapter 11) and to obtain very short training times, without any generalization
gap. So, one strategy is to try to using a large batch size, with learning rate
warmup, and if training is unstable or the final performance is disappointing,
then try using a small batch size instead.

Activation function
We discussed how to choose the activation function earlier in this chapter: in
general, the ReLU activation function will be a good default for all hidden layers,
but for the output layer it really depends on your task.

Number of iterations
In most cases, the number of training iterations does not actually need to be
tweaked: just use early stopping instead.

352 | Chapter 10: Introduction to Artificial Neural Networks with Keras

https://homl.info/smallbatch
https://homl.info/largebatch
https://homl.info/largebatch2
https://homl.info/largebatch2

24 Leslie N. Smith, “A Disciplined Approach to Neural Network Hyper-Parameters: Part 1—Learning Rate, Batch
Size, Momentum, and Weight Decay”, arXiv preprint arXiv:1803.09820 (2018).

25 A few extra ANN architectures are presented in the online notebook at https://homl.info/extra-anns.

The optimal learning rate depends on the other hyperparameters—
especially the batch size—so if you modify any hyperparameter,
make sure to update the learning rate as well.

For more best practices regarding tuning neural network hyperparameters, check out
the excellent 2018 paper24 by Leslie Smith.

This concludes our introduction to artificial neural networks and their implemen‐
tation with Keras. In the next few chapters, we will discuss techniques to train
very deep nets. We will also explore how to customize models using TensorFlow’s
lower-level API and how to load and preprocess data efficiently using the tf.data
API. And we will dive into other popular neural network architectures: convolutional
neural networks for image processing, recurrent neural networks and transformers
for sequential data and text, autoencoders for representation learning, and generative
adversarial networks to model and generate data.25

Exercises
1. The TensorFlow playground is a handy neural network simulator built by the1.

TensorFlow team. In this exercise, you will train several binary classifiers in just
a few clicks, and tweak the model’s architecture and its hyperparameters to gain
some intuition on how neural networks work and what their hyperparameters
do. Take some time to explore the following:
a. The patterns learned by a neural net. Try training the default neural networka.

by clicking the Run button (top left). Notice how it quickly finds a good
solution for the classification task. The neurons in the first hidden layer have
learned simple patterns, while the neurons in the second hidden layer have
learned to combine the simple patterns of the first hidden layer into more
complex patterns. In general, the more layers there are, the more complex the
patterns can be.

b. Activation functions. Try replacing the tanh activation function with a ReLUb.
activation function, and train the network again. Notice that it finds a solution
even faster, but this time the boundaries are linear. This is due to the shape of
the ReLU function.

c. The risk of local minima. Modify the network architecture to have just onec.
hidden layer with three neurons. Train it multiple times (to reset the network

Exercises | 353

https://homl.info/extra-anns
https://homl.info/1cycle
https://playground.tensorflow.org

weights, click the Reset button next to the Play button). Notice that the train‐
ing time varies a lot, and sometimes it even gets stuck in a local minimum.

d. What happens when neural nets are too small. Remove one neuron to keepd.
just two. Notice that the neural network is now incapable of finding a good
solution, even if you try multiple times. The model has too few parameters
and systematically underfits the training set.

e. What happens when neural nets are large enough. Set the number of neuronse.
to eight, and train the network several times. Notice that it is now consistently
fast and never gets stuck. This highlights an important finding in neural
network theory: large neural networks rarely get stuck in local minima, and
even when they do these local optima are often almost as good as the global
optimum. However, they can still get stuck on long plateaus for a long time.

f. The risk of vanishing gradients in deep networks. Select the spiral dataset (thef.
bottom-right dataset under “DATA”), and change the network architecture to
have four hidden layers with eight neurons each. Notice that training takes
much longer and often gets stuck on plateaus for long periods of time. Also
notice that the neurons in the highest layers (on the right) tend to evolve
faster than the neurons in the lowest layers (on the left). This problem, called
the vanishing gradients problem, can be alleviated with better weight initializa‐
tion and other techniques, better optimizers (such as AdaGrad or Adam), or
batch normalization (discussed in Chapter 11).

g. Go further. Take an hour or so to play around with other parameters andg.
get a feel for what they do, to build an intuitive understanding about neural
networks.

2. Draw an ANN using the original artificial neurons (like the ones in Figure 10-3)2.
that computes A ⊕ B (where ⊕ represents the XOR operation). Hint: A ⊕ B =
(A ∧ ¬ B) ∨ (¬ A ∧ B).

3. Why is it generally preferable to use a logistic regression classifier rather than a3.
classic perceptron (i.e., a single layer of threshold logic units trained using the
perceptron training algorithm)? How can you tweak a perceptron to make it
equivalent to a logistic regression classifier?

4. Why was the sigmoid activation function a key ingredient in training the first4.
MLPs?

5. Name three popular activation functions. Can you draw them?5.
6. Suppose you have an MLP composed of one input layer with 10 passthrough6.

neurons, followed by one hidden layer with 50 artificial neurons, and finally
one output layer with 3 artificial neurons. All artificial neurons use the ReLU
activation function.
a. What is the shape of the input matrix X?a.

354 | Chapter 10: Introduction to Artificial Neural Networks with Keras

b. What are the shapes of the hidden layer’s weight matrix Wh and bias vector bh?b.
c. What are the shapes of the output layer’s weight matrix Wo and bias vector bo?c.
d. What is the shape of the network’s output matrix Y?d.
e. Write the equation that computes the network’s output matrix Y as a functione.

of X, Wh, bh, Wo, and bo.
7. How many neurons do you need in the output layer if you want to classify email7.

into spam or ham? What activation function should you use in the output layer?
If instead you want to tackle MNIST, how many neurons do you need in the
output layer, and which activation function should you use? What about for
getting your network to predict housing prices, as in Chapter 2?

8. What is backpropagation and how does it work? What is the difference between8.
backpropagation and reverse-mode autodiff?

9. Can you list all the hyperparameters you can tweak in a basic MLP? If the MLP9.
overfits the training data, how could you tweak these hyperparameters to try to
solve the problem?

10. Train a deep MLP on the MNIST dataset (you can load it using tf.keras.10.
datasets.mnist.load_data()). See if you can get over 98% accuracy by man‐
ually tuning the hyperparameters. Try searching for the optimal learning rate by
using the approach presented in this chapter (i.e., by growing the learning rate
exponentially, plotting the loss, and finding the point where the loss shoots up).
Next, try tuning the hyperparameters using Keras Tuner with all the bells and
whistles—save checkpoints, use early stopping, and plot learning curves using
TensorBoard.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

Exercises | 355

https://homl.info/colab3

CHAPTER 11

Training Deep Neural Networks

In Chapter 10 you built, trained, and fine-tuned your first artificial neural networks.
But they were shallow nets, with just a few hidden layers. What if you need to tackle
a complex problem, such as detecting hundreds of types of objects in high-resolution
images? You may need to train a much deeper ANN, perhaps with 10 layers or many
more, each containing hundreds of neurons, linked by hundreds of thousands of
connections. Training a deep neural network isn’t a walk in the park. Here are some
of the problems you could run into:

• You may be faced with the problem of gradients growing ever smaller or larger,•
when flowing backward through the DNN during training. Both of these prob‐
lems make lower layers very hard to train.

• You might not have enough training data for such a large network, or it might be•
too costly to label.

• Training may be extremely slow.•
• A model with millions of parameters would severely risk overfitting the training•

set, especially if there are not enough training instances or if they are too noisy.

In this chapter we will go through each of these problems and present techniques
to solve them. We will start by exploring the vanishing and exploding gradients
problems and some of their most popular solutions. Next, we will look at transfer
learning and unsupervised pretraining, which can help you tackle complex tasks even
when you have little labeled data. Then we will discuss various optimizers that can
speed up training large models tremendously. Finally, we will cover a few popular
regularization techniques for large neural networks.

With these tools, you will be able to train very deep nets. Welcome to deep learning!

357

1 Xavier Glorot and Yoshua Bengio, “Understanding the Difficulty of Training Deep Feedforward Neural
Networks”, Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (2010): 249–
256.

The Vanishing/Exploding Gradients Problems
As discussed in Chapter 10, the backpropagation algorithm’s second phase works
by going from the output layer to the input layer, propagating the error gradient
along the way. Once the algorithm has computed the gradient of the cost function
with regard to each parameter in the network, it uses these gradients to update each
parameter with a gradient descent step.

Unfortunately, gradients often get smaller and smaller as the algorithm progresses
down to the lower layers. As a result, the gradient descent update leaves the lower
layers’ connection weights virtually unchanged, and training never converges to a
good solution. This is called the vanishing gradients problem. In some cases, the
opposite can happen: the gradients can grow bigger and bigger until layers get
insanely large weight updates and the algorithm diverges. This is the exploding
gradients problem, which surfaces most often in recurrent neural networks (see
Chapter 15). More generally, deep neural networks suffer from unstable gradients;
different layers may learn at widely different speeds.

This unfortunate behavior was empirically observed long ago, and it was one of the
reasons deep neural networks were mostly abandoned in the early 2000s. It wasn’t
clear what caused the gradients to be so unstable when training a DNN, but some
light was shed in a 2010 paper by Xavier Glorot and Yoshua Bengio.1 The authors
found a few suspects, including the combination of the popular sigmoid (logistic)
activation function and the weight initialization technique that was most popular at
the time (i.e., a normal distribution with a mean of 0 and a standard deviation of 1).
In short, they showed that with this activation function and this initialization scheme,
the variance of the outputs of each layer is much greater than the variance of its
inputs. Going forward in the network, the variance keeps increasing after each layer
until the activation function saturates at the top layers. This saturation is actually
made worse by the fact that the sigmoid function has a mean of 0.5, not 0 (the
hyperbolic tangent function has a mean of 0 and behaves slightly better than the
sigmoid function in deep networks).

Looking at the sigmoid activation function (see Figure 11-1), you can see that when
inputs become large (negative or positive), the function saturates at 0 or 1, with a
derivative extremely close to 0 (i.e., the curve is flat at both extremes). Thus, when
backpropagation kicks in it has virtually no gradient to propagate back through the
network, and what little gradient exists keeps getting diluted as backpropagation
progresses down through the top layers, so there is really nothing left for the lower
layers.

358 | Chapter 11: Training Deep Neural Networks

https://homl.info/47

2 Here’s an analogy: if you set a microphone amplifier’s knob too close to zero, people won’t hear your voice,
but if you set it too close to the max, your voice will be saturated and people won’t understand what you are
saying. Now imagine a chain of such amplifiers: they all need to be set properly in order for your voice to
come out loud and clear at the end of the chain. Your voice has to come out of each amplifier at the same
amplitude as it came in.

Figure 11-1. Sigmoid activation function saturation

Glorot and He Initialization
In their paper, Glorot and Bengio propose a way to significantly alleviate the unstable
gradients problem. They point out that we need the signal to flow properly in both
directions: in the forward direction when making predictions, and in the reverse
direction when backpropagating gradients. We don’t want the signal to die out, nor
do we want it to explode and saturate. For the signal to flow properly, the authors
argue that we need the variance of the outputs of each layer to be equal to the
variance of its inputs,2 and we need the gradients to have equal variance before and
after flowing through a layer in the reverse direction (please check out the paper if
you are interested in the mathematical details). It is actually not possible to guarantee
both unless the layer has an equal number of inputs and outputs (these numbers are
called the fan-in and fan-out of the layer), but Glorot and Bengio proposed a good
compromise that has proven to work very well in practice: the connection weights of
each layer must be initialized randomly as described in Equation 11-1, where fanavg =
(fanin + fanout) / 2. This initialization strategy is called Xavier initialization or Glorot
initialization, after the paper’s first author.

The Vanishing/Exploding Gradients Problems | 359

3 E.g., Kaiming He et al., “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification,” Proceedings of the 2015 IEEE International Conference on Computer Vision (2015): 1026–1034.

Equation 11-1. Glorot initialization (when using the sigmoid activation function)

Normal distribution with mean 0 and variance σ2 = 1
fanavg

Or a uniform distribution between −r and + r, with r = 3
fanavg

If you replace fanavg with fanin in Equation 11-1, you get an initialization strategy that
Yann LeCun proposed in the 1990s. He called it LeCun initialization. Genevieve Orr
and Klaus-Robert Müller even recommended it in their 1998 book Neural Networks:
Tricks of the Trade (Springer). LeCun initialization is equivalent to Glorot initializa‐
tion when fanin = fanout. It took over a decade for researchers to realize how important
this trick is. Using Glorot initialization can speed up training considerably, and it is
one of the practices that led to the success of deep learning.

Some papers3 have provided similar strategies for different activation functions.
These strategies differ only by the scale of the variance and whether they use fanavg

or fanin, as shown in Table 11-1 (for the uniform distribution, just use r = 3σ2).
The initialization strategy proposed for the ReLU activation function and its variants
is called He initialization or Kaiming initialization, after the paper’s first author. For
SELU, use Yann LeCun’s initialization method, preferably with a normal distribution.
We will cover all these activation functions shortly.

Table 11-1. Initialization parameters for each type of activation function

Initialization Activation functions σ² (Normal)
Glorot None, tanh, sigmoid, softmax 1 / fanavg

He ReLU, Leaky ReLU, ELU, GELU, Swish, Mish 2 / fanin

LeCun SELU 1 / fanin

By default, Keras uses Glorot initialization with a uniform distribution. When you
create a layer, you can switch to He initialization by setting kernel_initializer=
"he_uniform" or kernel_initializer="he_normal" like this:

import tensorflow as tf

dense = tf.keras.layers.Dense(50, activation="relu",
 kernel_initializer="he_normal")

Alternatively, you can obtain any of the initializations listed in Table 11-1 and more
using the VarianceScaling initializer. For example, if you want He initialization

360 | Chapter 11: Training Deep Neural Networks

https://homl.info/48

4 A dead neuron may come back to life if its inputs evolve over time and eventually return within a range where
the ReLU activation function gets a positive input again. For example, this may happen if gradient descent
tweaks the neurons in the layers below the dead neuron.

5 Bing Xu et al., “Empirical Evaluation of Rectified Activations in Convolutional Network,” arXiv preprint
arXiv:1505.00853 (2015).

with a uniform distribution and based on fanavg (rather than fanin), you can use the
following code:

he_avg_init = tf.keras.initializers.VarianceScaling(scale=2., mode="fan_avg",
 distribution="uniform")
dense = tf.keras.layers.Dense(50, activation="sigmoid",
 kernel_initializer=he_avg_init)

Better Activation Functions
One of the insights in the 2010 paper by Glorot and Bengio was that the problems
with unstable gradients were in part due to a poor choice of activation function. Until
then most people had assumed that if Mother Nature had chosen to use roughly
sigmoid activation functions in biological neurons, they must be an excellent choice.
But it turns out that other activation functions behave much better in deep neural
networks—in particular, the ReLU activation function, mostly because it does not
saturate for positive values, and also because it is very fast to compute.

Unfortunately, the ReLU activation function is not perfect. It suffers from a problem
known as the dying ReLUs: during training, some neurons effectively “die”, meaning
they stop outputting anything other than 0. In some cases, you may find that half
of your network’s neurons are dead, especially if you used a large learning rate. A
neuron dies when its weights get tweaked in such a way that the input of the ReLU
function (i.e., the weighted sum of the neuron’s inputs plus its bias term) is negative
for all instances in the training set. When this happens, it just keeps outputting zeros,
and gradient descent does not affect it anymore because the gradient of the ReLU
function is zero when its input is negative.4

To solve this problem, you may want to use a variant of the ReLU function, such as
the leaky ReLU.

Leaky ReLU
The leaky ReLU activation function is defined as LeakyReLUα(z) = max(αz, z) (see
Figure 11-2). The hyperparameter α defines how much the function “leaks”: it is
the slope of the function for z < 0. Having a slope for z < 0 ensures that leaky
ReLUs never die; they can go into a long coma, but they have a chance to eventually
wake up. A 2015 paper by Bing Xu et al.5 compared several variants of the ReLU
activation function, and one of its conclusions was that the leaky variants always

The Vanishing/Exploding Gradients Problems | 361

https://homl.info/49

outperformed the strict ReLU activation function. In fact, setting α = 0.2 (a huge
leak) seemed to result in better performance than α = 0.01 (a small leak). The paper
also evaluated the randomized leaky ReLU (RReLU), where α is picked randomly in
a given range during training and is fixed to an average value during testing. RReLU
also performed fairly well and seemed to act as a regularizer, reducing the risk of
overfitting the training set. Finally, the paper evaluated the parametric leaky ReLU
(PReLU), where α is authorized to be learned during training: instead of being a
hyperparameter, it becomes a parameter that can be modified by backpropagation
like any other parameter. PReLU was reported to strongly outperform ReLU on large
image datasets, but on smaller datasets it runs the risk of overfitting the training set.

Figure 11-2. Leaky ReLU: like ReLU, but with a small slope for negative values

Keras includes the classes LeakyReLU and PReLU in the tf.keras.layers package.
Just like for other ReLU variants, you should use He initialization with these. For
example:

leaky_relu = tf.keras.layers.LeakyReLU(alpha=0.2) # defaults to alpha=0.3
dense = tf.keras.layers.Dense(50, activation=leaky_relu,
 kernel_initializer="he_normal")

If you prefer, you can also use LeakyReLU as a separate layer in your model; it makes
no difference for training and predictions:

model = tf.keras.models.Sequential([
 [...] # more layers
 tf.keras.layers.Dense(50, kernel_initializer="he_normal"), # no activation
 tf.keras.layers.LeakyReLU(alpha=0.2), # activation as a separate layer
 [...] # more layers
])

For PReLU, replace LeakyReLU with PReLU. There is currently no official implementa‐
tion of RReLU in Keras, but you can fairly easily implement your own (to learn how
to do that, see the exercises at the end of Chapter 12).

362 | Chapter 11: Training Deep Neural Networks

6 Djork-Arné Clevert et al., “Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs),”
Proceedings of the International Conference on Learning Representations, arXiv preprint (2015).

ReLU, leaky ReLU, and PReLU all suffer from the fact that they are not smooth
functions: their derivatives abruptly change (at z = 0). As we saw in Chapter 4
when we discussed lasso, this sort of discontinuity can make gradient descent bounce
around the optimum, and slow down convergence. So now we will look at some
smooth variants of the ReLU activation function, starting with ELU and SELU.

ELU and SELU
In 2015, a paper by Djork-Arné Clevert et al.6 proposed a new activation function,
called the exponential linear unit (ELU), that outperformed all the ReLU variants
in the authors’ experiments: training time was reduced, and the neural network
performed better on the test set. Equation 11-2 shows this activation function’s
definition.

Equation 11-2. ELU activation function

ELUα z =
α exp z − 1 if z < 0
z if z ≥ 0

The ELU activation function looks a lot like the ReLU function (see Figure 11-3),
with a few major differences:

• It takes on negative values when z < 0, which allows the unit to have an•
average output closer to 0 and helps alleviate the vanishing gradients problem.
The hyperparameter α defines the opposite of the value that the ELU function
approaches when z is a large negative number. It is usually set to 1, but you can
tweak it like any other hyperparameter.

• It has a nonzero gradient for z < 0, which avoids the dead neurons problem.•
• If α is equal to 1 then the function is smooth everywhere, including around z =•

0, which helps speed up gradient descent since it does not bounce as much to the
left and right of z = 0.

Using ELU with Keras is as easy as setting activation="elu", and like with other
ReLU variants, you should use He initialization. The main drawback of the ELU
activation function is that it is slower to compute than the ReLU function and its
variants (due to the use of the exponential function). Its faster convergence rate
during training may compensate for that slow computation, but still, at test time an
ELU network will be a bit slower than a ReLU network.

The Vanishing/Exploding Gradients Problems | 363

https://homl.info/50

7 Günter Klambauer et al., “Self-Normalizing Neural Networks”, Proceedings of the 31st International Conference
on Neural Information Processing Systems (2017): 972–981.

Figure 11-3. ELU and SELU activation functions

Not long after, a 2017 paper by Günter Klambauer et al.7 introduced the scaled ELU
(SELU) activation function: as its name suggests, it is a scaled variant of the ELU
activation function (about 1.05 times ELU, using α ≈ 1.67). The authors showed
that if you build a neural network composed exclusively of a stack of dense layers
(i.e., an MLP), and if all hidden layers use the SELU activation function, then the
network will self-normalize: the output of each layer will tend to preserve a mean of 0
and a standard deviation of 1 during training, which solves the vanishing/exploding
gradients problem. As a result, the SELU activation function may outperform other
activation functions for MLPs, especially deep ones. To use it with Keras, just set
activation="selu". There are, however, a few conditions for self-normalization to
happen (see the paper for the mathematical justification):

• The input features must be standardized: mean 0 and standard deviation 1.•
• Every hidden layer’s weights must be initialized using LeCun normal initializa‐•

tion. In Keras, this means setting kernel_initializer="lecun_normal".
• The self-normalizing property is only guaranteed with plain MLPs. If you try•

to use SELU in other architectures, like recurrent networks (see Chapter 15) or
networks with skip connections (i.e., connections that skip layers, such as in Wide
& Deep nets), it will probably not outperform ELU.

• You cannot use regularization techniques like ℓ1 or ℓ2 regularization, max-norm,•
batch-norm, or regular dropout (these are discussed later in this chapter).

These are significant constraints, so despite its promises, SELU did not gain a lot
of traction. Moreover, three more activation functions seem to outperform it quite
consistently on most tasks: GELU, Swish, and Mish.

364 | Chapter 11: Training Deep Neural Networks

https://homl.info/selu

8 Dan Hendrycks and Kevin Gimpel, “Gaussian Error Linear Units (GELUs)”, arXiv preprint arXiv:1606.08415
(2016).

9 A function is convex if the line segment between any two points on the curve never lies below the curve. A
monotonic function only increases, or only decreases.

GELU, Swish, and Mish
GELU was introduced in a 2016 paper by Dan Hendrycks and Kevin Gimpel.8 Once
again, you can think of it as a smooth variant of the ReLU activation function. Its
definition is given in Equation 11-3, where Φ is the standard Gaussian cumulative
distribution function (CDF): Φ(z) corresponds to the probability that a value sam‐
pled randomly from a normal distribution of mean 0 and variance 1 is lower than z.

Equation 11-3. GELU activation function

GELU z = zΦ z

As you can see in Figure 11-4, GELU resembles ReLU: it approaches 0 when its input
z is very negative, and it approaches z when z is very positive. However, whereas all
the activation functions we’ve discussed so far were both convex and monotonic,9

the GELU activation function is neither: from left to right, it starts by going straight,
then it wiggles down, reaches a low point around –0.17 (near z ≈ –0.75), and finally
bounces up and ends up going straight toward the top right. This fairly complex
shape and the fact that it has a curvature at every point may explain why it works so
well, especially for complex tasks: gradient descent may find it easier to fit complex
patterns. In practice, it often outperforms every other activation function discussed
so far. However, it is a bit more computationally intensive, and the performance boost
it provides is not always sufficient to justify the extra cost. That said, it is possible to
show that it is approximately equal to zσ(1.702 z), where σ is the sigmoid function:
using this approximation also works very well, and it has the advantage of being
much faster to compute.

Figure 11-4. GELU, Swish, parametrized Swish, and Mish activation functions

The Vanishing/Exploding Gradients Problems | 365

https://homl.info/gelu

10 Prajit Ramachandran et al., “Searching for Activation Functions”, arXiv preprint arXiv:1710.05941 (2017).
11 Diganta Misra, “Mish: A Self Regularized Non-Monotonic Activation Function”, arXiv preprint

arXiv:1908.08681 (2019).

The GELU paper also introduced the sigmoid linear unit (SiLU) activation function,
which is equal to zσ(z), but it was outperformed by GELU in the authors’ tests. Inter‐
estingly, a 2017 paper by Prajit Ramachandran et al.10 rediscovered the SiLU function
by automatically searching for good activation functions. The authors named it Swish,
and the name caught on. In their paper, Swish outperformed every other function,
including GELU. Ramachandran et al. later generalized Swish by adding an extra
hyperparameter β to scale the sigmoid function’s input. The generalized Swish func‐
tion is Swishβ(z) = zσ(βz), so GELU is approximately equal to the generalized Swish
function using β = 1.702. You can tune β like any other hyperparameter. Alternatively,
it’s also possible to make β trainable and let gradient descent optimize it: much
like PReLU, this can make your model more powerful, but it also runs the risk of
overfitting the data.

Another quite similar activation function is Mish, which was introduced in a 2019
paper by Diganta Misra.11 It is defined as mish(z) = ztanh(softplus(z)), where soft‐
plus(z) = log(1 + exp(z)). Just like GELU and Swish, it is a smooth, nonconvex, and
nonmonotonic variant of ReLU, and once again the author ran many experiments
and found that Mish generally outperformed other activation functions—even Swish
and GELU, by a tiny margin. Figure 11-4 shows GELU, Swish (both with the default β
= 1 and with β = 0.6), and lastly Mish. As you can see, Mish overlaps almost perfectly
with Swish when z is negative, and almost perfectly with GELU when z is positive.

So, which activation function should you use for the hidden layers
of your deep neural networks? ReLU remains a good default for
simple tasks: it’s often just as good as the more sophisticated activa‐
tion functions, plus it’s very fast to compute, and many libraries
and hardware accelerators provide ReLU-specific optimizations.
However, Swish is probably a better default for more complex
tasks, and you can even try parametrized Swish with a learnable β
parameter for the most complex tasks. Mish may give you slightly
better results, but it requires a bit more compute. If you care a
lot about runtime latency, then you may prefer leaky ReLU, or
parametrized leaky ReLU for more complex tasks. For deep MLPs,
give SELU a try, but make sure to respect the constraints listed
earlier. If you have spare time and computing power, you can use
cross-validation to evaluate other activation functions as well.

366 | Chapter 11: Training Deep Neural Networks

https://homl.info/swish
https://homl.info/mish
https://homl.info/mish

12 Sergey Ioffe and Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift”, Proceedings of the 32nd International Conference on Machine Learning (2015): 448–
456.

Keras supports GELU and Swish out of the box; just use activation="gelu" or
activation="swish". However, it does not support Mish or the generalized Swish
activation function yet (but see Chapter 12 to see how to implement your own
activation functions and layers).

That’s all for activation functions! Now, let’s look at a completely different way to
solve the unstable gradients problem: batch normalization.

Batch Normalization
Although using He initialization along with ReLU (or any of its variants) can sig‐
nificantly reduce the danger of the vanishing/exploding gradients problems at the
beginning of training, it doesn’t guarantee that they won’t come back during training.

In a 2015 paper,12 Sergey Ioffe and Christian Szegedy proposed a technique called
batch normalization (BN) that addresses these problems. The technique consists of
adding an operation in the model just before or after the activation function of each
hidden layer. This operation simply zero-centers and normalizes each input, then
scales and shifts the result using two new parameter vectors per layer: one for scaling,
the other for shifting. In other words, the operation lets the model learn the optimal
scale and mean of each of the layer’s inputs. In many cases, if you add a BN layer
as the very first layer of your neural network, you do not need to standardize your
training set. That is, there’s no need for StandardScaler or Normalization; the BN
layer will do it for you (well, approximately, since it only looks at one batch at a time,
and it can also rescale and shift each input feature).

In order to zero-center and normalize the inputs, the algorithm needs to estimate
each input’s mean and standard deviation. It does so by evaluating the mean and
standard deviation of the input over the current mini-batch (hence the name “batch
normalization”). The whole operation is summarized step by step in Equation 11-4.

The Vanishing/Exploding Gradients Problems | 367

https://homl.info/51

Equation 11-4. Batch normalization algorithm

1 . μB = 1
mB

∑
i = 1

mB
x i

2 . σB
2 = 1

mB
∑
i = 1

mB
x i − μB

2

3 . x
i =

x i − μB
σB

2 + ε

4 . z i = γ ⊗ x i + β

In this algorithm:

• μB is the vector of input means, evaluated over the whole mini-batch B (it•
contains one mean per input).

• mB is the number of instances in the mini-batch.•
• σB is the vector of input standard deviations, also evaluated over the whole•

mini-batch (it contains one standard deviation per input).
• x(i) is the vector of zero-centered and normalized inputs for instance i.•
• ε is a tiny number that avoids division by zero and ensures the gradients don’t•

grow too large (typically 10–5). This is called a smoothing term.
• γ is the output scale parameter vector for the layer (it contains one scale parame‐•

ter per input).
• ⊗ represents element-wise multiplication (each input is multiplied by its corre‐•

sponding output scale parameter).
• β is the output shift (offset) parameter vector for the layer (it contains one offset•

parameter per input). Each input is offset by its corresponding shift parameter.
• z(i) is the output of the BN operation. It is a rescaled and shifted version of the•

inputs.

So during training, BN standardizes its inputs, then rescales and offsets them. Good!
What about at test time? Well, it’s not that simple. Indeed, we may need to make
predictions for individual instances rather than for batches of instances: in this case,
we will have no way to compute each input’s mean and standard deviation. Moreover,
even if we do have a batch of instances, it may be too small, or the instances may
not be independent and identically distributed, so computing statistics over the batch
instances would be unreliable. One solution could be to wait until the end of training,
then run the whole training set through the neural network and compute the mean
and standard deviation of each input of the BN layer. These “final” input means

368 | Chapter 11: Training Deep Neural Networks

and standard deviations could then be used instead of the batch input means and
standard deviations when making predictions. However, most implementations of
batch normalization estimate these final statistics during training by using a moving
average of the layer’s input means and standard deviations. This is what Keras does
automatically when you use the BatchNormalization layer. To sum up, four parame‐
ter vectors are learned in each batch-normalized layer: γ (the output scale vector)
and β (the output offset vector) are learned through regular backpropagation, and
μ (the final input mean vector) and σ (the final input standard deviation vector)
are estimated using an exponential moving average. Note that μ and σ are estimated
during training, but they are used only after training (to replace the batch input
means and standard deviations in Equation 11-4).

Ioffe and Szegedy demonstrated that batch normalization considerably improved all
the deep neural networks they experimented with, leading to a huge improvement in
the ImageNet classification task (ImageNet is a large database of images classified into
many classes, commonly used to evaluate computer vision systems). The vanishing
gradients problem was strongly reduced, to the point that they could use saturating
activation functions such as the tanh and even the sigmoid activation function. The
networks were also much less sensitive to the weight initialization. The authors were
able to use much larger learning rates, significantly speeding up the learning process.
Specifically, they note that:

Applied to a state-of-the-art image classification model, batch normalization achieves
the same accuracy with 14 times fewer training steps, and beats the original model
by a significant margin. […] Using an ensemble of batch-normalized networks, we
improve upon the best published result on ImageNet classification: reaching 4.9%
top-5 validation error (and 4.8% test error), exceeding the accuracy of human raters.

Finally, like a gift that keeps on giving, batch normalization acts like a regularizer,
reducing the need for other regularization techniques (such as dropout, described
later in this chapter).

Batch normalization does, however, add some complexity to the model (although it
can remove the need for normalizing the input data, as discussed earlier). Moreover,
there is a runtime penalty: the neural network makes slower predictions due to the
extra computations required at each layer. Fortunately, it’s often possible to fuse the
BN layer with the previous layer after training, thereby avoiding the runtime penalty.
This is done by updating the previous layer’s weights and biases so that it directly
produces outputs of the appropriate scale and offset. For example, if the previous
layer computes XW + b, then the BN layer will compute γ ⊗ (XW + b – μ) / σ +
β (ignoring the smoothing term ε in the denominator). If we define W′ = γ⊗W /
σ and b′ = γ ⊗ (b – μ) / σ + β, the equation simplifies to XW′ + b′. So, if we
replace the previous layer’s weights and biases (W and b) with the updated weights
and biases (W′ and b′), we can get rid of the BN layer (TFLite’s converter does this
automatically; see Chapter 19).

The Vanishing/Exploding Gradients Problems | 369

You may find that training is rather slow, because each epoch takes
much more time when you use batch normalization. This is usually
counterbalanced by the fact that convergence is much faster with
BN, so it will take fewer epochs to reach the same performance. All
in all, wall time will usually be shorter (this is the time measured by
the clock on your wall).

Implementing batch normalization with Keras
As with most things with Keras, implementing batch normalization is straightforward
and intuitive. Just add a BatchNormalization layer before or after each hidden layer’s
activation function. You may also add a BN layer as the first layer in your model, but
a plain Normalization layer generally performs just as well in this location (its only
drawback is that you must first call its adapt() method). For example, this model
applies BN after every hidden layer and as the first layer in the model (after flattening
the input images):

model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=[28, 28]),
 tf.keras.layers.BatchNormalization(),
 tf.keras.layers.Dense(300, activation="relu",
 kernel_initializer="he_normal"),
 tf.keras.layers.BatchNormalization(),
 tf.keras.layers.Dense(100, activation="relu",
 kernel_initializer="he_normal"),
 tf.keras.layers.BatchNormalization(),
 tf.keras.layers.Dense(10, activation="softmax")
])

That’s all! In this tiny example with just two hidden layers batch normalization is
unlikely to have a large impact, but for deeper networks it can make a tremendous
difference.

Let’s display the model summary:

>>> model.summary()
Model: "sequential"

Layer (type) Output Shape Param #
===
flatten (Flatten) (None, 784) 0

batch_normalization (BatchNo (None, 784) 3136

dense (Dense) (None, 300) 235500

batch_normalization_1 (Batch (None, 300) 1200

dense_1 (Dense) (None, 100) 30100

370 | Chapter 11: Training Deep Neural Networks

13 However, they are estimated during training based on the training data, so arguably they are trainable. In
Keras, “non-trainable” really means “untouched by backpropagation”.

batch_normalization_2 (Batch (None, 100) 400

dense_2 (Dense) (None, 10) 1010
===
Total params: 271,346
Trainable params: 268,978
Non-trainable params: 2,368

As you can see, each BN layer adds four parameters per input: γ, β, μ, and σ (for
example, the first BN layer adds 3,136 parameters, which is 4 × 784). The last two
parameters, μ and σ, are the moving averages; they are not affected by backpropaga‐
tion, so Keras calls them “non-trainable”13 (if you count the total number of BN
parameters, 3,136 + 1,200 + 400, and divide by 2, you get 2,368, which is the total
number of non-trainable parameters in this model).

Let’s look at the parameters of the first BN layer. Two are trainable (by backpropaga‐
tion), and two are not:

>>> [(var.name, var.trainable) for var in model.layers[1].variables]
[('batch_normalization/gamma:0', True),
 ('batch_normalization/beta:0', True),
 ('batch_normalization/moving_mean:0', False),
 ('batch_normalization/moving_variance:0', False)]

The authors of the BN paper argued in favor of adding the BN layers before the
activation functions, rather than after (as we just did). There is some debate about
this, as which is preferable seems to depend on the task—you can experiment with
this too to see which option works best on your dataset. To add the BN layers before
the activation function, you must remove the activation functions from the hidden
layers and add them as separate layers after the BN layers. Moreover, since a batch
normalization layer includes one offset parameter per input, you can remove the bias
term from the previous layer by passing use_bias=False when creating it. Lastly,
you can usually drop the first BN layer to avoid sandwiching the first hidden layer
between two BN layers. The updated code looks like this:

model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=[28, 28]),
 tf.keras.layers.Dense(300, kernel_initializer="he_normal", use_bias=False),
 tf.keras.layers.BatchNormalization(),
 tf.keras.layers.Activation("relu"),
 tf.keras.layers.Dense(100, kernel_initializer="he_normal", use_bias=False),
 tf.keras.layers.BatchNormalization(),
 tf.keras.layers.Activation("relu"),
 tf.keras.layers.Dense(10, activation="softmax")
])

The Vanishing/Exploding Gradients Problems | 371

14 Razvan Pascanu et al., “On the Difficulty of Training Recurrent Neural Networks”, Proceedings of the 30th
International Conference on Machine Learning (2013): 1310–1318.

The BatchNormalization class has quite a few hyperparameters you can tweak. The
defaults will usually be fine, but you may occasionally need to tweak the momentum.
This hyperparameter is used by the BatchNormalization layer when it updates the
exponential moving averages; given a new value v (i.e., a new vector of input means
or standard deviations computed over the current batch), the layer updates the
running average v using the following equation:

v v × momentum + v × 1 − momentum

A good momentum value is typically close to 1; for example, 0.9, 0.99, or 0.999. You
want more 9s for larger datasets and for smaller mini-batches.

Another important hyperparameter is axis: it determines which axis should be
normalized. It defaults to –1, meaning that by default it will normalize the last axis
(using the means and standard deviations computed across the other axes). When the
input batch is 2D (i.e., the batch shape is [batch size, features]), this means that each
input feature will be normalized based on the mean and standard deviation computed
across all the instances in the batch. For example, the first BN layer in the previous
code example will independently normalize (and rescale and shift) each of the 784
input features. If we move the first BN layer before the Flatten layer, then the input
batches will be 3D, with shape [batch size, height, width]; therefore, the BN layer will
compute 28 means and 28 standard deviations (1 per column of pixels, computed
across all instances in the batch and across all rows in the column), and it will
normalize all pixels in a given column using the same mean and standard deviation.
There will also be just 28 scale parameters and 28 shift parameters. If instead you still
want to treat each of the 784 pixels independently, then you should set axis=[1, 2].

Batch normalization has become one of the most-used layers in deep neural net‐
works, especially deep convolutional neural networks discussed in (Chapter 14), to
the point that it is often omitted in the architecture diagrams: it is assumed that BN
is added after every layer. Now let’s look at one last technique to stabilize gradients
during training: gradient clipping.

Gradient Clipping
Another technique to mitigate the exploding gradients problem is to clip the gradi‐
ents during backpropagation so that they never exceed some threshold. This is called
gradient clipping.14 This technique is generally used in recurrent neural networks,
where using batch normalization is tricky (as you will see in Chapter 15).

372 | Chapter 11: Training Deep Neural Networks

https://homl.info/52

In Keras, implementing gradient clipping is just a matter of setting the clipvalue or
clipnorm argument when creating an optimizer, like this:

optimizer = tf.keras.optimizers.SGD(clipvalue=1.0)
model.compile([...], optimizer=optimizer)

This optimizer will clip every component of the gradient vector to a value between
–1.0 and 1.0. This means that all the partial derivatives of the loss (with regard to each
and every trainable parameter) will be clipped between –1.0 and 1.0. The threshold
is a hyperparameter you can tune. Note that it may change the orientation of the
gradient vector. For instance, if the original gradient vector is [0.9, 100.0], it points
mostly in the direction of the second axis; but once you clip it by value, you get [0.9,
1.0], which points roughly at the diagonal between the two axes. In practice, this
approach works well. If you want to ensure that gradient clipping does not change
the direction of the gradient vector, you should clip by norm by setting clipnorm
instead of clipvalue. This will clip the whole gradient if its ℓ2 norm is greater than
the threshold you picked. For example, if you set clipnorm=1.0, then the vector
[0.9, 100.0] will be clipped to [0.00899964, 0.9999595], preserving its orientation but
almost eliminating the first component. If you observe that the gradients explode
during training (you can track the size of the gradients using TensorBoard), you may
want to try clipping by value or clipping by norm, with different thresholds, and see
which option performs best on the validation set.

Reusing Pretrained Layers
It is generally not a good idea to train a very large DNN from scratch without first
trying to find an existing neural network that accomplishes a similar task to the one
you are trying to tackle (I will discuss how to find them in Chapter 14). If you find
such as neural network, then you can generally reuse most of its layers, except for the
top ones. This technique is called transfer learning. It will not only speed up training
considerably, but also requires significantly less training data.

Suppose you have access to a DNN that was trained to classify pictures into 100
different categories, including animals, plants, vehicles, and everyday objects, and you
now want to train a DNN to classify specific types of vehicles. These tasks are very
similar, even partly overlapping, so you should try to reuse parts of the first network
(see Figure 11-5).

If the input pictures for your new task don’t have the same size
as the ones used in the original task, you will usually have to add
a preprocessing step to resize them to the size expected by the
original model. More generally, transfer learning will work best
when the inputs have similar low-level features.

Reusing Pretrained Layers | 373

Figure 11-5. Reusing pretrained layers

The output layer of the original model should usually be replaced because it is most
likely not useful at all for the new task, and probably will not have the right number
of outputs.

Similarly, the upper hidden layers of the original model are less likely to be as useful
as the lower layers, since the high-level features that are most useful for the new task
may differ significantly from the ones that were most useful for the original task. You
want to find the right number of layers to reuse.

The more similar the tasks are, the more layers you will want to
reuse (starting with the lower layers). For very similar tasks, try to
keep all the hidden layers and just replace the output layer.

Try freezing all the reused layers first (i.e., make their weights non-trainable so that
gradient descent won’t modify them and they will remain fixed), then train your
model and see how it performs. Then try unfreezing one or two of the top hidden
layers to let backpropagation tweak them and see if performance improves. The more
training data you have, the more layers you can unfreeze. It is also useful to reduce
the learning rate when you unfreeze reused layers: this will avoid wrecking their
fine-tuned weights.

If you still cannot get good performance, and you have little training data, try
dropping the top hidden layer(s) and freezing all the remaining hidden layers again.

374 | Chapter 11: Training Deep Neural Networks

You can iterate until you find the right number of layers to reuse. If you have plenty of
training data, you may try replacing the top hidden layers instead of dropping them,
and even adding more hidden layers.

Transfer Learning with Keras
Let’s look at an example. Suppose the Fashion MNIST dataset only contained eight
classes—for example, all the classes except for sandal and shirt. Someone built and
trained a Keras model on that set and got reasonably good performance (>90%
accuracy). Let’s call this model A. You now want to tackle a different task: you have
images of T-shirts and pullovers, and you want to train a binary classifier: positive
for T-shirts (and tops), negative for sandals. Your dataset is quite small; you only have
200 labeled images. When you train a new model for this task (let’s call it model B)
with the same architecture as model A, you get 91.85% test accuracy. While drinking
your morning coffee, you realize that your task is quite similar to task A, so perhaps
transfer learning can help? Let’s find out!

First, you need to load model A and create a new model based on that model’s layers.
You decide to reuse all the layers except for the output layer:

[...] # Assuming model A was already trained and saved to "my_model_A"
model_A = tf.keras.models.load_model("my_model_A")
model_B_on_A = tf.keras.Sequential(model_A.layers[:-1])
model_B_on_A.add(tf.keras.layers.Dense(1, activation="sigmoid"))

Note that model_A and model_B_on_A now share some layers. When you train
model_B_on_A, it will also affect model_A. If you want to avoid that, you need to
clone model_A before you reuse its layers. To do this, you clone model A’s architecture
with clone_model(), then copy its weights:

model_A_clone = tf.keras.models.clone_model(model_A)
model_A_clone.set_weights(model_A.get_weights())

tf.keras.models.clone_model() only clones the architecture, not
the weights. If you don’t copy them manually using set_weights(),
they will be initialized randomly when the cloned model is first
used.

Now you could train model_B_on_A for task B, but since the new output layer was
initialized randomly it will make large errors (at least during the first few epochs), so
there will be large error gradients that may wreck the reused weights. To avoid this,
one approach is to freeze the reused layers during the first few epochs, giving the new
layer some time to learn reasonable weights. To do this, set every layer’s trainable
attribute to False and compile the model:

Reusing Pretrained Layers | 375

for layer in model_B_on_A.layers[:-1]:
 layer.trainable = False

optimizer = tf.keras.optimizers.SGD(learning_rate=0.001)
model_B_on_A.compile(loss="binary_crossentropy", optimizer=optimizer,
 metrics=["accuracy"])

You must always compile your model after you freeze or unfreeze
layers.

Now you can train the model for a few epochs, then unfreeze the reused layers (which
requires compiling the model again) and continue training to fine-tune the reused
layers for task B. After unfreezing the reused layers, it is usually a good idea to reduce
the learning rate, once again to avoid damaging the reused weights.

history = model_B_on_A.fit(X_train_B, y_train_B, epochs=4,
 validation_data=(X_valid_B, y_valid_B))

for layer in model_B_on_A.layers[:-1]:
 layer.trainable = True

optimizer = tf.keras.optimizers.SGD(learning_rate=0.001)
model_B_on_A.compile(loss="binary_crossentropy", optimizer=optimizer,
 metrics=["accuracy"])
history = model_B_on_A.fit(X_train_B, y_train_B, epochs=16,
 validation_data=(X_valid_B, y_valid_B))

So, what’s the final verdict? Well, this model’s test accuracy is 93.85%, up exactly two
percentage points from 91.85%! This means that transfer learning reduced the error
rate by almost 25%:

>>> model_B_on_A.evaluate(X_test_B, y_test_B)
[0.2546142041683197, 0.9384999871253967]

Are you convinced? You shouldn’t be: I cheated! I tried many configurations until I
found one that demonstrated a strong improvement. If you try to change the classes
or the random seed, you will see that the improvement generally drops, or even
vanishes or reverses. What I did is called “torturing the data until it confesses”. When
a paper just looks too positive, you should be suspicious: perhaps the flashy new
technique does not actually help much (in fact, it may even degrade performance),
but the authors tried many variants and reported only the best results (which may be
due to sheer luck), without mentioning how many failures they encountered on the
way. Most of the time, this is not malicious at all, but it is part of the reason so many
results in science can never be reproduced.

376 | Chapter 11: Training Deep Neural Networks

Why did I cheat? It turns out that transfer learning does not work very well with
small dense networks, presumably because small networks learn few patterns, and
dense networks learn very specific patterns, which are unlikely to be useful in other
tasks. Transfer learning works best with deep convolutional neural networks, which
tend to learn feature detectors that are much more general (especially in the lower
layers). We will revisit transfer learning in Chapter 14, using the techniques we just
discussed (and this time there will be no cheating, I promise!).

Unsupervised Pretraining
Suppose you want to tackle a complex task for which you don’t have much labeled
training data, but unfortunately you cannot find a model trained on a similar task.
Don’t lose hope! First, you should try to gather more labeled training data, but if
you can’t, you may still be able to perform unsupervised pretraining (see Figure 11-6).
Indeed, it is often cheap to gather unlabeled training examples, but expensive to label
them. If you can gather plenty of unlabeled training data, you can try to use it to train
an unsupervised model, such as an autoencoder or a generative adversarial network
(GAN; see Chapter 17). Then you can reuse the lower layers of the autoencoder or
the lower layers of the GAN’s discriminator, add the output layer for your task on
top, and fine-tune the final network using supervised learning (i.e., with the labeled
training examples).

It is this technique that Geoffrey Hinton and his team used in 2006, and which led
to the revival of neural networks and the success of deep learning. Until 2010, unsu‐
pervised pretraining—typically with restricted Boltzmann machines (RBMs; see the
notebook at https://homl.info/extra-anns)—was the norm for deep nets, and only after
the vanishing gradients problem was alleviated did it become much more common
to train DNNs purely using supervised learning. Unsupervised pretraining (today
typically using autoencoders or GANs rather than RBMs) is still a good option when
you have a complex task to solve, no similar model you can reuse, and little labeled
training data but plenty of unlabeled training data.

Note that in the early days of deep learning it was difficult to train deep models,
so people would use a technique called greedy layer-wise pretraining (depicted in Fig‐
ure 11-6). They would first train an unsupervised model with a single layer, typically
an RBM, then they would freeze that layer and add another one on top of it, then
train the model again (effectively just training the new layer), then freeze the new
layer and add another layer on top of it, train the model again, and so on. Nowadays,
things are much simpler: people generally train the full unsupervised model in one
shot and use autoencoders or GANs rather than RBMs.

Reusing Pretrained Layers | 377

https://homl.info/extra-anns

Figure 11-6. In unsupervised training, a model is trained on all data, including the unla‐
beled data, using an unsupervised learning technique, then it is fine-tuned for the final
task on just the labeled data using a supervised learning technique; the unsupervised
part may train one layer at a time as shown here, or it may train the full model directly

Pretraining on an Auxiliary Task
If you do not have much labeled training data, one last option is to train a first
neural network on an auxiliary task for which you can easily obtain or generate
labeled training data, then reuse the lower layers of that network for your actual task.
The first neural network’s lower layers will learn feature detectors that will likely be
reusable by the second neural network.

For example, if you want to build a system to recognize faces, you may only have
a few pictures of each individual—clearly not enough to train a good classifier.
Gathering hundreds of pictures of each person would not be practical. You could,
however, gather a lot of pictures of random people on the web and train a first neural
network to detect whether or not two different pictures feature the same person. Such
a network would learn good feature detectors for faces, so reusing its lower layers
would allow you to train a good face classifier that uses little training data.

For natural language processing (NLP) applications, you can download a corpus
of millions of text documents and automatically generate labeled data from it. For
example, you could randomly mask out some words and train a model to predict
what the missing words are (e.g., it should predict that the missing word in the

378 | Chapter 11: Training Deep Neural Networks

15 Boris T. Polyak, “Some Methods of Speeding Up the Convergence of Iteration Methods”, USSR Computational
Mathematics and Mathematical Physics 4, no. 5 (1964): 1–17.

sentence “What ___ you saying?” is probably “are” or “were”). If you can train a
model to reach good performance on this task, then it will already know quite a lot
about language, and you can certainly reuse it for your actual task and fine-tune it on
your labeled data (we will discuss more pretraining tasks in Chapter 15).

Self-supervised learning is when you automatically generate the
labels from the data itself, as in the text-masking example, then you
train a model on the resulting “labeled” dataset using supervised
learning techniques.

Faster Optimizers
Training a very large deep neural network can be painfully slow. So far we have
seen four ways to speed up training (and reach a better solution): applying a good
initialization strategy for the connection weights, using a good activation function,
using batch normalization, and reusing parts of a pretrained network (possibly built
for an auxiliary task or using unsupervised learning). Another huge speed boost
comes from using a faster optimizer than the regular gradient descent optimizer. In
this section we will present the most popular optimization algorithms: momentum,
Nesterov accelerated gradient, AdaGrad, RMSProp, and finally Adam and its variants.

Momentum
Imagine a bowling ball rolling down a gentle slope on a smooth surface: it will start
out slowly, but it will quickly pick up momentum until it eventually reaches terminal
velocity (if there is some friction or air resistance). This is the core idea behind
momentum optimization, proposed by Boris Polyak in 1964.15 In contrast, regular
gradient descent will take small steps when the slope is gentle and big steps when the
slope is steep, but it will never pick up speed. As a result, regular gradient descent is
generally much slower to reach the minimum than momentum optimization.

Recall that gradient descent updates the weights θ by directly subtracting the gradient
of the cost function J(θ) with regard to the weights (∇θJ(θ)) multiplied by the
learning rate η. The equation is θ ← θ – η∇θJ(θ). It does not care about what the
earlier gradients were. If the local gradient is tiny, it goes very slowly.

Momentum optimization cares a great deal about what previous gradients were: at
each iteration, it subtracts the local gradient from the momentum vector m (multi‐
plied by the learning rate η), and it updates the weights by adding this momentum
vector (see Equation 11-5). In other words, the gradient is used as an acceleration, not

Faster Optimizers | 379

https://homl.info/54

as a speed. To simulate some sort of friction mechanism and prevent the momentum
from growing too large, the algorithm introduces a new hyperparameter β, called the
momentum, which must be set between 0 (high friction) and 1 (no friction). A typical
momentum value is 0.9.

Equation 11-5. Momentum algorithm

1 . m βm − η∇θJ θ
2 . θ θ +m

You can verify that if the gradient remains constant, the terminal velocity (i.e., the
maximum size of the weight updates) is equal to that gradient multiplied by the
learning rate η multiplied by 1 / (1 – β) (ignoring the sign). For example, if β = 0.9,
then the terminal velocity is equal to 10 times the gradient times the learning rate, so
momentum optimization ends up going 10 times faster than gradient descent! This
allows momentum optimization to escape from plateaus much faster than gradient
descent. We saw in Chapter 4 that when the inputs have very different scales, the
cost function will look like an elongated bowl (see Figure 4-7). Gradient descent
goes down the steep slope quite fast, but then it takes a very long time to go down
the valley. In contrast, momentum optimization will roll down the valley faster and
faster until it reaches the bottom (the optimum). In deep neural networks that don’t
use batch normalization, the upper layers will often end up having inputs with very
different scales, so using momentum optimization helps a lot. It can also help roll past
local optima.

Due to the momentum, the optimizer may overshoot a bit, then
come back, overshoot again, and oscillate like this many times
before stabilizing at the minimum. This is one of the reasons it’s
good to have a bit of friction in the system: it gets rid of these
oscillations and thus speeds up convergence.

Implementing momentum optimization in Keras is a no-brainer: just use the SGD
optimizer and set its momentum hyperparameter, then lie back and profit!

optimizer = tf.keras.optimizers.SGD(learning_rate=0.001, momentum=0.9)

The one drawback of momentum optimization is that it adds yet another hyperpara‐
meter to tune. However, the momentum value of 0.9 usually works well in practice
and almost always goes faster than regular gradient descent.

380 | Chapter 11: Training Deep Neural Networks

16 Yurii Nesterov, “A Method for Unconstrained Convex Minimization Problem with the Rate of Convergence
O(1/k2),” Doklady AN USSR 269 (1983): 543–547.

Nesterov Accelerated Gradient
One small variant to momentum optimization, proposed by Yurii Nesterov in 1983,16

is almost always faster than regular momentum optimization. The Nesterov acceler‐
ated gradient (NAG) method, also known as Nesterov momentum optimization, meas‐
ures the gradient of the cost function not at the local position θ but slightly ahead in
the direction of the momentum, at θ + βm (see Equation 11-6).

Equation 11-6. Nesterov accelerated gradient algorithm

1 . m βm − η∇θJ θ + βm
2 . θ θ +m

This small tweak works because in general the momentum vector will be pointing in
the right direction (i.e., toward the optimum), so it will be slightly more accurate to
use the gradient measured a bit farther in that direction rather than the gradient at
the original position, as you can see in Figure 11-7 (where ∇1 represents the gradient
of the cost function measured at the starting point θ, and ∇2 represents the gradient
at the point located at θ + βm).

Figure 11-7. Regular versus Nesterov momentum optimization: the former applies the
gradients computed before the momentum step, while the latter applies the gradients
computed after

As you can see, the Nesterov update ends up closer to the optimum. After a while,
these small improvements add up and NAG ends up being significantly faster than
regular momentum optimization. Moreover, note that when the momentum pushes

Faster Optimizers | 381

https://homl.info/55

17 John Duchi et al., “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”, Journal
of Machine Learning Research 12 (2011): 2121–2159.

the weights across a valley, ∇1 continues to push farther across the valley, while ∇2
pushes back toward the bottom of the valley. This helps reduce oscillations and thus
NAG converges faster.

To use NAG, simply set nesterov=True when creating the SGD optimizer:

optimizer = tf.keras.optimizers.SGD(learning_rate=0.001, momentum=0.9,
 nesterov=True)

AdaGrad
Consider the elongated bowl problem again: gradient descent starts by quickly going
down the steepest slope, which does not point straight toward the global optimum,
then it very slowly goes down to the bottom of the valley. It would be nice if the
algorithm could correct its direction earlier to point a bit more toward the global
optimum. The AdaGrad algorithm17 achieves this correction by scaling down the
gradient vector along the steepest dimensions (see Equation 11-7).

Equation 11-7. AdaGrad algorithm

1 . s s +∇θJ θ ⊗ ∇θJ θ

2 . θ θ − η∇θJ θ ⊘ s + ε

The first step accumulates the square of the gradients into the vector s (recall that
the ⊗ symbol represents the element-wise multiplication). This vectorized form is
equivalent to computing si ← si + (∂ J(θ) / ∂ θi)2 for each element si of the vector
s; in other words, each si accumulates the squares of the partial derivative of the
cost function with regard to parameter θi. If the cost function is steep along the ith

dimension, then si will get larger and larger at each iteration.

The second step is almost identical to gradient descent, but with one big difference:
the gradient vector is scaled down by a factor of s + ε (the ⊘ symbol represents
the element-wise division, and ε is a smoothing term to avoid division by zero,
typically set to 10–10). This vectorized form is equivalent to simultaneously computing
θi θi − η ∂J θ / ∂θi/ si + ε for all parameters θi.

In short, this algorithm decays the learning rate, but it does so faster for steep dimen‐
sions than for dimensions with gentler slopes. This is called an adaptive learning
rate. It helps point the resulting updates more directly toward the global optimum
(see Figure 11-8). One additional benefit is that it requires much less tuning of the
learning rate hyperparameter η.

382 | Chapter 11: Training Deep Neural Networks

https://homl.info/56

18 This algorithm was created by Geoffrey Hinton and Tijmen Tieleman in 2012 and presented by Geoffrey
Hinton in his Coursera class on neural networks (slides: https://homl.info/57; video: https://homl.info/58).
Amusingly, since the authors did not write a paper to describe the algorithm, researchers often cite “slide 29 in
lecture 6e” in their papers.

Figure 11-8. AdaGrad versus gradient descent: the former can correct its direction
earlier to point to the optimum

AdaGrad frequently performs well for simple quadratic problems, but it often stops
too early when training neural networks: the learning rate gets scaled down so much
that the algorithm ends up stopping entirely before reaching the global optimum.
So even though Keras has an Adagrad optimizer, you should not use it to train
deep neural networks (it may be efficient for simpler tasks such as linear regression,
though). Still, understanding AdaGrad is helpful to comprehend the other adaptive
learning rate optimizers.

RMSProp
As we’ve seen, AdaGrad runs the risk of slowing down a bit too fast and never con‐
verging to the global optimum. The RMSProp algorithm18 fixes this by accumulating
only the gradients from the most recent iterations, as opposed to all the gradients
since the beginning of training. It does so by using exponential decay in the first step
(see Equation 11-8).

Equation 11-8. RMSProp algorithm

1 . s ρs + 1 − ρ ∇θJ θ ⊗ ∇θJ θ

2 . θ θ − η∇θJ θ ⊘ s + ε

Faster Optimizers | 383

https://homl.info/57
https://homl.info/58

19 ρ is the Greek letter rho.
20 Diederik P. Kingma and Jimmy Ba, “Adam: A Method for Stochastic Optimization”, arXiv preprint

arXiv:1412.6980 (2014).

The decay rate ρ is typically set to 0.9.19 Yes, it is once again a new hyperparameter,
but this default value often works well, so you may not need to tune it at all.

As you might expect, Keras has an RMSprop optimizer:

optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.001, rho=0.9)

Except on very simple problems, this optimizer almost always performs much better
than AdaGrad. In fact, it was the preferred optimization algorithm of many research‐
ers until Adam optimization came around.

Adam
Adam,20 which stands for adaptive moment estimation, combines the ideas of momen‐
tum optimization and RMSProp: just like momentum optimization, it keeps track of
an exponentially decaying average of past gradients; and just like RMSProp, it keeps
track of an exponentially decaying average of past squared gradients (see Equation
11-9). These are estimations of the mean and (uncentered) variance of the gradients.
The mean is often called the first moment while the variance is often called the second
moment, hence the name of the algorithm.

Equation 11-9. Adam algorithm

1 . m β1m − 1 − β1 ∇θJ θ

2 . s β2s + 1 − β2 ∇θJ θ ⊗ ∇θJ θ

3 . m
m

1 − β1
t

4 . s
s

1 − β2
t

5 . θ θ + ηm ⊘ s + ε

In this equation, t represents the iteration number (starting at 1).

If you just look at steps 1, 2, and 5, you will notice Adam’s close similarity to
both momentum optimization and RMSProp: β1 corresponds to β in momentum
optimization, and β2 corresponds to ρ in RMSProp. The only difference is that step
1 computes an exponentially decaying average rather than an exponentially decaying
sum, but these are actually equivalent except for a constant factor (the decaying
average is just 1 – β1 times the decaying sum). Steps 3 and 4 are somewhat of a

384 | Chapter 11: Training Deep Neural Networks

https://homl.info/59

technical detail: since m and s are initialized at 0, they will be biased toward 0 at the
beginning of training, so these two steps will help boost m and s at the beginning of
training.

The momentum decay hyperparameter β1 is typically initialized to 0.9, while the
scaling decay hyperparameter β2 is often initialized to 0.999. As earlier, the smoothing
term ε is usually initialized to a tiny number such as 10–7. These are the default values
for the Adam class. Here is how to create an Adam optimizer using Keras:

optimizer = tf.keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9,
 beta_2=0.999)

Since Adam is an adaptive learning rate algorithm, like AdaGrad and RMSProp, it
requires less tuning of the learning rate hyperparameter η. You can often use the
default value η = 0.001, making Adam even easier to use than gradient descent.

If you are starting to feel overwhelmed by all these different techni‐
ques and are wondering how to choose the right ones for your task,
don’t worry: some practical guidelines are provided at the end of
this chapter.

Finally, three variants of Adam are worth mentioning: AdaMax, Nadam, and AdamW.

AdaMax
The Adam paper also introduced AdaMax. Notice that in step 2 of Equation 11-9,
Adam accumulates the squares of the gradients in s (with a greater weight for more
recent gradients). In step 5, if we ignore ε and steps 3 and 4 (which are technical
details anyway), Adam scales down the parameter updates by the square root of s. In
short, Adam scales down the parameter updates by the ℓ2 norm of the time-decayed
gradients (recall that the ℓ2 norm is the square root of the sum of squares).

AdaMax replaces the ℓ2 norm with the ℓ∞ norm (a fancy way of saying the max).
Specifically, it replaces step 2 in Equation 11-9 with s max β2s, abs(∇θJ θ , it
drops step 4, and in step 5 it scales down the gradient updates by a factor of s, which
is the max of the absolute value of the time-decayed gradients.

In practice, this can make AdaMax more stable than Adam, but it really depends on
the dataset, and in general Adam performs better. So, this is just one more optimizer
you can try if you experience problems with Adam on some task.

Faster Optimizers | 385

21 Timothy Dozat, “Incorporating Nesterov Momentum into Adam” (2016).
22 Ilya Loshchilov, and Frank Hutter, “Decoupled Weight Decay Regularization”, arXiv preprint

arXiv:1711.05101 (2017).
23 Ashia C. Wilson et al., “The Marginal Value of Adaptive Gradient Methods in Machine Learning”, Advances in

Neural Information Processing Systems 30 (2017): 4148–4158.

Nadam
Nadam optimization is Adam optimization plus the Nesterov trick, so it will often
converge slightly faster than Adam. In his report introducing this technique,21 the
researcher Timothy Dozat compares many different optimizers on various tasks and
finds that Nadam generally outperforms Adam but is sometimes outperformed by
RMSProp.

AdamW
AdamW22 is a variant of Adam that integrates a regularization technique called
weight decay. Weight decay reduces the size of the model’s weights at each training
iteration by multiplying them by a decay factor such as 0.99. This may remind you
of ℓ2 regularization (introduced in Chapter 4), which also aims to keep the weights
small, and indeed it can be shown mathematically that ℓ2 regularization is equivalent
to weight decay when using SGD. However, when using Adam or its variants, ℓ2
regularization and weight decay are not equivalent: in practice, combining Adam
with ℓ2 regularization results in models that often don’t generalize as well as those
produced by SGD. AdamW fixes this issue by properly combining Adam with weight
decay.

Adaptive optimization methods (including RMSProp, Adam, Ada‐
Max, Nadam, and AdamW optimization) are often great, converg‐
ing fast to a good solution. However, a 2017 paper23 by Ashia C.
Wilson et al. showed that they can lead to solutions that generalize
poorly on some datasets. So when you are disappointed by your
model’s performance, try using NAG instead: your dataset may just
be allergic to adaptive gradients. Also check out the latest research,
because it’s moving fast.

To use Nadam, AdaMax, or AdamW in Keras, replace tf.keras.optimiz

ers.Adam with tf.keras.optimizers.Nadam, tf.keras.optimizers.Adamax, or
tf.keras.optimizers.experimental.AdamW. For AdamW, you probably want to
tune the weight_decay hyperparameter.

All the optimization techniques discussed so far only rely on the first-order partial
derivatives (Jacobians). The optimization literature also contains amazing algorithms

386 | Chapter 11: Training Deep Neural Networks

https://homl.info/nadam
https://homl.info/adamw
https://homl.info/60

based on the second-order partial derivatives (the Hessians, which are the partial
derivatives of the Jacobians). Unfortunately, these algorithms are very hard to apply
to deep neural networks because there are n2 Hessians per output (where n is the
number of parameters), as opposed to just n Jacobians per output. Since DNNs typi‐
cally have tens of thousands of parameters or more, the second-order optimization
algorithms often don’t even fit in memory, and even when they do, computing the
Hessians is just too slow.

Training Sparse Models
All the optimization algorithms we just discussed produce dense models, meaning
that most parameters will be nonzero. If you need a blazingly fast model at runtime,
or if you need it to take up less memory, you may prefer to end up with a sparse
model instead.

One way to achieve this is to train the model as usual, then get rid of the tiny weights
(set them to zero). However, this will typically not lead to a very sparse model, and it
may degrade the model’s performance.

A better option is to apply strong ℓ1 regularization during training (you’ll see how
later in this chapter), as it pushes the optimizer to zero out as many weights as it can
(as discussed in “Lasso Regression” on page 158).

If these techniques remain insufficient, check out the TensorFlow Model Optimiza‐
tion Toolkit (TF-MOT), which provides a pruning API capable of iteratively remov‐
ing connections during training based on their magnitude.

Table 11-2 compares all the optimizers we’ve discussed so far (* is bad, ** is average,
and *** is good).

Table 11-2. Optimizer comparison

Class Convergence speed Convergence quality

SGD * ***

SGD(momentum=...) ** ***

SGD(momentum=..., nesterov=True) ** ***

Adagrad *** * (stops too early)

RMSprop *** ** or ***

Adam *** ** or ***

AdaMax *** ** or ***

Nadam *** ** or ***

AdamW *** ** or ***

Faster Optimizers | 387

https://homl.info/tfmot
https://homl.info/tfmot

Learning Rate Scheduling
Finding a good learning rate is very important. If you set it much too high, training
may diverge (as discussed in “Gradient Descent” on page 138). If you set it too low,
training will eventually converge to the optimum, but it will take a very long time.
If you set it slightly too high, it will make progress very quickly at first, but it will
end up dancing around the optimum and never really settling down. If you have a
limited computing budget, you may have to interrupt training before it has converged
properly, yielding a suboptimal solution (see Figure 11-9).

Figure 11-9. Learning curves for various learning rates η

As discussed in Chapter 10, you can find a good learning rate by training the model
for a few hundred iterations, exponentially increasing the learning rate from a very
small value to a very large value, and then looking at the learning curve and picking
a learning rate slightly lower than the one at which the learning curve starts shooting
back up. You can then reinitialize your model and train it with that learning rate.

But you can do better than a constant learning rate: if you start with a large learning
rate and then reduce it once training stops making fast progress, you can reach a
good solution faster than with the optimal constant learning rate. There are many
different strategies to reduce the learning rate during training. It can also be beneficial
to start with a low learning rate, increase it, then drop it again. These strategies are
called learning schedules (I briefly introduced this concept in Chapter 4). These are
the most commonly used learning schedules:

388 | Chapter 11: Training Deep Neural Networks

24 Leslie N. Smith, “A Disciplined Approach to Neural Network Hyper-Parameters: Part 1—Learning Rate, Batch
Size, Momentum, and Weight Decay”, arXiv preprint arXiv:1803.09820 (2018).

Power scheduling
Set the learning rate to a function of the iteration number t: η(t) = η0 / (1 + t/s)c.
The initial learning rate η0, the power c (typically set to 1), and the steps s are
hyperparameters. The learning rate drops at each step. After s steps, the learning
rate is down to η0 / 2. After s more steps it is down to η0 / 3, then it goes down
to η0 / 4, then η0 / 5, and so on. As you can see, this schedule first drops quickly,
then more and more slowly. Of course, power scheduling requires tuning η0 and s
(and possibly c).

Exponential scheduling
Set the learning rate to η(t) = η0 0.1t/s. The learning rate will gradually drop by a
factor of 10 every s steps. While power scheduling reduces the learning rate more
and more slowly, exponential scheduling keeps slashing it by a factor of 10 every
s steps.

Piecewise constant scheduling
Use a constant learning rate for a number of epochs (e.g., η0 = 0.1 for 5 epochs),
then a smaller learning rate for another number of epochs (e.g., η1 = 0.001 for
50 epochs), and so on. Although this solution can work very well, it requires
fiddling around to figure out the right sequence of learning rates and how long to
use each of them.

Performance scheduling
Measure the validation error every N steps (just like for early stopping), and
reduce the learning rate by a factor of λ when the error stops dropping.

1cycle scheduling
1cycle was introduced in a 2018 paper by Leslie Smith.24 Contrary to the other
approaches, it starts by increasing the initial learning rate η0, growing linearly
up to η1 halfway through training. Then it decreases the learning rate linearly
down to η0 again during the second half of training, finishing the last few epochs
by dropping the rate down by several orders of magnitude (still linearly). The
maximum learning rate η1 is chosen using the same approach we used to find the
optimal learning rate, and the initial learning rate η0 is usually 10 times lower.
When using a momentum, we start with a high momentum first (e.g., 0.95), then
drop it down to a lower momentum during the first half of training (e.g., down to
0.85, linearly), and then bring it back up to the maximum value (e.g., 0.95) dur‐
ing the second half of training, finishing the last few epochs with that maximum
value. Smith did many experiments showing that this approach was often able
to speed up training considerably and reach better performance. For example,

Learning Rate Scheduling | 389

https://homl.info/1cycle

25 Andrew Senior et al., “An Empirical Study of Learning Rates in Deep Neural Networks for Speech Recogni‐
tion”, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (2013):
6724–6728.

on the popular CIFAR10 image dataset, this approach reached 91.9% validation
accuracy in just 100 epochs, compared to 90.3% accuracy in 800 epochs through
a standard approach (with the same neural network architecture). This feat was
dubbed super-convergence.

A 2013 paper by Andrew Senior et al.25 compared the performance of some of
the most popular learning schedules when using momentum optimization to train
deep neural networks for speech recognition. The authors concluded that, in this
setting, both performance scheduling and exponential scheduling performed well.
They favored exponential scheduling because it was easy to tune and it converged
slightly faster to the optimal solution. They also mentioned that it was easier to
implement than performance scheduling, but in Keras both options are easy. That
said, the 1cycle approach seems to perform even better.

Implementing power scheduling in Keras is the easiest option—just set the decay
hyperparameter when creating an optimizer:

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01, decay=1e-4)

The decay is the inverse of s (the number of steps it takes to divide the learning rate
by one more unit), and Keras assumes that c is equal to 1.

Exponential scheduling and piecewise scheduling are quite simple too. You first need
to define a function that takes the current epoch and returns the learning rate. For
example, let’s implement exponential scheduling:

def exponential_decay_fn(epoch):
 return 0.01 * 0.1 ** (epoch / 20)

If you do not want to hardcode η0 and s, you can create a function that returns a
configured function:

def exponential_decay(lr0, s):
 def exponential_decay_fn(epoch):
 return lr0 * 0.1 ** (epoch / s)
 return exponential_decay_fn

exponential_decay_fn = exponential_decay(lr0=0.01, s=20)

Next, create a LearningRateScheduler callback, giving it the schedule function, and
pass this callback to the fit() method:

lr_scheduler = tf.keras.callbacks.LearningRateScheduler(exponential_decay_fn)
history = model.fit(X_train, y_train, [...], callbacks=[lr_scheduler])

390 | Chapter 11: Training Deep Neural Networks

https://homl.info/63

The LearningRateScheduler will update the optimizer’s learning_rate attribute at
the beginning of each epoch. Updating the learning rate once per epoch is usually
enough, but if you want it to be updated more often, for example at every step,
you can always write your own callback (see the “Exponential Scheduling” section
of this chapter’s notebook for an example). Updating the learning rate at every step
may help if there are many steps per epoch. Alternatively, you can use the tf.keras.
optimizers.schedules approach, described shortly.

After training, history.history["lr"] gives you access to the list
of learning rates used during training.

The schedule function can optionally take the current learning rate as a second argu‐
ment. For example, the following schedule function multiplies the previous learning
rate by 0.11/20, which results in the same exponential decay (except the decay now
starts at the beginning of epoch 0 instead of 1):

def exponential_decay_fn(epoch, lr):
 return lr * 0.1 ** (1 / 20)

This implementation relies on the optimizer’s initial learning rate (contrary to the
previous implementation), so make sure to set it appropriately.

When you save a model, the optimizer and its learning rate get saved along with it.
This means that with this new schedule function, you could just load a trained model
and continue training where it left off, no problem. Things are not so simple if your
schedule function uses the epoch argument, however: the epoch does not get saved,
and it gets reset to 0 every time you call the fit() method. If you were to continue
training a model where it left off, this could lead to a very large learning rate, which
would likely damage your model’s weights. One solution is to manually set the fit()
method’s initial_epoch argument so the epoch starts at the right value.

For piecewise constant scheduling, you can use a schedule function like the following
one (as earlier, you can define a more general function if you want; see the “Piece‐
wise Constant Scheduling” section of the notebook for an example), then create a
LearningRateScheduler callback with this function and pass it to the fit() method,
just like for exponential scheduling:

def piecewise_constant_fn(epoch):
 if epoch < 5:
 return 0.01
 elif epoch < 15:
 return 0.005
 else:
 return 0.001

Learning Rate Scheduling | 391

For performance scheduling, use the ReduceLROnPlateau callback. For example, if
you pass the following callback to the fit() method, it will multiply the learning rate
by 0.5 whenever the best validation loss does not improve for five consecutive epochs
(other options are available; please check the documentation for more details):

lr_scheduler = tf.keras.callbacks.ReduceLROnPlateau(factor=0.5, patience=5)
history = model.fit(X_train, y_train, [...], callbacks=[lr_scheduler])

Lastly, Keras offers an alternative way to implement learning rate scheduling: you
can define a scheduled learning rate using one of the classes available in tf.keras.
optimizers.schedules, then pass it to any optimizer. This approach updates the
learning rate at each step rather than at each epoch. For example, here is how to
implement the same exponential schedule as the exponential_decay_fn() function
we defined earlier:

import math

batch_size = 32
n_epochs = 25
n_steps = n_epochs * math.ceil(len(X_train) / batch_size)
scheduled_learning_rate = tf.keras.optimizers.schedules.ExponentialDecay(
 initial_learning_rate=0.01, decay_steps=n_steps, decay_rate=0.1)
optimizer = tf.keras.optimizers.SGD(learning_rate=scheduled_learning_rate)

This is nice and simple, plus when you save the model, the learning rate and its
schedule (including its state) get saved as well.

As for 1cycle, Keras does not support it, but it’s possible to implement it in
less than 30 lines of code by creating a custom callback that modifies the
learning rate at each iteration. To update the optimizer’s learning rate from
within the callback’s on_batch_begin() method, you need to call tf.keras.

backend.set_value(self.model.optimizer.learning_rate, new_learning_rate).
See the “1Cycle Scheduling” section of the notebook for an example.

To sum up, exponential decay, performance scheduling, and 1cycle can considerably
speed up convergence, so give them a try!

Avoiding Overfitting Through Regularization
With four parameters I can fit an elephant and with five I can make him wiggle his
trunk.

—John von Neumann, cited by Enrico Fermi in Nature 427

With thousands of parameters, you can fit the whole zoo. Deep neural networks typi‐
cally have tens of thousands of parameters, sometimes even millions. This gives them
an incredible amount of freedom and means they can fit a huge variety of complex

392 | Chapter 11: Training Deep Neural Networks

datasets. But this great flexibility also makes the network prone to overfitting the
training set. Regularization is often needed to prevent this.

We already implemented one of the best regularization techniques in Chapter 10:
early stopping. Moreover, even though batch normalization was designed to solve the
unstable gradients problems, it also acts like a pretty good regularizer. In this section
we will examine other popular regularization techniques for neural networks: ℓ1 and
ℓ2 regularization, dropout, and max-norm regularization.

ℓ1 and ℓ2 Regularization
Just like you did in Chapter 4 for simple linear models, you can use ℓ2 regularization
to constrain a neural network’s connection weights, and/or ℓ1 regularization if you
want a sparse model (with many weights equal to 0). Here is how to apply ℓ2 regulari‐
zation to a Keras layer’s connection weights, using a regularization factor of 0.01:

layer = tf.keras.layers.Dense(100, activation="relu",
 kernel_initializer="he_normal",
 kernel_regularizer=tf.keras.regularizers.l2(0.01))

The l2() function returns a regularizer that will be called at each step during training
to compute the regularization loss. This is then added to the final loss. As you might
expect, you can just use tf.keras.regularizers.l1() if you want ℓ1 regularization;
if you want both ℓ1 and ℓ2 regularization, use tf.keras.regularizers.l1_l2()
(specifying both regularization factors).

Since you will typically want to apply the same regularizer to all layers in your
network, as well as using the same activation function and the same initialization
strategy in all hidden layers, you may find yourself repeating the same arguments.
This makes the code ugly and error-prone. To avoid this, you can try refactoring your
code to use loops. Another option is to use Python’s functools.partial() function,
which lets you create a thin wrapper for any callable, with some default argument
values:

from functools import partial

RegularizedDense = partial(tf.keras.layers.Dense,
 activation="relu",
 kernel_initializer="he_normal",
 kernel_regularizer=tf.keras.regularizers.l2(0.01))

model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=[28, 28]),
 RegularizedDense(100),
 RegularizedDense(100),
 RegularizedDense(10, activation="softmax")
])

Avoiding Overfitting Through Regularization | 393

26 Geoffrey E. Hinton et al., “Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors”,
arXiv preprint arXiv:1207.0580 (2012).

27 Nitish Srivastava et al., “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, Journal of
Machine Learning Research 15 (2014): 1929–1958.

As we saw earlier, ℓ2 regularization is fine when using SGD,
momentum optimization, and Nesterov momentum optimization,
but not with Adam and its variants. If you want to use Adam
with weight decay, then do not use ℓ2 regularization: use AdamW
instead.

Dropout
Dropout is one of the most popular regularization techniques for deep neural net‐
works. It was proposed in a paper26 by Geoffrey Hinton et al. in 2012 and further
detailed in a 2014 paper27 by Nitish Srivastava et al., and it has proven to be highly
successful: many state-of-the-art neural networks use dropout, as it gives them a
1%–2% accuracy boost. This may not sound like a lot, but when a model already has
95% accuracy, getting a 2% accuracy boost means dropping the error rate by almost
40% (going from 5% error to roughly 3%).

It is a fairly simple algorithm: at every training step, every neuron (including the
input neurons, but always excluding the output neurons) has a probability p of being
temporarily “dropped out”, meaning it will be entirely ignored during this training
step, but it may be active during the next step (see Figure 11-10). The hyperparameter
p is called the dropout rate, and it is typically set between 10% and 50%: closer to
20%–30% in recurrent neural nets (see Chapter 15), and closer to 40%–50% in convo‐
lutional neural networks (see Chapter 14). After training, neurons don’t get dropped
anymore. And that’s all (except for a technical detail we will discuss momentarily).

It’s surprising at first that this destructive technique works at all. Would a company
perform better if its employees were told to toss a coin every morning to decide
whether or not to go to work? Well, who knows; perhaps it would! The company
would be forced to adapt its organization; it could not rely on any single person
to work the coffee machine or perform any other critical tasks, so this expertise
would have to be spread across several people. Employees would have to learn to
cooperate with many of their coworkers, not just a handful of them. The company
would become much more resilient. If one person quit, it wouldn’t make much of a
difference. It’s unclear whether this idea would actually work for companies, but it
certainly does for neural networks. Neurons trained with dropout cannot co-adapt
with their neighboring neurons; they have to be as useful as possible on their own.
They also cannot rely excessively on just a few input neurons; they must pay attention
to each of their input neurons. They end up being less sensitive to slight changes in
the inputs. In the end, you get a more robust network that generalizes better.

394 | Chapter 11: Training Deep Neural Networks

https://homl.info/64
https://homl.info/65

Figure 11-10. With dropout regularization, at each training iteration a random subset
of all neurons in one or more layers—except the output layer—are “dropped out”; these
neurons output 0 at this iteration (represented by the dashed arrows)

Another way to understand the power of dropout is to realize that a unique neural
network is generated at each training step. Since each neuron can be either present
or absent, there are a total of 2N possible networks (where N is the total number of
droppable neurons). This is such a huge number that it is virtually impossible for
the same neural network to be sampled twice. Once you have run 10,000 training
steps, you have essentially trained 10,000 different neural networks, each with just
one training instance. These neural networks are obviously not independent because
they share many of their weights, but they are nevertheless all different. The resulting
neural network can be seen as an averaging ensemble of all these smaller neural
networks.

Avoiding Overfitting Through Regularization | 395

In practice, you can usually apply dropout only to the neurons in
the top one to three layers (excluding the output layer).

There is one small but important technical detail. Suppose p = 75%: on average only
25% of all neurons are active at each step during training. This means that after
training, a neuron would be connected to four times as many input neurons as it
would be during training. To compensate for this fact, we need to multiply each
neuron’s input connection weights by four during training. If we don’t, the neural
network will not perform well as it will see different data during and after training.
More generally, we need to divide the connection weights by the keep probability
(1 – p) during training.

To implement dropout using Keras, you can use the tf.keras.layers.Dropout layer.
During training, it randomly drops some inputs (setting them to 0) and divides the
remaining inputs by the keep probability. After training, it does nothing at all; it just
passes the inputs to the next layer. The following code applies dropout regularization
before every dense layer, using a dropout rate of 0.2:

model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=[28, 28]),
 tf.keras.layers.Dropout(rate=0.2),
 tf.keras.layers.Dense(100, activation="relu",
 kernel_initializer="he_normal"),
 tf.keras.layers.Dropout(rate=0.2),
 tf.keras.layers.Dense(100, activation="relu",
 kernel_initializer="he_normal"),
 tf.keras.layers.Dropout(rate=0.2),
 tf.keras.layers.Dense(10, activation="softmax")
])
[...] # compile and train the model

Since dropout is only active during training, comparing the train‐
ing loss and the validation loss can be misleading. In particular,
a model may be overfitting the training set and yet have similar
training and validation losses. So, make sure to evaluate the train‐
ing loss without dropout (e.g., after training).

If you observe that the model is overfitting, you can increase the dropout rate.
Conversely, you should try decreasing the dropout rate if the model underfits the
training set. It can also help to increase the dropout rate for large layers, and reduce
it for small ones. Moreover, many state-of-the-art architectures only use dropout after
the last hidden layer, so you may want to try this if full dropout is too strong.

396 | Chapter 11: Training Deep Neural Networks

28 Yarin Gal and Zoubin Ghahramani, “Dropout as a Bayesian Approximation: Representing Model Uncertainty
in Deep Learning”, Proceedings of the 33rd International Conference on Machine Learning (2016): 1050–1059.

29 Specifically, they show that training a dropout network is mathematically equivalent to approximate Bayesian
inference in a specific type of probabilistic model called a deep Gaussian process.

Dropout does tend to significantly slow down convergence, but it often results in a
better model when tuned properly. So, it is generally well worth the extra time and
effort, especially for large models.

If you want to regularize a self-normalizing network based on the
SELU activation function (as discussed earlier), you should use
alpha dropout: this is a variant of dropout that preserves the mean
and standard deviation of its inputs. It was introduced in the same
paper as SELU, as regular dropout would break self-normalization.

Monte Carlo (MC) Dropout
In 2016, a paper28 by Yarin Gal and Zoubin Ghahramani added a few more good
reasons to use dropout:

• First, the paper established a profound connection between dropout networks•
(i.e., neural networks containing Dropout layers) and approximate Bayesian
inference,29 giving dropout a solid mathematical justification.

• Second, the authors introduced a powerful technique called MC dropout, which•
can boost the performance of any trained dropout model without having to
retrain it or even modify it at all. It also provides a much better measure of the
model’s uncertainty, and it can be implemented in just a few lines of code.

If this all sounds like some “one weird trick” clickbait, then take a look at the
following code. It is the full implementation of MC dropout, boosting the dropout
model we trained earlier without retraining it:

import numpy as np

y_probas = np.stack([model(X_test, training=True)
 for sample in range(100)])
y_proba = y_probas.mean(axis=0)

Note that model(X) is similar to model.predict(X) except it returns a tensor rather
than a NumPy array, and it supports the training argument. In this code example,
setting training=True ensures that the Dropout layer remains active, so all predic‐
tions will be a bit different. We just make 100 predictions over the test set, and we
compute their average. More specifically, each call to the model returns a matrix with
one row per instance and one column per class. Because there are 10,000 instances

Avoiding Overfitting Through Regularization | 397

https://homl.info/mcdropout

in the test set and 10 classes, this is a matrix of shape [10000, 10]. We stack 100 such
matrices, so y_probas is a 3D array of shape [100, 10000, 10]. Once we average over
the first dimension (axis=0) we get y_proba, an array of shape [10000, 10], like we
would get with a single prediction. That’s all! Averaging over multiple predictions
with dropout turned on gives us a Monte Carlo estimate that is generally more
reliable than the result of a single prediction with dropout turned off. For example,
let’s look at the model’s prediction for the first instance in the Fashion MNIST test set,
with dropout turned off:

>>> model.predict(X_test[:1]).round(3)
array([[0. , 0. , 0. , 0. , 0. , 0.024, 0. , 0.132, 0. ,
 0.844]], dtype=float32)

The model is fairly confident (84.4%) that this image belongs to class 9 (ankle boot).
Compare this with the MC dropout prediction:

>>> y_proba[0].round(3)
array([0. , 0. , 0. , 0. , 0. , 0.067, 0. , 0.209, 0.001,
 0.723], dtype=float32)

The model still seems to prefer class 9, but its confidence dropped down to 72.3%,
and the estimated probabilities for classes 5 (sandal) and 7 (sneaker) have increased,
which makes sense given they’re also footwear.

MC dropout tends to improve the reliability of the model’s probability estimates. This
means that it’s less likely to be confident but wrong, which can be dangerous: just
imagine a self-driving car confidently ignoring a stop sign. It’s also useful to know
exactly which other classes are most likely. Additionally, you can take a look at the
standard deviation of the probability estimates:

>>> y_std = y_probas.std(axis=0)
>>> y_std[0].round(3)
array([0. , 0. , 0. , 0.001, 0. , 0.096, 0. , 0.162, 0.001,
 0.183], dtype=float32)

Apparently there’s quite a lot of variance in the probability estimates for class 9: the
standard deviation is 0.183, which should be compared to the estimated probability
of 0.723: if you were building a risk-sensitive system (e.g., a medical or financial sys‐
tem), you would probably treat such an uncertain prediction with extreme caution.
You would definitely not treat it like an 84.4% confident prediction. The model’s
accuracy also got a (very) small boost from 87.0% to 87.2%:

>>> y_pred = y_proba.argmax(axis=1)
>>> accuracy = (y_pred == y_test).sum() / len(y_test)
>>> accuracy
0.8717

398 | Chapter 11: Training Deep Neural Networks

https://xkcd.com/2110

30 This MCDropout class will work with all Keras APIs, including the sequential API. If you only care about the
functional API or the subclassing API, you do not have to create an MCDropout class; you can create a regular
Dropout layer and call it with training=True.

The number of Monte Carlo samples you use (100 in this example)
is a hyperparameter you can tweak. The higher it is, the more
accurate the predictions and their uncertainty estimates will be.
However, if you double it, inference time will also be doubled.
Moreover, above a certain number of samples, you will notice
little improvement. Your job is to find the right trade-off between
latency and accuracy, depending on your application.

If your model contains other layers that behave in a special way during training (such
as BatchNormalization layers), then you should not force training mode like we just
did. Instead, you should replace the Dropout layers with the following MCDropout
class:30

class MCDropout(tf.keras.layers.Dropout):
 def call(self, inputs, training=False):
 return super().call(inputs, training=True)

Here, we just subclass the Dropout layer and override the call() method to force its
training argument to True (see Chapter 12). Similarly, you could define an MCAlpha
Dropout class by subclassing AlphaDropout instead. If you are creating a model from
scratch, it’s just a matter of using MCDropout rather than Dropout. But if you have a
model that was already trained using Dropout, you need to create a new model that’s
identical to the existing model except with Dropout instead of MCDropout, then copy
the existing model’s weights to your new model.

In short, MC dropout is a great technique that boosts dropout models and provides
better uncertainty estimates. And of course, since it is just regular dropout during
training, it also acts like a regularizer.

Max-Norm Regularization
Another popular regularization technique for neural networks is called max-norm
regularization: for each neuron, it constrains the weights w of the incoming connec‐
tions such that ∥ w ∥2 ≤ r, where r is the max-norm hyperparameter and ∥ · ∥2 is the ℓ2
norm.

Max-norm regularization does not add a regularization loss term to the overall loss
function. Instead, it is typically implemented by computing ∥ w ∥2 after each training
step and rescaling w if needed (w ← w r / ∥ w ∥2).

Avoiding Overfitting Through Regularization | 399

Reducing r increases the amount of regularization and helps reduce overfitting.
Max-norm regularization can also help alleviate the unstable gradients problems (if
you are not using batch normalization).

To implement max-norm regularization in Keras, set the kernel_constraint argu‐
ment of each hidden layer to a max_norm() constraint with the appropriate max value,
like this:

dense = tf.keras.layers.Dense(
 100, activation="relu", kernel_initializer="he_normal",
 kernel_constraint=tf.keras.constraints.max_norm(1.))

After each training iteration, the model’s fit() method will call the object returned
by max_norm(), passing it the layer’s weights and getting rescaled weights in return,
which then replace the layer’s weights. As you’ll see in Chapter 12, you can
define your own custom constraint function if necessary and use it as the kernel_
constraint. You can also constrain the bias terms by setting the bias_constraint
argument.

The max_norm() function has an axis argument that defaults to 0. A Dense layer
usually has weights of shape [number of inputs, number of neurons], so using axis=0
means that the max-norm constraint will apply independently to each neuron’s
weight vector. If you want to use max-norm with convolutional layers (see Chap‐
ter 14), make sure to set the max_norm() constraint’s axis argument appropriately
(usually axis=[0, 1, 2]).

Summary and Practical Guidelines
In this chapter we have covered a wide range of techniques, and you may be won‐
dering which ones you should use. This depends on the task, and there is no clear
consensus yet, but I have found the configuration in Table 11-3 to work fine in
most cases, without requiring much hyperparameter tuning. That said, please do not
consider these defaults as hard rules!

Table 11-3. Default DNN configuration

Hyperparameter Default value
Kernel initializer He initialization

Activation function ReLU if shallow; Swish if deep

Normalization None if shallow; batch norm if deep

Regularization Early stopping; weight decay if needed

Optimizer Nesterov accelerated gradients or AdamW

Learning rate schedule Performance scheduling or 1cycle

400 | Chapter 11: Training Deep Neural Networks

If the network is a simple stack of dense layers, then it can self-normalize, and you
should use the configuration in Table 11-4 instead.

Table 11-4. DNN configuration for a self-normalizing net

Hyperparameter Default value
Kernel initializer LeCun initialization

Activation function SELU

Normalization None (self-normalization)

Regularization Alpha dropout if needed

Optimizer Nesterov accelerated gradients

Learning rate schedule Performance scheduling or 1cycle

Don’t forget to normalize the input features! You should also try to reuse parts of a
pretrained neural network if you can find one that solves a similar problem, or use
unsupervised pretraining if you have a lot of unlabeled data, or use pretraining on an
auxiliary task if you have a lot of labeled data for a similar task.

While the previous guidelines should cover most cases, here are some exceptions:

• If you need a sparse model, you can use ℓ1 regularization (and optionally zero out•
the tiny weights after training). If you need an even sparser model, you can use
the TensorFlow Model Optimization Toolkit. This will break self-normalization,
so you should use the default configuration in this case.

• If you need a low-latency model (one that performs lightning-fast predictions),•
you may need to use fewer layers, use a fast activation function such as ReLU or
leaky ReLU, and fold the batch normalization layers into the previous layers after
training. Having a sparse model will also help. Finally, you may want to reduce
the float precision from 32 bits to 16 or even 8 bits (see “Deploying a Model to a
Mobile or Embedded Device” on page 741). Again, check out TF-MOT.

• If you are building a risk-sensitive application, or inference latency is not very•
important in your application, you can use MC dropout to boost performance
and get more reliable probability estimates, along with uncertainty estimates.

With these guidelines, you are now ready to train very deep nets! I hope you are
now convinced that you can go quite a long way using just the convenient Keras API.
There may come a time, however, when you need to have even more control; for
example, to write a custom loss function or to tweak the training algorithm. For such
cases you will need to use TensorFlow’s lower-level API, as you will see in the next
chapter.

Summary and Practical Guidelines | 401

Exercises
1. What is the problem that Glorot initialization and He initialization aim to fix?1.
2. Is it OK to initialize all the weights to the same value as long as that value is2.

selected randomly using He initialization?
3. Is it OK to initialize the bias terms to 0?3.
4. In which cases would you want to use each of the activation functions we4.

discussed in this chapter?
5. What may happen if you set the momentum hyperparameter too close to 1 (e.g.,5.

0.99999) when using an SGD optimizer?
6. Name three ways you can produce a sparse model.6.
7. Does dropout slow down training? Does it slow down inference (i.e., making7.

predictions on new instances)? What about MC dropout?
8. Practice training a deep neural network on the CIFAR10 image dataset:8.

a. Build a DNN with 20 hidden layers of 100 neurons each (that’s too many, buta.
it’s the point of this exercise). Use He initialization and the Swish activation
function.

b. Using Nadam optimization and early stopping, train the network on theb.
CIFAR10 dataset. You can load it with tf.keras.datasets.cifar10.load_
data(). The dataset is composed of 60,000 32 × 32–pixel color images (50,000
for training, 10,000 for testing) with 10 classes, so you’ll need a softmax
output layer with 10 neurons. Remember to search for the right learning rate
each time you change the model’s architecture or hyperparameters.

c. Now try adding batch normalization and compare the learning curves: is itc.
converging faster than before? Does it produce a better model? How does it
affect training speed?

d. Try replacing batch normalization with SELU, and make the necessary adjust‐d.
ments to ensure the network self-normalizes (i.e., standardize the input fea‐
tures, use LeCun normal initialization, make sure the DNN contains only a
sequence of dense layers, etc.).

e. Try regularizing the model with alpha dropout. Then, without retraining youre.
model, see if you can achieve better accuracy using MC dropout.

f. Retrain your model using 1cycle scheduling and see if it improves trainingf.
speed and model accuracy.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

402 | Chapter 11: Training Deep Neural Networks

https://homl.info/colab3

CHAPTER 12

Custom Models and Training
with TensorFlow

Up until now, we’ve used only TensorFlow’s high-level API, Keras, but it already got
us pretty far: we built various neural network architectures, including regression and
classification nets, Wide & Deep nets, and self-normalizing nets, using all sorts of
techniques, such as batch normalization, dropout, and learning rate schedules. In
fact, 95% of the use cases you will encounter will not require anything other than
Keras (and tf.data; see Chapter 13). But now it’s time to dive deeper into TensorFlow
and take a look at its lower-level Python API. This will be useful when you need extra
control to write custom loss functions, custom metrics, layers, models, initializers,
regularizers, weight constraints, and more. You may even need to fully control the
training loop itself; for example, to apply special transformations or constraints to the
gradients (beyond just clipping them) or to use multiple optimizers for different parts
of the network. We will cover all these cases in this chapter, and we will also look at
how you can boost your custom models and training algorithms using TensorFlow’s
automatic graph generation feature. But first, let’s take a quick tour of TensorFlow.

A Quick Tour of TensorFlow
As you know, TensorFlow is a powerful library for numerical computation, particu‐
larly well suited and fine-tuned for large-scale machine learning (but you can use it
for anything else that requires heavy computations). It was developed by the Google
Brain team and it powers many of Google’s large-scale services, such as Google
Cloud Speech, Google Photos, and Google Search. It was open sourced in November

403

https://homl.info/tf2api

1 However, Facebook’s PyTorch library is currently more popular in academia: more papers cite PyTorch than
TensorFlow or Keras. Moreover, Google’s JAX library is gaining momentum, especially in academia.

2 TensorFlow includes another deep learning API called the estimators API, but it is now deprecated.
3 If you ever need to (but you probably won’t), you can write your own operations using the C++ API.

2015, and it is now the most widely used deep learning library in the industry:1

countless projects use TensorFlow for all sorts of machine learning tasks, such as
image classification, natural language processing, recommender systems, and time
series forecasting.

So what does TensorFlow offer? Here’s a summary:

• Its core is very similar to NumPy, but with GPU support.•
• It supports distributed computing (across multiple devices and servers).•
• It includes a kind of just-in-time (JIT) compiler that allows it to optimize com‐•

putations for speed and memory usage. It works by extracting the computation
graph from a Python function, optimizing it (e.g., by pruning unused nodes), and
running it efficiently (e.g., by automatically running independent operations in
parallel).

• Computation graphs can be exported to a portable format, so you can train a•
TensorFlow model in one environment (e.g., using Python on Linux) and run it
in another (e.g., using Java on an Android device).

• It implements reverse-mode autodiff (see Chapter 10 and Appendix B) and pro‐•
vides some excellent optimizers, such as RMSProp and Nadam (see Chapter 11),
so you can easily minimize all sorts of loss functions.

TensorFlow offers many more features built on top of these core features: the most
important is of course Keras,2 but it also has data loading and preprocessing ops
(tf.data, tf.io, etc.), image processing ops (tf.image), signal processing ops (tf.signal),
and more (see Figure 12-1 for an overview of TensorFlow’s Python API).

We will cover many of the packages and functions of the Tensor‐
Flow API, but it’s impossible to cover them all, so you should really
take some time to browse through the API; you will find that it is
quite rich and well documented.

At the lowest level, each TensorFlow operation (op for short) is implemented using
highly efficient C++ code.3 Many operations have multiple implementations called
kernels: each kernel is dedicated to a specific device type, such as CPUs, GPUs, or
even TPUs (tensor processing units). As you may know, GPUs can dramatically speed
up computations by splitting them into many smaller chunks and running them in

404 | Chapter 12: Custom Models and Training with TensorFlow

4 To learn more about TPUs and how they work, check out https://homl.info/tpus.

parallel across many GPU threads. TPUs are even faster: they are custom ASIC chips
built specifically for deep learning operations4 (we will discuss how to use TensorFlow
with GPUs or TPUs in Chapter 19).

Figure 12-1. TensorFlow’s Python API

TensorFlow’s architecture is shown in Figure 12-2. Most of the time your code will
use the high-level APIs (especially Keras and tf.data), but when you need more flexi‐
bility you will use the lower-level Python API, handling tensors directly. In any case,
TensorFlow’s execution engine will take care of running the operations efficiently,
even across multiple devices and machines if you tell it to.

TensorFlow runs not only on Windows, Linux, and macOS, but also on mobile
devices (using TensorFlow Lite), including both iOS and Android (see Chapter 19).
Note that APIs for other languages are also available, if you do not want to use the
Python API: there are C++, Java, and Swift APIs. There is even a JavaScript imple‐
mentation called TensorFlow.js that makes it possible to run your models directly in
your browser.

A Quick Tour of TensorFlow | 405

https://homl.info/tpus

Figure 12-2. TensorFlow’s architecture

There’s more to TensorFlow than the library. TensorFlow is at the center of an
extensive ecosystem of libraries. First, there’s TensorBoard for visualization (see
Chapter 10). Next, there’s TensorFlow Extended (TFX), which is a set of libraries
built by Google to productionize TensorFlow projects: it includes tools for data vali‐
dation, preprocessing, model analysis, and serving (with TF Serving; see Chapter 19).
Google’s TensorFlow Hub provides a way to easily download and reuse pretrained
neural networks. You can also get many neural network architectures, some of them
pretrained, in TensorFlow’s model garden. Check out the TensorFlow Resources and
https://github.com/jtoy/awesome-tensorflow for more TensorFlow-based projects. You
will find hundreds of TensorFlow projects on GitHub, so it is often easy to find
existing code for whatever you are trying to do.

More and more ML papers are released along with their implemen‐
tations, and sometimes even with pretrained models. Check out
https://paperswithcode.com to easily find them.

Last but not least, TensorFlow has a dedicated team of passionate and helpful
developers, as well as a large community contributing to improving it. To ask techni‐
cal questions, you should use https://stackoverflow.com and tag your question with
tensorflow and python. You can file bugs and feature requests through GitHub. For
general discussions, join the TensorFlow Forum.

OK, it’s time to start coding!

406 | Chapter 12: Custom Models and Training with TensorFlow

https://tensorflow.org/tfx
https://github.com/tensorflow/models
https://tensorflow.org/resources
https://github.com/jtoy/awesome-tensorflow
https://paperswithcode.com
https://stackoverflow.com
https://github.com/tensorflow/tensorflow
https://discuss.tensorflow.org

Using TensorFlow like NumPy
TensorFlow’s API revolves around tensors, which flow from operation to operation—
hence the name TensorFlow. A tensor is very similar to a NumPy ndarray: it is
usually a multidimensional array, but it can also hold a scalar (a simple value, such as
42). These tensors will be important when we create custom cost functions, custom
metrics, custom layers, and more, so let’s see how to create and manipulate them.

Tensors and Operations
You can create a tensor with tf.constant(). For example, here is a tensor represent‐
ing a matrix with two rows and three columns of floats:

>>> import tensorflow as tf
>>> t = tf.constant([[1., 2., 3.], [4., 5., 6.]]) # matrix
>>> t
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[1., 2., 3.],
 [4., 5., 6.]], dtype=float32)>

Just like an ndarray, a tf.Tensor has a shape and a data type (dtype):

>>> t.shape
TensorShape([2, 3])
>>> t.dtype
tf.float32

Indexing works much like in NumPy:

>>> t[:, 1:]
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[2., 3.],
 [5., 6.]], dtype=float32)>
>>> t[..., 1, tf.newaxis]
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[2.],
 [5.]], dtype=float32)>

Most importantly, all sorts of tensor operations are available:

>>> t + 10
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[11., 12., 13.],
 [14., 15., 16.]], dtype=float32)>
>>> tf.square(t)
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[1., 4., 9.],
 [16., 25., 36.]], dtype=float32)>
>>> t @ tf.transpose(t)
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[14., 32.],
 [32., 77.]], dtype=float32)>

Using TensorFlow like NumPy | 407

5 A notable exception is tf.math.log(), which is commonly used but doesn’t have a tf.log() alias, as it might
be confused with logging.

Note that writing t + 10 is equivalent to calling tf.add(t, 10) (indeed, Python calls
the magic method t.__add__(10), which just calls tf.add(t, 10)). Other operators,
like - and *, are also supported. The @ operator was added in Python 3.5, for matrix
multiplication: it is equivalent to calling the tf.matmul() function.

Many functions and classes have aliases. For example, tf.add()
and tf.math.add() are the same function. This allows TensorFlow
to have concise names for the most common operations5 while
preserving well-organized packages.

A tensor can also hold a scalar value. In this case, the shape is empty:

>>> tf.constant(42)
<tf.Tensor: shape=(), dtype=int32, numpy=42>

The Keras API has its own low-level API, located in
tf.keras.backend. This package is usually imported as K, for con‐
ciseness. It used to include functions like K.square(), K.exp(),
and K.sqrt(), which you may run across in existing code: this
was useful to write portable code back when Keras supported
multiple backends, but now that Keras is TensorFlow-only, you
should call TensorFlow’s low-level API directly (e.g., tf.square()
instead of K.square()). Technically K.square() and its friends are
still there for backward compatibility, but the documentation of the
tf.keras.backend package only lists a handful of utility functions,
such as clear_session() (mentioned in Chapter 10).

You will find all the basic math operations you need (tf.add(), tf.multiply(),
tf.square(), tf.exp(), tf.sqrt(), etc.) and most operations that you can find
in NumPy (e.g., tf.reshape(), tf.squeeze(), tf.tile()). Some functions have a
different name than in NumPy; for instance, tf.reduce_mean(), tf.reduce_sum(),
tf.reduce_max(), and tf.math.log() are the equivalent of np.mean(), np.sum(),
np.max(), and np.log(). When the name differs, there is usually a good reason for
it. For example, in TensorFlow you must write tf.transpose(t); you cannot just
write t.T like in NumPy. The reason is that the tf.transpose() function does not do
exactly the same thing as NumPy’s T attribute: in TensorFlow, a new tensor is created
with its own copy of the transposed data, while in NumPy, t.T is just a transposed
view on the same data. Similarly, the tf.reduce_sum() operation is named this way
because its GPU kernel (i.e., GPU implementation) uses a reduce algorithm that does

408 | Chapter 12: Custom Models and Training with TensorFlow

not guarantee the order in which the elements are added: because 32-bit floats have
limited precision, the result may change ever so slightly every time you call this
operation. The same is true of tf.reduce_mean() (but of course tf.reduce_max() is
deterministic).

Tensors and NumPy
Tensors play nice with NumPy: you can create a tensor from a NumPy array, and
vice versa. You can even apply TensorFlow operations to NumPy arrays and NumPy
operations to tensors:

>>> import numpy as np
>>> a = np.array([2., 4., 5.])
>>> tf.constant(a)
<tf.Tensor: id=111, shape=(3,), dtype=float64, numpy=array([2., 4., 5.])>
>>> t.numpy() # or np.array(t)
array([[1., 2., 3.],
 [4., 5., 6.]], dtype=float32)
>>> tf.square(a)
<tf.Tensor: id=116, shape=(3,), dtype=float64, numpy=array([4., 16., 25.])>
>>> np.square(t)
array([[1., 4., 9.],
 [16., 25., 36.]], dtype=float32)

Notice that NumPy uses 64-bit precision by default, while Tensor‐
Flow uses 32-bit. This is because 32-bit precision is generally more
than enough for neural networks, plus it runs faster and uses less
RAM. So when you create a tensor from a NumPy array, make sure
to set dtype=tf.float32.

Type Conversions
Type conversions can significantly hurt performance, and they can easily go unno‐
ticed when they are done automatically. To avoid this, TensorFlow does not perform
any type conversions automatically: it just raises an exception if you try to execute an
operation on tensors with incompatible types. For example, you cannot add a float
tensor and an integer tensor, and you cannot even add a 32-bit float and a 64-bit float:

>>> tf.constant(2.) + tf.constant(40)
[...] InvalidArgumentError: [...] expected to be a float tensor [...]
>>> tf.constant(2.) + tf.constant(40., dtype=tf.float64)
[...] InvalidArgumentError: [...] expected to be a float tensor [...]

This may be a bit annoying at first, but remember that it’s for a good cause! And of
course you can use tf.cast() when you really need to convert types:

>>> t2 = tf.constant(40., dtype=tf.float64)
>>> tf.constant(2.0) + tf.cast(t2, tf.float32)
<tf.Tensor: id=136, shape=(), dtype=float32, numpy=42.0>

Using TensorFlow like NumPy | 409

Variables
The tf.Tensor values we’ve seen so far are immutable: we cannot modify them. This
means that we cannot use regular tensors to implement weights in a neural network,
since they need to be tweaked by backpropagation. Plus, other parameters may also
need to change over time (e.g., a momentum optimizer keeps track of past gradients).
What we need is a tf.Variable:

>>> v = tf.Variable([[1., 2., 3.], [4., 5., 6.]])
>>> v
<tf.Variable 'Variable:0' shape=(2, 3) dtype=float32, numpy=
array([[1., 2., 3.],
 [4., 5., 6.]], dtype=float32)>

A tf.Variable acts much like a tf.Tensor: you can perform the same operations
with it, it plays nicely with NumPy as well, and it is just as picky with types. But
it can also be modified in place using the assign() method (or assign_add() or
assign_sub(), which increment or decrement the variable by the given value). You
can also modify individual cells (or slices), by using the cell’s (or slice’s) assign()
method or by using the scatter_update() or scatter_nd_update() methods:

v.assign(2 * v) # v now equals [[2., 4., 6.], [8., 10., 12.]]
v[0, 1].assign(42) # v now equals [[2., 42., 6.], [8., 10., 12.]]
v[:, 2].assign([0., 1.]) # v now equals [[2., 42., 0.], [8., 10., 1.]]
v.scatter_nd_update(# v now equals [[100., 42., 0.], [8., 10., 200.]]
 indices=[[0, 0], [1, 2]], updates=[100., 200.])

Direct assignment will not work:

>>> v[1] = [7., 8., 9.]
[...] TypeError: 'ResourceVariable' object does not support item assignment

In practice you will rarely have to create variables manually; Keras
provides an add_weight() method that will take care of it for you,
as you’ll see. Moreover, model parameters will generally be updated
directly by the optimizers, so you will rarely need to update vari‐
ables manually.

Other Data Structures
TensorFlow supports several other data structures, including the following (see the
“Other Data Structures” section in this chapter’s notebook or Appendix C for more
details):

410 | Chapter 12: Custom Models and Training with TensorFlow

Sparse tensors (tf.SparseTensor)
Efficiently represent tensors containing mostly zeros. The tf.sparse package
contains operations for sparse tensors.

Tensor arrays (tf.TensorArray)
Are lists of tensors. They have a fixed length by default but can optionally be
made extensible. All tensors they contain must have the same shape and data
type.

Ragged tensors (tf.RaggedTensor)
Represent lists of tensors, all of the same rank and data type, but with varying
sizes. The dimensions along which the tensor sizes vary are called the ragged
dimensions. The tf.ragged package contains operations for ragged tensors.

String tensors
Are regular tensors of type tf.string. These represent byte strings, not Unicode
strings, so if you create a string tensor using a Unicode string (e.g., a regular
Python 3 string like "café"), then it will get encoded to UTF-8 automatically
(e.g., b"caf\xc3\xa9"). Alternatively, you can represent Unicode strings using
tensors of type tf.int32, where each item represents a Unicode code point (e.g.,
[99, 97, 102, 233]). The tf.strings package (with an s) contains ops for byte
strings and Unicode strings (and to convert one into the other). It’s important
to note that a tf.string is atomic, meaning that its length does not appear in
the tensor’s shape. Once you convert it to a Unicode tensor (i.e., a tensor of type
tf.int32 holding Unicode code points), the length appears in the shape.

Sets
Are represented as regular tensors (or sparse tensors). For example,
tf.constant([[1, 2], [3, 4]]) represents the two sets {1, 2} and {3, 4}. More
generally, each set is represented by a vector in the tensor’s last axis. You can
manipulate sets using operations from the tf.sets package.

Queues
Store tensors across multiple steps. TensorFlow offers various kinds of queues:
basic first-in, first-out (FIFO) queues (FIFOQueue), plus queues that can priori‐
tize some items (PriorityQueue), shuffle their items (RandomShuffleQueue), and
batch items of different shapes by padding (PaddingFIFOQueue). These classes are
all in the tf.queue package.

With tensors, operations, variables, and various data structures at your disposal, you
are now ready to customize your models and training algorithms!

Using TensorFlow like NumPy | 411

Customizing Models and Training Algorithms
You’ll start by creating a custom loss function, which is a straightforward and com‐
mon use case.

Custom Loss Functions
Suppose you want to train a regression model, but your training set is a bit noisy.
Of course, you start by trying to clean up your dataset by removing or fixing the
outliers, but that turns out to be insufficient; the dataset is still noisy. Which loss
function should you use? The mean squared error might penalize large errors too
much and cause your model to be imprecise. The mean absolute error would not
penalize outliers as much, but training might take a while to converge, and the
trained model might not be very precise. This is probably a good time to use the
Huber loss (introduced in Chapter 10) instead of the good old MSE. The Huber loss is
available in Keras (just use an instance of the tf.keras.losses.Huber class), but let’s
pretend it’s not there. To implement it, just create a function that takes the labels and
the model’s predictions as arguments, and uses TensorFlow operations to compute a
tensor containing all the losses (one per sample):

def huber_fn(y_true, y_pred):
 error = y_true - y_pred
 is_small_error = tf.abs(error) < 1
 squared_loss = tf.square(error) / 2
 linear_loss = tf.abs(error) - 0.5
 return tf.where(is_small_error, squared_loss, linear_loss)

For better performance, you should use a vectorized implementa‐
tion, as in this example. Moreover, if you want to benefit from
TensorFlow’s graph optimization features, you should use only
TensorFlow operations.

It is also possible to return the mean loss instead of the individual sample losses, but
this is not recommended as it makes it impossible to use class weights or sample
weights when you need them (see Chapter 10).

Now you can use this Huber loss function when you compile the Keras model, then
train your model as usual:

model.compile(loss=huber_fn, optimizer="nadam")
model.fit(X_train, y_train, [...])

And that’s it! For each batch during training, Keras will call the huber_fn() function
to compute the loss, then it will use reverse-mode autodiff to compute the gradients
of the loss with regard to all the model parameters, and finally it will perform a
gradient descent step (in this example using a Nadam optimizer). Moreover, it will

412 | Chapter 12: Custom Models and Training with TensorFlow

keep track of the total loss since the beginning of the epoch, and it will display the
mean loss.

But what happens to this custom loss when you save the model?

Saving and Loading Models That Contain Custom Components
Saving a model containing a custom loss function works fine, but when you load
it, you’ll need to provide a dictionary that maps the function name to the actual
function. More generally, when you load a model containing custom objects, you
need to map the names to the objects:

model = tf.keras.models.load_model("my_model_with_a_custom_loss",
 custom_objects={"huber_fn": huber_fn})

If you decorate the huber_fn() function with @keras.utils.
register_keras_serializable(), it will automatically be available
to the load_model() function: there’s no need to include it in the
custom_objects dictionary.

With the current implementation, any error between –1 and 1 is considered “small”.
But what if you want a different threshold? One solution is to create a function that
creates a configured loss function:

def create_huber(threshold=1.0):
 def huber_fn(y_true, y_pred):
 error = y_true - y_pred
 is_small_error = tf.abs(error) < threshold
 squared_loss = tf.square(error) / 2
 linear_loss = threshold * tf.abs(error) - threshold ** 2 / 2
 return tf.where(is_small_error, squared_loss, linear_loss)
 return huber_fn

model.compile(loss=create_huber(2.0), optimizer="nadam")

Unfortunately, when you save the model, the threshold will not be saved. This means
that you will have to specify the threshold value when loading the model (note that
the name to use is "huber_fn", which is the name of the function you gave Keras, not
the name of the function that created it):

model = tf.keras.models.load_model(
 "my_model_with_a_custom_loss_threshold_2",
 custom_objects={"huber_fn": create_huber(2.0)}
)

You can solve this by creating a subclass of the tf.keras.losses.Loss class, and then
implementing its get_config() method:

Customizing Models and Training Algorithms | 413

6 It would not be a good idea to use a weighted mean: if you did, then two instances with the same weight but in
different batches would have a different impact on training, depending on the total weight of each batch.

7 The {**x, [...]} syntax was added in Python 3.5, to merge all the key/value pairs from dictionary x into
another dictionary. Since Python 3.9, you can use the nicer x | y syntax instead (where x and y are two
dictionaries).

class HuberLoss(tf.keras.losses.Loss):
 def __init__(self, threshold=1.0, **kwargs):
 self.threshold = threshold
 super().__init__(**kwargs)

 def call(self, y_true, y_pred):
 error = y_true - y_pred
 is_small_error = tf.abs(error) < self.threshold
 squared_loss = tf.square(error) / 2
 linear_loss = self.threshold * tf.abs(error) - self.threshold**2 / 2
 return tf.where(is_small_error, squared_loss, linear_loss)

 def get_config(self):
 base_config = super().get_config()
 return {**base_config, "threshold": self.threshold}

Let’s walk through this code:

• The constructor accepts **kwargs and passes them to the parent constructor,•
which handles standard hyperparameters: the name of the loss and the reduction
algorithm to use to aggregate the individual instance losses. By default this is
"AUTO", which is equivalent to "SUM_OVER_BATCH_SIZE": the loss will be the sum
of the instance losses, weighted by the sample weights, if any, and divided by the
batch size (not by the sum of weights, so this is not the weighted mean).6 Other
possible values are "SUM" and "NONE".

• The call() method takes the labels and predictions, computes all the instance•
losses, and returns them.

• The get_config() method returns a dictionary mapping each hyperparameter•
name to its value. It first calls the parent class’s get_config() method, then adds
the new hyperparameters to this dictionary.7

You can then use any instance of this class when you compile the model:

model.compile(loss=HuberLoss(2.), optimizer="nadam")

When you save the model, the threshold will be saved along with it; and when you
load the model, you just need to map the class name to the class itself:

model = tf.keras.models.load_model("my_model_with_a_custom_loss_class",
 custom_objects={"HuberLoss": HuberLoss})

414 | Chapter 12: Custom Models and Training with TensorFlow

When you save a model, Keras calls the loss instance’s get_config() method and
saves the config in the SavedModel format. When you load the model, it calls the
from_config() class method on the HuberLoss class: this method is implemented by
the base class (Loss) and creates an instance of the class, passing **config to the
constructor.

That’s it for losses! As you’ll see now, custom activation functions, initializers, regu‐
larizers, and constraints are not much different.

Custom Activation Functions, Initializers, Regularizers,
and Constraints
Most Keras functionalities, such as losses, regularizers, constraints, initializers, met‐
rics, activation functions, layers, and even full models, can be customized in much
the same way. Most of the time, you will just need to write a simple function with
the appropriate inputs and outputs. Here are examples of a custom activation func‐
tion (equivalent to tf.keras.activations.softplus() or tf.nn.softplus()), a
custom Glorot initializer (equivalent to tf.keras.initializers.glorot_normal()),
a custom ℓ1 regularizer (equivalent to tf.keras.regularizers.l1(0.01)), and a
custom constraint that ensures weights are all positive (equivalent to tf.keras.
constraints.nonneg() or tf.nn.relu()):

def my_softplus(z):
 return tf.math.log(1.0 + tf.exp(z))

def my_glorot_initializer(shape, dtype=tf.float32):
 stddev = tf.sqrt(2. / (shape[0] + shape[1]))
 return tf.random.normal(shape, stddev=stddev, dtype=dtype)

def my_l1_regularizer(weights):
 return tf.reduce_sum(tf.abs(0.01 * weights))

def my_positive_weights(weights): # return value is just tf.nn.relu(weights)
 return tf.where(weights < 0., tf.zeros_like(weights), weights)

As you can see, the arguments depend on the type of custom function. These custom
functions can then be used normally, as shown here:

layer = tf.keras.layers.Dense(1, activation=my_softplus,
 kernel_initializer=my_glorot_initializer,
 kernel_regularizer=my_l1_regularizer,
 kernel_constraint=my_positive_weights)

The activation function will be applied to the output of this Dense layer, and its result
will be passed on to the next layer. The layer’s weights will be initialized using the
value returned by the initializer. At each training step the weights will be passed to
the regularization function to compute the regularization loss, which will be added to
the main loss to get the final loss used for training. Finally, the constraint function

Customizing Models and Training Algorithms | 415

8 However, the Huber loss is seldom used as a metric—the MAE or MSE is generally preferred.

will be called after each training step, and the layer’s weights will be replaced by the
constrained weights.

If a function has hyperparameters that need to be saved along with the model,
then you will want to subclass the appropriate class, such as tf.keras.regular
izers.Regularizer, tf.keras.constraints.Constraint, tf.keras.initializers.
Initializer, or tf.keras.layers.Layer (for any layer, including activation func‐
tions). Much as you did for the custom loss, here is a simple class for ℓ1 regularization
that saves its factor hyperparameter (this time you do not need to call the parent
constructor or the get_config() method, as they are not defined by the parent class):

class MyL1Regularizer(tf.keras.regularizers.Regularizer):
 def __init__(self, factor):
 self.factor = factor

 def __call__(self, weights):
 return tf.reduce_sum(tf.abs(self.factor * weights))

 def get_config(self):
 return {"factor": self.factor}

Note that you must implement the call() method for losses, layers (including activa‐
tion functions), and models, or the __call__() method for regularizers, initializers,
and constraints. For metrics, things are a bit different, as you will see now.

Custom Metrics
Losses and metrics are conceptually not the same thing: losses (e.g., cross entropy)
are used by gradient descent to train a model, so they must be differentiable (at
least at the points where they are evaluated), and their gradients should not be zero
everywhere. Plus, it’s OK if they are not easily interpretable by humans. In contrast,
metrics (e.g., accuracy) are used to evaluate a model: they must be more easily
interpretable, and they can be nondifferentiable or have zero gradients everywhere.

That said, in most cases, defining a custom metric function is exactly the same as
defining a custom loss function. In fact, we could even use the Huber loss function we
created earlier as a metric;8 it would work just fine (and persistence would also work
the same way, in this case only saving the name of the function, "huber_fn", not the
threshold):

model.compile(loss="mse", optimizer="nadam", metrics=[create_huber(2.0)])

416 | Chapter 12: Custom Models and Training with TensorFlow

For each batch during training, Keras will compute this metric and keep track of its
mean since the beginning of the epoch. Most of the time, this is exactly what you
want. But not always! Consider a binary classifier’s precision, for example. As you
saw in Chapter 3, precision is the number of true positives divided by the number of
positive predictions (including both true positives and false positives). Suppose the
model made five positive predictions in the first batch, four of which were correct:
that’s 80% precision. Then suppose the model made three positive predictions in the
second batch, but they were all incorrect: that’s 0% precision for the second batch.
If you just compute the mean of these two precisions, you get 40%. But wait a
second—that’s not the model’s precision over these two batches! Indeed, there were
a total of four true positives (4 + 0) out of eight positive predictions (5 + 3), so the
overall precision is 50%, not 40%. What we need is an object that can keep track of
the number of true positives and the number of false positives and that can compute
the precision based on these numbers when requested. This is precisely what the
tf.keras.metrics.Precision class does:

>>> precision = tf.keras.metrics.Precision()
>>> precision([0, 1, 1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 0, 1, 0, 1])
<tf.Tensor: shape=(), dtype=float32, numpy=0.8>
>>> precision([0, 1, 0, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0, 0, 0])
<tf.Tensor: shape=(), dtype=float32, numpy=0.5>

In this example, we created a Precision object, then we used it like a function,
passing it the labels and predictions for the first batch, then for the second batch (you
can optionally pass sample weights as well, if you want). We used the same number
of true and false positives as in the example we just discussed. After the first batch, it
returns a precision of 80%; then after the second batch, it returns 50% (which is the
overall precision so far, not the second batch’s precision). This is called a streaming
metric (or stateful metric), as it is gradually updated, batch after batch.

At any point, we can call the result() method to get the current value of the
metric. We can also look at its variables (tracking the number of true and false
positives) by using the variables attribute, and we can reset these variables using the
reset_states() method:

>>> precision.result()
<tf.Tensor: shape=(), dtype=float32, numpy=0.5>
>>> precision.variables
[<tf.Variable 'true_positives:0' [...], numpy=array([4.], dtype=float32)>,
 <tf.Variable 'false_positives:0' [...], numpy=array([4.], dtype=float32)>]
>>> precision.reset_states() # both variables get reset to 0.0

Customizing Models and Training Algorithms | 417

9 This class is for illustration purposes only. A simpler and better implementation would just subclass the
tf.keras.metrics.Mean class; see the “Streaming Metrics” section of this chapter’s notebook for an example.

If you need to define your own custom streaming metric, create a subclass of the
tf.keras.metrics.Metric class. Here is a basic example that keeps track of the total
Huber loss and the number of instances seen so far. When asked for the result, it
returns the ratio, which is just the mean Huber loss:

class HuberMetric(tf.keras.metrics.Metric):
 def __init__(self, threshold=1.0, **kwargs):
 super().__init__(**kwargs) # handles base args (e.g., dtype)
 self.threshold = threshold
 self.huber_fn = create_huber(threshold)
 self.total = self.add_weight("total", initializer="zeros")
 self.count = self.add_weight("count", initializer="zeros")

 def update_state(self, y_true, y_pred, sample_weight=None):
 sample_metrics = self.huber_fn(y_true, y_pred)
 self.total.assign_add(tf.reduce_sum(sample_metrics))
 self.count.assign_add(tf.cast(tf.size(y_true), tf.float32))

 def result(self):
 return self.total / self.count

 def get_config(self):
 base_config = super().get_config()
 return {**base_config, "threshold": self.threshold}

Let’s walk through this code:9

• The constructor uses the add_weight() method to create the variables needed to•
keep track of the metric’s state over multiple batches—in this case, the sum of all
Huber losses (total) and the number of instances seen so far (count). You could
just create variables manually if you preferred. Keras tracks any tf.Variable that
is set as an attribute (and more generally, any “trackable” object, such as layers or
models).

• The update_state() method is called when you use an instance of this class as•
a function (as we did with the Precision object). It updates the variables, given
the labels and predictions for one batch (and sample weights, but in this case we
ignore them).

• The result() method computes and returns the final result, in this case the•
mean Huber metric over all instances. When you use the metric as a function,
the update_state() method gets called first, then the result() method is called,
and its output is returned.

418 | Chapter 12: Custom Models and Training with TensorFlow

• We also implement the get_config() method to ensure the threshold gets•
saved along with the model.

• The default implementation of the reset_states() method resets all variables to•
0.0 (but you can override it if needed).

Keras will take care of variable persistence seamlessly; no action is
required.

When you define a metric using a simple function, Keras automatically calls it for
each batch, and it keeps track of the mean during each epoch, just like we did
manually. So the only benefit of our HuberMetric class is that the threshold will be
saved. But of course, some metrics, like precision, cannot simply be averaged over
batches: in those cases, there’s no other option than to implement a streaming metric.

Now that you’ve built a streaming metric, building a custom layer will seem like a
walk in the park!

Custom Layers
You may occasionally want to build an architecture that contains an exotic layer for
which TensorFlow does not provide a default implementation. Or you may simply
want to build a very repetitive architecture, in which a particular block of layers is
repeated many times, and it would be convenient to treat each block as a single layer.
For such cases, you’ll want to build a custom layer.

There are some layers that have no weights, such as tf.keras.layers.Flatten or
tf.keras.layers.ReLU. If you want to create a custom layer without any weights, the
simplest option is to write a function and wrap it in a tf.keras.layers.Lambda layer.
For example, the following layer will apply the exponential function to its inputs:

exponential_layer = tf.keras.layers.Lambda(lambda x: tf.exp(x))

This custom layer can then be used like any other layer, using the sequential API, the
functional API, or the subclassing API. You can also use it as an activation function,
or you could use activation=tf.exp. The exponential layer is sometimes used in
the output layer of a regression model when the values to predict have very different
scales (e.g., 0.001, 10., 1,000.). In fact, the exponential function is one of the standard
activation functions in Keras, so you can just use activation="exponential".

Customizing Models and Training Algorithms | 419

10 The Keras API calls this argument input_shape, but since it also includes the batch dimension, I prefer to call
it batch_input_shape.

As you might guess, to build a custom stateful layer (i.e., a layer with weights),
you need to create a subclass of the tf.keras.layers.Layer class. For example, the
following class implements a simplified version of the Dense layer:

class MyDense(tf.keras.layers.Layer):
 def __init__(self, units, activation=None, **kwargs):
 super().__init__(**kwargs)
 self.units = units
 self.activation = tf.keras.activations.get(activation)

 def build(self, batch_input_shape):
 self.kernel = self.add_weight(
 name="kernel", shape=[batch_input_shape[-1], self.units],
 initializer="glorot_normal")
 self.bias = self.add_weight(
 name="bias", shape=[self.units], initializer="zeros")

 def call(self, X):
 return self.activation(X @ self.kernel + self.bias)

 def get_config(self):
 base_config = super().get_config()
 return {**base_config, "units": self.units,
 "activation": tf.keras.activations.serialize(self.activation)}

Let’s walk through this code:

• The constructor takes all the hyperparameters as arguments (in this example,•
units and activation), and importantly it also takes a **kwargs argument. It
calls the parent constructor, passing it the kwargs: this takes care of standard
arguments such as input_shape, trainable, and name. Then it saves the hyper‐
parameters as attributes, converting the activation argument to the appropriate
activation function using the tf.keras.activations.get() function (it accepts
functions, standard strings like "relu" or "swish", or simply None).

• The build() method’s role is to create the layer’s variables by calling the•
add_weight() method for each weight. The build() method is called the first
time the layer is used. At that point, Keras will know the shape of this layer’s
inputs, and it will pass it to the build() method,10 which is often necessary
to create some of the weights. For example, we need to know the number of
neurons in the previous layer in order to create the connection weights matrix
(i.e., the "kernel"): this corresponds to the size of the last dimension of the
inputs. At the end of the build() method (and only at the end), you must call

420 | Chapter 12: Custom Models and Training with TensorFlow

the parent’s build() method: this tells Keras that the layer is built (it just sets
self.built = True).

• The call() method performs the desired operations. In this case, we compute•
the matrix multiplication of the inputs X and the layer’s kernel, we add the bias
vector, and we apply the activation function to the result, and this gives us the
output of the layer.

• The get_config() method is just like in the previous custom classes. Note•
that we save the activation function’s full configuration by calling tf.keras.
activations.serialize().

You can now use a MyDense layer just like any other layer!

Keras automatically infers the output shape, except when the layer
is dynamic (as you will see shortly). In this (rare) case, you need
to implement the compute_output_shape() method, which must
return a TensorShape object.

To create a layer with multiple inputs (e.g., Concatenate), the argument to the call()
method should be a tuple containing all the inputs. To create a layer with multiple
outputs, the call() method should return the list of outputs. For example, the
following toy layer takes two inputs and returns three outputs:

class MyMultiLayer(tf.keras.layers.Layer):
 def call(self, X):
 X1, X2 = X
 return X1 + X2, X1 * X2, X1 / X2

This layer may now be used like any other layer, but of course only using the
functional and subclassing APIs, not the sequential API (which only accepts layers
with one input and one output).

If your layer needs to have a different behavior during training and during test‐
ing (e.g., if it uses Dropout or BatchNormalization layers), then you must add a
training argument to the call() method and use this argument to decide what to
do. For example, let’s create a layer that adds Gaussian noise during training (for
regularization) but does nothing during testing (Keras has a layer that does the same
thing, tf.keras.layers.GaussianNoise):

Customizing Models and Training Algorithms | 421

11 The name “subclassing API” in Keras usually refers only to the creation of custom models by subclassing,
although many other things can be created by subclassing, as you’ve seen in this chapter.

class MyGaussianNoise(tf.keras.layers.Layer):
 def __init__(self, stddev, **kwargs):
 super().__init__(**kwargs)
 self.stddev = stddev

 def call(self, X, training=False):
 if training:
 noise = tf.random.normal(tf.shape(X), stddev=self.stddev)
 return X + noise
 else:
 return X

With that, you can now build any custom layer you need! Now let’s look at how to
create custom models.

Custom Models
We already looked at creating custom model classes in Chapter 10, when we dis‐
cussed the subclassing API.11 It’s straightforward: subclass the tf.keras.Model class,
create layers and variables in the constructor, and implement the call() method to
do whatever you want the model to do. For example, suppose we want to build the
model represented in Figure 12-3.

Figure 12-3. Custom model example: an arbitrary model with a custom ResidualBlock
layer containing a skip connection

The inputs go through a first dense layer, then through a residual block composed of
two dense layers and an addition operation (as you will see in Chapter 14, a residual

422 | Chapter 12: Custom Models and Training with TensorFlow

block adds its inputs to its outputs), then through this same residual block three more
times, then through a second residual block, and the final result goes through a dense
output layer. Don’t worry if this model does not make much sense; it’s just an example
to illustrate the fact that you can easily build any kind of model you want, even one
that contains loops and skip connections. To implement this model, it is best to first
create a ResidualBlock layer, since we are going to create a couple of identical blocks
(and we might want to reuse it in another model):

class ResidualBlock(tf.keras.layers.Layer):
 def __init__(self, n_layers, n_neurons, **kwargs):
 super().__init__(**kwargs)
 self.hidden = [tf.keras.layers.Dense(n_neurons, activation="relu",
 kernel_initializer="he_normal")
 for _ in range(n_layers)]

 def call(self, inputs):
 Z = inputs
 for layer in self.hidden:
 Z = layer(Z)
 return inputs + Z

This layer is a bit special since it contains other layers. This is handled transparently
by Keras: it automatically detects that the hidden attribute contains trackable objects
(layers in this case), so their variables are automatically added to this layer’s list of
variables. The rest of this class is self-explanatory. Next, let’s use the subclassing API
to define the model itself:

class ResidualRegressor(tf.keras.Model):
 def __init__(self, output_dim, **kwargs):
 super().__init__(**kwargs)
 self.hidden1 = tf.keras.layers.Dense(30, activation="relu",
 kernel_initializer="he_normal")
 self.block1 = ResidualBlock(2, 30)
 self.block2 = ResidualBlock(2, 30)
 self.out = tf.keras.layers.Dense(output_dim)

 def call(self, inputs):
 Z = self.hidden1(inputs)
 for _ in range(1 + 3):
 Z = self.block1(Z)
 Z = self.block2(Z)
 return self.out(Z)

We create the layers in the constructor and use them in the call() method. This
model can then be used like any other model (compile it, fit it, evaluate it, and use it
to make predictions). If you also want to be able to save the model using the save()
method and load it using the tf.keras.models.load_model() function, you must
implement the get_config() method (as we did earlier) in both the ResidualBlock

Customizing Models and Training Algorithms | 423

class and the ResidualRegressor class. Alternatively, you can save and load the
weights using the save_weights() and load_weights() methods.

The Model class is a subclass of the Layer class, so models can be defined and used
exactly like layers. But a model has some extra functionalities, including of course
its compile(), fit(), evaluate(), and predict() methods (and a few variants), plus
the get_layer() method (which can return any of the model’s layers by name or
by index) and the save() method (and support for tf.keras.models.load_model()
and tf.keras.models.clone_model()).

If models provide more functionality than layers, why not just
define every layer as a model? Well, technically you could, but it
is usually cleaner to distinguish the internal components of your
model (i.e., layers or reusable blocks of layers) from the model
itself (i.e., the object you will train). The former should subclass the
Layer class, while the latter should subclass the Model class.

With that, you can naturally and concisely build almost any model that you find in
a paper, using the sequential API, the functional API, the subclassing API, or even a
mix of these. “Almost” any model? Yes, there are still a few things that we need to look
at: first, how to define losses or metrics based on model internals, and second, how to
build a custom training loop.

Losses and Metrics Based on Model Internals
The custom losses and metrics we defined earlier were all based on the labels and the
predictions (and optionally sample weights). There will be times when you want to
define losses based on other parts of your model, such as the weights or activations of
its hidden layers. This may be useful for regularization purposes or to monitor some
internal aspect of your model.

To define a custom loss based on model internals, compute it based on any part of
the model you want, then pass the result to the add_loss() method. For example,
let’s build a custom regression MLP model composed of a stack of five hidden layers
plus an output layer. This custom model will also have an auxiliary output on top of
the upper hidden layer. The loss associated with this auxiliary output will be called
the reconstruction loss (see Chapter 17): it is the mean squared difference between the
reconstruction and the inputs. By adding this reconstruction loss to the main loss,
we will encourage the model to preserve as much information as possible through
the hidden layers—even information that is not directly useful for the regression task
itself. In practice, this loss sometimes improves generalization (it is a regularization
loss). It is also possible to add a custom metric using the model’s add_metric()

424 | Chapter 12: Custom Models and Training with TensorFlow

12 Due to TensorFlow issue #46858, the call to super().build() may fail in this case, unless the issue was fixed
by the time you read this. If not, you need to replace this line with self.built = True.

method. Here is the code for this custom model with a custom reconstruction loss
and a corresponding metric:

class ReconstructingRegressor(tf.keras.Model):
 def __init__(self, output_dim, **kwargs):
 super().__init__(**kwargs)
 self.hidden = [tf.keras.layers.Dense(30, activation="relu",
 kernel_initializer="he_normal")
 for _ in range(5)]
 self.out = tf.keras.layers.Dense(output_dim)
 self.reconstruction_mean = tf.keras.metrics.Mean(
 name="reconstruction_error")

 def build(self, batch_input_shape):
 n_inputs = batch_input_shape[-1]
 self.reconstruct = tf.keras.layers.Dense(n_inputs)

 def call(self, inputs, training=False):
 Z = inputs
 for layer in self.hidden:
 Z = layer(Z)
 reconstruction = self.reconstruct(Z)
 recon_loss = tf.reduce_mean(tf.square(reconstruction - inputs))
 self.add_loss(0.05 * recon_loss)
 if training:
 result = self.reconstruction_mean(recon_loss)
 self.add_metric(result)
 return self.out(Z)

Let’s go through this code:

• The constructor creates the DNN with five dense hidden layers and one dense•
output layer. We also create a Mean streaming metric to keep track of the recon‐
struction error during training.

• The build() method creates an extra dense layer that will be used to reconstruct•
the inputs of the model. It must be created here because its number of units
must be equal to the number of inputs, and this number is unknown before the
build() method is called.12

• The call() method processes the inputs through all five hidden layers, then•
passes the result through the reconstruction layer, which produces the recon‐
struction.

• Then the call() method computes the reconstruction loss (the mean squared•
difference between the reconstruction and the inputs), and adds it to the model’s

Customizing Models and Training Algorithms | 425

13 You can also call add_loss() on any layer inside the model, as the model recursively gathers losses from all of
its layers.

list of losses using the add_loss() method.13 Notice that we scale down the
reconstruction loss by multiplying it by 0.05 (this is a hyperparameter you can
tune). This ensures that the reconstruction loss does not dominate the main loss.

• Next, during training only, the call() method updates the reconstruction metric•
and adds it to the model so it can be displayed. This code example can actually be
simplified by calling self.add_metric(recon_loss) instead: Keras will automat‐
ically track the mean for you.

• Finally, the call() method passes the output of the hidden layers to the output•
layer and returns its output.

Both the total loss and the reconstruction loss will go down during training:

Epoch 1/5
363/363 [========] - 1s 820us/step - loss: 0.7640 - reconstruction_error: 1.2728
Epoch 2/5
363/363 [========] - 0s 809us/step - loss: 0.4584 - reconstruction_error: 0.6340
[...]

In most cases, everything we have discussed so far will be sufficient to implement
whatever model you want to build, even with complex architectures, losses, and
metrics. However, for some architectures, such as GANs (see Chapter 17), you will
have to customize the training loop itself. Before we get there, we must look at how to
compute gradients automatically in TensorFlow.

Computing Gradients Using Autodiff
To understand how to use autodiff (see Chapter 10 and Appendix B) to compute
gradients automatically, let’s consider a simple toy function:

def f(w1, w2):
 return 3 * w1 ** 2 + 2 * w1 * w2

If you know calculus, you can analytically find that the partial derivative of this
function with regard to w1 is 6 * w1 + 2 * w2. You can also find that its partial
derivative with regard to w2 is 2 * w1. For example, at the point (w1, w2) = (5, 3),
these partial derivatives are equal to 36 and 10, respectively, so the gradient vector at
this point is (36, 10). But if this were a neural network, the function would be much
more complex, typically with tens of thousands of parameters, and finding the partial
derivatives analytically by hand would be a virtually impossible task. One solution
could be to compute an approximation of each partial derivative by measuring how
much the function’s output changes when you tweak the corresponding parameter by
a tiny amount:

426 | Chapter 12: Custom Models and Training with TensorFlow

>>> w1, w2 = 5, 3
>>> eps = 1e-6
>>> (f(w1 + eps, w2) - f(w1, w2)) / eps
36.000003007075065
>>> (f(w1, w2 + eps) - f(w1, w2)) / eps
10.000000003174137

Looks about right! This works rather well and is easy to implement, but it is just an
approximation, and importantly you need to call f() at least once per parameter (not
twice, since we could compute f(w1, w2) just once). Having to call f() at least once
per parameter makes this approach intractable for large neural networks. So instead,
we should use reverse-mode autodiff. TensorFlow makes this pretty simple:

w1, w2 = tf.Variable(5.), tf.Variable(3.)
with tf.GradientTape() as tape:
 z = f(w1, w2)

gradients = tape.gradient(z, [w1, w2])

We first define two variables w1 and w2, then we create a tf.GradientTape context
that will automatically record every operation that involves a variable, and finally we
ask this tape to compute the gradients of the result z with regard to both variables
[w1, w2]. Let’s take a look at the gradients that TensorFlow computed:

>>> gradients
[<tf.Tensor: shape=(), dtype=float32, numpy=36.0>,
 <tf.Tensor: shape=(), dtype=float32, numpy=10.0>]

Perfect! Not only is the result accurate (the precision is only limited by the floating-
point errors), but the gradient() method only goes through the recorded compu‐
tations once (in reverse order), no matter how many variables there are, so it is
incredibly efficient. It’s like magic!

In order to save memory, only put the strict minimum inside the
tf.GradientTape() block. Alternatively, pause recording by creat‐
ing a with tape.stop_recording() block inside the tf.Gradient
Tape() block.

The tape is automatically erased immediately after you call its gradient() method, so
you will get an exception if you try to call gradient() twice:

with tf.GradientTape() as tape:
 z = f(w1, w2)

dz_dw1 = tape.gradient(z, w1) # returns tensor 36.0
dz_dw2 = tape.gradient(z, w2) # raises a RuntimeError!

Customizing Models and Training Algorithms | 427

14 If the tape goes out of scope, for example when the function that used it returns, Python’s garbage collector
will delete it for you.

If you need to call gradient() more than once, you must make the tape persistent
and delete it each time you are done with it to free resources:14

with tf.GradientTape(persistent=True) as tape:
 z = f(w1, w2)

dz_dw1 = tape.gradient(z, w1) # returns tensor 36.0
dz_dw2 = tape.gradient(z, w2) # returns tensor 10.0, works fine now!
del tape

By default, the tape will only track operations involving variables, so if you try to
compute the gradient of z with regard to anything other than a variable, the result
will be None:

c1, c2 = tf.constant(5.), tf.constant(3.)
with tf.GradientTape() as tape:
 z = f(c1, c2)

gradients = tape.gradient(z, [c1, c2]) # returns [None, None]

However, you can force the tape to watch any tensors you like, to record every
operation that involves them. You can then compute gradients with regard to these
tensors, as if they were variables:

with tf.GradientTape() as tape:
 tape.watch(c1)
 tape.watch(c2)
 z = f(c1, c2)

gradients = tape.gradient(z, [c1, c2]) # returns [tensor 36., tensor 10.]

This can be useful in some cases, like if you want to implement a regularization loss
that penalizes activations that vary a lot when the inputs vary little: the loss will be
based on the gradient of the activations with regard to the inputs. Since the inputs are
not variables, you’ll need to tell the tape to watch them.

Most of the time a gradient tape is used to compute the gradients of a single value
(usually the loss) with regard to a set of values (usually the model parameters). This
is where reverse-mode autodiff shines, as it just needs to do one forward pass and
one reverse pass to get all the gradients at once. If you try to compute the gradients
of a vector, for example a vector containing multiple losses, then TensorFlow will
compute the gradients of the vector’s sum. So if you ever need to get the individual
gradients (e.g., the gradients of each loss with regard to the model parameters),
you must call the tape’s jacobian() method: it will perform reverse-mode autodiff
once for each loss in the vector (all in parallel by default). It is even possible to

428 | Chapter 12: Custom Models and Training with TensorFlow

compute second-order partial derivatives (the Hessians, i.e., the partial derivatives
of the partial derivatives), but this is rarely needed in practice (see the “Computing
Gradients Using Autodiff ” section of this chapter’s notebook for an example).

In some cases you may want to stop gradients from backpropagating through some
part of your neural network. To do this, you must use the tf.stop_gradient() func‐
tion. The function returns its inputs during the forward pass (like tf.identity()),
but it does not let gradients through during backpropagation (it acts like a constant):

def f(w1, w2):
 return 3 * w1 ** 2 + tf.stop_gradient(2 * w1 * w2)

with tf.GradientTape() as tape:
 z = f(w1, w2) # the forward pass is not affected by stop_gradient()

gradients = tape.gradient(z, [w1, w2]) # returns [tensor 30., None]

Finally, you may occasionally run into some numerical issues when computing gradi‐
ents. For example, if you compute the gradients of the square root function at x =
10–50, the result will be infinite. In reality, the slope at that point is not infinite, but it’s
more than 32-bit floats can handle:

>>> x = tf.Variable(1e-50)
>>> with tf.GradientTape() as tape:
... z = tf.sqrt(x)
...
>>> tape.gradient(z, [x])
[<tf.Tensor: shape=(), dtype=float32, numpy=inf>]

To solve this, it’s often a good idea to add a tiny value to x (such as 10–6) when
computing its square root.

The exponential function is also a frequent source of headaches, as it grows extremely
fast. For example, the way my_softplus() was defined earlier is not numerically sta‐
ble. If you compute my_softplus(100.0), you will get infinity rather than the correct
result (about 100). But it’s possible to rewrite the function to make it numerically
stable: the softplus function is defined as log(1 + exp(z)), which is also equal to
log(1 + exp(–|z|)) + max(z, 0) (see the notebook for the mathematical proof) and the
advantage of this second form is that the exponential term cannot explode. So, here’s
a better implementation of the my_softplus() function:

def my_softplus(z):
 return tf.math.log(1 + tf.exp(-tf.abs(z))) + tf.maximum(0., z)

In some rare cases, a numerically stable function may still have numerically unstable
gradients. In such cases, you will have to tell TensorFlow which equation to use
for the gradients, rather than letting it use autodiff. For this, you must use the
@tf.custom_gradient decorator when defining the function, and return both the
function’s usual result and a function that computes the gradients. For example, let’s

Customizing Models and Training Algorithms | 429

update the my_softplus() function to also return a numerically stable gradients
function:

@tf.custom_gradient
def my_softplus(z):
 def my_softplus_gradients(grads): # grads = backprop'ed from upper layers
 return grads * (1 - 1 / (1 + tf.exp(z))) # stable grads of softplus

 result = tf.math.log(1 + tf.exp(-tf.abs(z))) + tf.maximum(0., z)
 return result, my_softplus_gradients

If you know differential calculus (see the tutorial notebook on this topic), you can
find that the derivative of log(1 + exp(z)) is exp(z) / (1 + exp(z)). But this form is not
stable: for large values of z, it ends up computing infinity divided by infinity, which
returns NaN. However, with a bit of algebraic manipulation, you can show that it’s
also equal to 1 – 1 / (1 + exp(z)), which is stable. The my_softplus_gradients()
function uses this equation to compute the gradients. Note that this function will
receive as input the gradients that were backpropagated so far, down to the my_soft
plus() function, and according to the chain rule we must multiply them with this
function’s gradients.

Now when we compute the gradients of the my_softplus() function, we get the
proper result, even for large input values.

Congratulations! You can now compute the gradients of any function (provided it
is differentiable at the point where you compute it), even blocking backpropagation
when needed, and write your own gradient functions! This is probably more flexibil‐
ity than you will ever need, even if you build your own custom training loops. You’ll
see how to do that next.

Custom Training Loops
In some cases, the fit() method may not be flexible enough for what you need to do.
For example, the Wide & Deep paper we discussed in Chapter 10 uses two different
optimizers: one for the wide path and the other for the deep path. Since the fit()
method only uses one optimizer (the one that we specify when compiling the model),
implementing this paper requires writing your own custom loop.

You may also like to write custom training loops simply to feel more confident that
they do precisely what you intend them to do (perhaps you are unsure about some
details of the fit() method). It can sometimes feel safer to make everything explicit.
However, remember that writing a custom training loop will make your code longer,
more error-prone, and harder to maintain.

430 | Chapter 12: Custom Models and Training with TensorFlow

https://homl.info/widedeep

Unless you’re learning or you really need the extra flexibility, you
should prefer using the fit() method rather than implementing
your own training loop, especially if you work in a team.

First, let’s build a simple model. There’s no need to compile it, since we will handle the
training loop manually:

l2_reg = tf.keras.regularizers.l2(0.05)
model = tf.keras.models.Sequential([
 tf.keras.layers.Dense(30, activation="relu", kernel_initializer="he_normal",
 kernel_regularizer=l2_reg),
 tf.keras.layers.Dense(1, kernel_regularizer=l2_reg)
])

Next, let’s create a tiny function that will randomly sample a batch of instances from
the training set (in Chapter 13 we will discuss the tf.data API, which offers a much
better alternative):

def random_batch(X, y, batch_size=32):
 idx = np.random.randint(len(X), size=batch_size)
 return X[idx], y[idx]

Let’s also define a function that will display the training status, including the number
of steps, the total number of steps, the mean loss since the start of the epoch (we will
use the Mean metric to compute it), and other metrics:

def print_status_bar(step, total, loss, metrics=None):
 metrics = " - ".join([f"{m.name}: {m.result():.4f}"
 for m in [loss] + (metrics or [])])
 end = "" if step < total else "\n"
 print(f"\r{step}/{total} - " + metrics, end=end)

This code is self-explanatory, unless you are unfamiliar with Python string format‐
ting: {m.result():.4f} will format the metric’s result as a float with four digits after
the decimal point, and using \r (carriage return) along with end="" ensures that the
status bar always gets printed on the same line.

With that, let’s get down to business! First, we need to define some hyperparameters
and choose the optimizer, the loss function, and the metrics (just the MAE in this
example):

n_epochs = 5
batch_size = 32
n_steps = len(X_train) // batch_size
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
loss_fn = tf.keras.losses.mean_squared_error
mean_loss = tf.keras.metrics.Mean(name="mean_loss")
metrics = [tf.keras.metrics.MeanAbsoluteError()]

And now we are ready to build the custom loop!

Customizing Models and Training Algorithms | 431

for epoch in range(1, n_epochs + 1):
 print("Epoch {}/{}".format(epoch, n_epochs))
 for step in range(1, n_steps + 1):
 X_batch, y_batch = random_batch(X_train_scaled, y_train)
 with tf.GradientTape() as tape:
 y_pred = model(X_batch, training=True)
 main_loss = tf.reduce_mean(loss_fn(y_batch, y_pred))
 loss = tf.add_n([main_loss] + model.losses)

 gradients = tape.gradient(loss, model.trainable_variables)
 optimizer.apply_gradients(zip(gradients, model.trainable_variables))
 mean_loss(loss)
 for metric in metrics:
 metric(y_batch, y_pred)

 print_status_bar(step, n_steps, mean_loss, metrics)

 for metric in [mean_loss] + metrics:
 metric.reset_states()

There’s a lot going on in this code, so let’s walk through it:

• We create two nested loops: one for the epochs, the other for the batches within•
an epoch.

• Then we sample a random batch from the training set.•
• Inside the tf.GradientTape() block, we make a prediction for one batch, using•

the model as a function, and we compute the loss: it is equal to the main loss
plus the other losses (in this model, there is one regularization loss per layer).
Since the mean_squared_error() function returns one loss per instance, we
compute the mean over the batch using tf.reduce_mean() (if you wanted to
apply different weights to each instance, this is where you would do it). The
regularization losses are already reduced to a single scalar each, so we just need
to sum them (using tf.add_n(), which sums multiple tensors of the same shape
and data type).

• Next, we ask the tape to compute the gradients of the loss with regard to each•
trainable variable—not all variables!—and we apply them to the optimizer to
perform a gradient descent step.

• Then we update the mean loss and the metrics (over the current epoch), and we•
display the status bar.

• At the end of each epoch, we reset the states of the mean loss and the metrics.•

If you want to apply gradient clipping (see Chapter 11), set the optimizer’s clipnorm
or clipvalue hyperparameter. If you want to apply any other transformation to the
gradients, simply do so before calling the apply_gradients() method. And if you
want to add weight constraints to your model (e.g., by setting kernel_constraint

432 | Chapter 12: Custom Models and Training with TensorFlow

15 With the exception of optimizers, as very few people ever customize these; see the “Custom Optimizers”
section in the notebook for an example.

or bias_constraint when creating a layer), you should update the training loop to
apply these constraints just after apply_gradients(), like so:

for variable in model.variables:
 if variable.constraint is not None:
 variable.assign(variable.constraint(variable))

Don’t forget to set training=True when calling the model in
the training loop, especially if your model behaves differently
during training and testing (e.g., if it uses BatchNormalization
or Dropout). If it’s a custom model, make sure to propagate the
training argument to the layers that your model calls.

As you can see, there are quite a lot of things you need to get right, and it’s easy to
make a mistake. But on the bright side, you get full control.

Now that you know how to customize any part of your models15 and training algo‐
rithms, let’s see how you can use TensorFlow’s automatic graph generation feature: it
can speed up your custom code considerably, and it will also make it portable to any
platform supported by TensorFlow (see Chapter 19).

TensorFlow Functions and Graphs
Back in TensorFlow 1, graphs were unavoidable (as were the complexities that came
with them) because they were a central part of TensorFlow’s API. Since TensorFlow 2
(released in 2019), graphs are still there, but not as central, and they’re much (much!)
simpler to use. To show just how simple, let’s start with a trivial function that
computes the cube of its input:

def cube(x):
 return x ** 3

We can obviously call this function with a Python value, such as an int or a float, or
we can call it with a tensor:

>>> cube(2)
8
>>> cube(tf.constant(2.0))
<tf.Tensor: shape=(), dtype=float32, numpy=8.0>

Now, let’s use tf.function() to convert this Python function to a TensorFlow
function:

TensorFlow Functions and Graphs | 433

16 However, in this trivial example, the computation graph is so small that there is nothing at all to optimize, so
tf_cube() actually runs much slower than cube().

>>> tf_cube = tf.function(cube)
>>> tf_cube
<tensorflow.python.eager.def_function.Function at 0x7fbfe0c54d50>

This TF function can then be used exactly like the original Python function, and it
will return the same result (but always as tensors):

>>> tf_cube(2)
<tf.Tensor: shape=(), dtype=int32, numpy=8>
>>> tf_cube(tf.constant(2.0))
<tf.Tensor: shape=(), dtype=float32, numpy=8.0>

Under the hood, tf.function() analyzed the computations performed by the cube()
function and generated an equivalent computation graph! As you can see, it was
rather painless (we will look at how this works shortly). Alternatively, we could have
used tf.function as a decorator; this is actually more common:

@tf.function
def tf_cube(x):
 return x ** 3

The original Python function is still available via the TF function’s python_function
attribute, in case you ever need it:

>>> tf_cube.python_function(2)
8

TensorFlow optimizes the computation graph, pruning unused nodes, simplifying
expressions (e.g., 1 + 2 would get replaced with 3), and more. Once the optimized
graph is ready, the TF function efficiently executes the operations in the graph, in
the appropriate order (and in parallel when it can). As a result, a TF function will
usually run much faster than the original Python function, especially if it performs
complex computations.16 Most of the time you will not really need to know more than
that: when you want to boost a Python function, just transform it into a TF function.
That’s all!

Moreover, if you set jit_compile=True when calling tf.function(), then Tensor‐
Flow will use accelerated linear algebra (XLA) to compile dedicated kernels for your
graph, often fusing multiple operations. For example, if your TF function calls
tf.reduce_sum(a * b + c), then without XLA the function would first need to
compute a * b and store the result in a temporary variable, then add c to that
variable, and lastly call tf.reduce_sum() on the result. With XLA, the whole compu‐
tation gets compiled into a single kernel, which will compute tf.reduce_sum(a * b
+ c) in one shot, without using any large temporary variable. Not only will this be
much faster, it will also use dramatically less RAM.

434 | Chapter 12: Custom Models and Training with TensorFlow

When you write a custom loss function, a custom metric, a custom layer, or any other
custom function and you use it in a Keras model (as we’ve done throughout this
chapter), Keras automatically converts your function into a TF function—no need
to use tf.function(). So most of the time, the magic is 100% transparent. And if
you want Keras to use XLA, you just need to set jit_compile=True when calling the
compile() method. Easy!

You can tell Keras not to convert your Python functions to TF
functions by setting dynamic=True when creating a custom layer
or a custom model. Alternatively, you can set run_eagerly=True
when calling the model’s compile() method.

By default, a TF function generates a new graph for every unique set of input
shapes and data types and caches it for subsequent calls. For example, if you call
tf_cube(tf.constant(10)), a graph will be generated for int32 tensors of shape [].
Then if you call tf_cube(tf.constant(20)), the same graph will be reused. But
if you then call tf_cube(tf.constant([10, 20])), a new graph will be generated
for int32 tensors of shape [2]. This is how TF functions handle polymorphism (i.e.,
varying argument types and shapes). However, this is only true for tensor arguments:
if you pass numerical Python values to a TF function, a new graph will be generated
for every distinct value: for example, calling tf_cube(10) and tf_cube(20) will
generate two graphs.

If you call a TF function many times with different numerical
Python values, then many graphs will be generated, slowing down
your program and using up a lot of RAM (you must delete the TF
function to release it). Python values should be reserved for argu‐
ments that will have few unique values, such as hyperparameters
like the number of neurons per layer. This allows TensorFlow to
better optimize each variant of your model.

AutoGraph and Tracing
So how does TensorFlow generate graphs? It starts by analyzing the Python function’s
source code to capture all the control flow statements, such as for loops, while loops,
and if statements, as well as break, continue, and return statements. This first
step is called AutoGraph. The reason TensorFlow has to analyze the source code is
that Python does not provide any other way to capture control flow statements: it
offers magic methods like __add__() and __mul__() to capture operators like + and
*, but there are no __while__() or __if__() magic methods. After analyzing the
function’s code, AutoGraph outputs an upgraded version of that function in which all
the control flow statements are replaced by the appropriate TensorFlow operations,

TensorFlow Functions and Graphs | 435

such as tf.while_loop() for loops and tf.cond() for if statements. For example,
in Figure 12-4, AutoGraph analyzes the source code of the sum_squares() Python
function, and it generates the tf__sum_squares() function. In this function, the for
loop is replaced by the definition of the loop_body() function (containing the body
of the original for loop), followed by a call to the for_stmt() function. This call will
build the appropriate tf.while_loop() operation in the computation graph.

Figure 12-4. How TensorFlow generates graphs using AutoGraph and tracing

Next, TensorFlow calls this “upgraded” function, but instead of passing the argument,
it passes a symbolic tensor—a tensor without any actual value, only a name, a data
type, and a shape. For example, if you call sum_squares(tf.constant(10)), then
the tf__sum_squares() function will be called with a symbolic tensor of type int32
and shape []. The function will run in graph mode, meaning that each TensorFlow
operation will add a node in the graph to represent itself and its output tensor(s) (as
opposed to the regular mode, called eager execution, or eager mode). In graph mode,
TF operations do not perform any computations. Graph mode was the default mode
in TensorFlow 1. In Figure 12-4, you can see the tf__sum_squares() function being
called with a symbolic tensor as its argument (in this case, an int32 tensor of shape [])
and the final graph being generated during tracing. The nodes represent operations,

436 | Chapter 12: Custom Models and Training with TensorFlow

and the arrows represent tensors (both the generated function and the graph are
simplified).

In order to view the generated function’s source code, you can
call tf.autograph.to_code(sum_squares.python_function). The
code is not meant to be pretty, but it can sometimes help for
debugging.

TF Function Rules
Most of the time, converting a Python function that performs TensorFlow operations
into a TF function is trivial: decorate it with @tf.function or let Keras take care of it
for you. However, there are a few rules to respect:

• If you call any external library, including NumPy or even the standard library,•
this call will run only during tracing; it will not be part of the graph. Indeed, a
TensorFlow graph can only include TensorFlow constructs (tensors, operations,
variables, datasets, and so on). So, make sure you use tf.reduce_sum() instead
of np.sum(), tf.sort() instead of the built-in sorted() function, and so on
(unless you really want the code to run only during tracing). This has a few
additional implications:
— If you define a TF function f(x) that just returns np.random.rand(), a—

random number will only be generated when the function is traced, so
f(tf.constant(2.)) and f(tf.constant(3.)) will return the same random
number, but f(tf.constant([2., 3.])) will return a different one. If you
replace np.random.rand() with tf.random.uniform([]), then a new random
number will be generated upon every call, since the operation will be part of
the graph.

— If your non-TensorFlow code has side effects (such as logging something or—
updating a Python counter), then you should not expect those side effects to
occur every time you call the TF function, as they will only occur when the
function is traced.

— You can wrap arbitrary Python code in a tf.py_function() operation, but—
doing so will hinder performance, as TensorFlow will not be able to do any
graph optimization on this code. It will also reduce portability, as the graph
will only run on platforms where Python is available (and where the right
libraries are installed).

• You can call other Python functions or TF functions, but they should follow•
the same rules, as TensorFlow will capture their operations in the computa‐
tion graph. Note that these other functions do not need to be decorated with
@tf.function.

TensorFlow Functions and Graphs | 437

• If the function creates a TensorFlow variable (or any other stateful TensorFlow•
object, such as a dataset or a queue), it must do so upon the very first call, and
only then, or else you will get an exception. It is usually preferable to create
variables outside of the TF function (e.g., in the build() method of a custom
layer). If you want to assign a new value to the variable, make sure you call its
assign() method instead of using the = operator.

• The source code of your Python function should be available to TensorFlow. If•
the source code is unavailable (for example, if you define your function in the
Python shell, which does not give access to the source code, or if you deploy only
the compiled *.pyc Python files to production), then the graph generation process
will fail or have limited functionality.

• TensorFlow will only capture for loops that iterate over a tensor or a•
tf.data.Dataset (see Chapter 13). Therefore, make sure you use for i in
tf.range(x) rather than for i in range(x), or else the loop will not be
captured in the graph. Instead, it will run during tracing. (This may be what you
want if the for loop is meant to build the graph; for example, to create each layer
in a neural network.)

• As always, for performance reasons, you should prefer a vectorized implementa‐•
tion whenever you can, rather than using loops.

It’s time to sum up! In this chapter we started with a brief overview of TensorFlow,
then we looked at TensorFlow’s low-level API, including tensors, operations, vari‐
ables, and special data structures. We then used these tools to customize almost every
component in the Keras API. Finally, we looked at how TF functions can boost
performance, how graphs are generated using AutoGraph and tracing, and what rules
to follow when you write TF functions (if you would like to open the black box
a bit further and explore the generated graphs, you will find technical details in
Appendix D).

In the next chapter, we will look at how to efficiently load and preprocess data with
TensorFlow.

Exercises
1. How would you describe TensorFlow in a short sentence? What are its main1.

features? Can you name other popular deep learning libraries?
2. Is TensorFlow a drop-in replacement for NumPy? What are the main differences2.

between the two?
3. Do you get the same result with tf.range(10) and tf.constant(np.3.

arange(10))?

438 | Chapter 12: Custom Models and Training with TensorFlow

4. Can you name six other data structures available in TensorFlow, beyond regular4.
tensors?

5. You can define a custom loss function by writing a function or by subclassing the5.
tf.keras.losses.Loss class. When would you use each option?

6. Similarly, you can define a custom metric in a function or as a subclass of6.
tf.keras.metrics.Metric. When would you use each option?

7. When should you create a custom layer versus a custom model?7.
8. What are some use cases that require writing your own custom training loop?8.
9. Can custom Keras components contain arbitrary Python code, or must they be9.

convertible to TF functions?
10. What are the main rules to respect if you want a function to be convertible to a10.

TF function?
11. When would you need to create a dynamic Keras model? How do you do that?11.

Why not make all your models dynamic?
12. Implement a custom layer that performs layer normalization (we will use this12.

type of layer in Chapter 15):
a. The build() method should define two trainable weights α and β, both ofa.

shape input_shape[-1:] and data type tf.float32. α should be initialized
with 1s, and β with 0s.

b. The call() method should compute the mean μ and standard deviation σb.
of each instance’s features. For this, you can use tf.nn.moments(inputs,
axes=-1, keepdims=True), which returns the mean μ and the variance σ2

of all instances (compute the square root of the variance to get the standard
deviation). Then the function should compute and return α ⊗ (X – μ)/(σ + ε)
+ β, where ⊗ represents itemwise multiplication (*) and ε is a smoothing term
(a small constant to avoid division by zero, e.g., 0.001).

c. Ensure that your custom layer produces the same (or very nearly the same)c.
output as the tf.keras.layers.LayerNormalization layer.

13. Train a model using a custom training loop to tackle the Fashion MNIST dataset13.
(see Chapter 10):
a. Display the epoch, iteration, mean training loss, and mean accuracy over eacha.

epoch (updated at each iteration), as well as the validation loss and accuracy at
the end of each epoch.

b. Try using a different optimizer with a different learning rate for the upperb.
layers and the lower layers.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

Exercises | 439

https://homl.info/colab3

CHAPTER 13

Loading and Preprocessing
Data with TensorFlow

In Chapter 2, you saw that loading and preprocessing data is an important part of
any machine learning project. You used Pandas to load and explore the (modified)
California housing dataset—which was stored in a CSV file—and you applied Scikit-
Learn’s transformers for preprocessing. These tools are quite convenient, and you
will probably be using them often, especially when exploring and experimenting with
data.

However, when training TensorFlow models on large datasets, you may prefer to use
TensorFlow’s own data loading and preprocessing API, called tf.data. It is capable of
loading and preprocessing data extremely efficiently, reading from multiple files in
parallel using multithreading and queuing, shuffling and batching samples, and more.
Plus, it can do all of this on the fly—it loads and preprocesses the next batch of data
across multiple CPU cores, while your GPUs or TPUs are busy training the current
batch of data.

The tf.data API lets you handle datasets that don’t fit in memory, and it allows you
to make full use of your hardware resources, thereby speeding up training. Off the
shelf, the tf.data API can read from text files (such as CSV files), binary files with
fixed-size records, and binary files that use TensorFlow’s TFRecord format, which
supports records of varying sizes.

TFRecord is a flexible and efficient binary format usually containing protocol buffers
(an open source binary format). The tf.data API also has support for reading from
SQL databases. Moreover, many open source extensions are available to read from all
sorts of data sources, such as Google’s BigQuery service (see https://tensorflow.org/io).

441

https://tensorflow.org/io

Keras also comes with powerful yet easy-to-use preprocessing layers that can be
embedded in your models: this way, when you deploy a model to production, it
will be able to ingest raw data directly, without you having to add any additional
preprocessing code. This eliminates the risk of mismatch between the preprocessing
code used during training and the preprocessing code used in production, which
would likely cause training/serving skew. And if you deploy your model in multiple
apps coded in different programming languages, you won’t have to reimplement the
same preprocessing code multiple times, which also reduces the risk of mismatch.

As you will see, both APIs can be used jointly—for example, to benefit from the effi‐
cient data loading offered by tf.data and the convenience of the Keras preprocessing
layers.

In this chapter, we will first cover the tf.data API and the TFRecord format. Then we
will explore the Keras preprocessing layers and how to use them with the tf.data API.
Lastly, we will take a quick look at a few related libraries that you may find useful for
loading and preprocessing data, such as TensorFlow Datasets and TensorFlow Hub.
So, let’s get started!

The tf.data API
The whole tf.data API revolves around the concept of a tf.data.Dataset: this
represents a sequence of data items. Usually you will use datasets that gradually read
data from disk, but for simplicity let’s create a dataset from a simple data tensor using
tf.data.Dataset.from_tensor_slices():

>>> import tensorflow as tf
>>> X = tf.range(10) # any data tensor
>>> dataset = tf.data.Dataset.from_tensor_slices(X)
>>> dataset
<TensorSliceDataset shapes: (), types: tf.int32>

The from_tensor_slices() function takes a tensor and creates a tf.data.Dataset
whose elements are all the slices of X along the first dimension, so this dataset
contains 10 items: tensors 0, 1, 2, …, 9. In this case we would have obtained the same
dataset if we had used tf.data.Dataset.range(10) (except the elements would be
64-bit integers instead of 32-bit integers).

You can simply iterate over a dataset’s items like this:

>>> for item in dataset:
... print(item)
...
tf.Tensor(0, shape=(), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32)
[...]
tf.Tensor(9, shape=(), dtype=int32)

442 | Chapter 13: Loading and Preprocessing Data with TensorFlow

The tf.data API is a streaming API: you can very efficiently iterate
through a dataset’s items, but the API is not designed for indexing
or slicing.

A dataset may also contain tuples of tensors, or dictionaries of name/tensor pairs, or
even nested tuples and dictionaries of tensors. When slicing a tuple, a dictionary, or
a nested structure, the dataset will only slice the tensors it contains, while preserving
the tuple/dictionary structure. For example:

>>> X_nested = {"a": ([1, 2, 3], [4, 5, 6]), "b": [7, 8, 9]}
>>> dataset = tf.data.Dataset.from_tensor_slices(X_nested)
>>> for item in dataset:
... print(item)
...
{'a': (<tf.Tensor: [...]=1>, <tf.Tensor: [...]=4>), 'b': <tf.Tensor: [...]=7>}
{'a': (<tf.Tensor: [...]=2>, <tf.Tensor: [...]=5>), 'b': <tf.Tensor: [...]=8>}
{'a': (<tf.Tensor: [...]=3>, <tf.Tensor: [...]=6>), 'b': <tf.Tensor: [...]=9>}

Chaining Transformations
Once you have a dataset, you can apply all sorts of transformations to it by calling
its transformation methods. Each method returns a new dataset, so you can chain
transformations like this (this chain is illustrated in Figure 13-1):

>>> dataset = tf.data.Dataset.from_tensor_slices(tf.range(10))
>>> dataset = dataset.repeat(3).batch(7)
>>> for item in dataset:
... print(item)
...
tf.Tensor([0 1 2 3 4 5 6], shape=(7,), dtype=int32)
tf.Tensor([7 8 9 0 1 2 3], shape=(7,), dtype=int32)
tf.Tensor([4 5 6 7 8 9 0], shape=(7,), dtype=int32)
tf.Tensor([1 2 3 4 5 6 7], shape=(7,), dtype=int32)
tf.Tensor([8 9], shape=(2,), dtype=int32)

In this example, we first call the repeat() method on the original dataset, and it
returns a new dataset that repeats the items of the original dataset three times. Of
course, this will not copy all the data in memory three times! If you call this method
with no arguments, the new dataset will repeat the source dataset forever, so the code
that iterates over the dataset will have to decide when to stop.

Then we call the batch() method on this new dataset, and again this creates a new
dataset. This one will group the items of the previous dataset in batches of seven
items.

The tf.data API | 443

Figure 13-1. Chaining dataset transformations

Finally, we iterate over the items of this final dataset. The batch() method had to
output a final batch of size two instead of seven, but you can call batch() with
drop_remainder=True if you want it to drop this final batch, such that all batches
have the exact same size.

The dataset methods do not modify datasets—they create new
ones. So make sure to keep a reference to these new datasets (e.g.,
with dataset = ...), or else nothing will happen.

You can also transform the items by calling the map() method. For example, this
creates a new dataset with all batches multiplied by two:

>>> dataset = dataset.map(lambda x: x * 2) # x is a batch
>>> for item in dataset:
... print(item)
...
tf.Tensor([0 2 4 6 8 10 12], shape=(7,), dtype=int32)
tf.Tensor([14 16 18 0 2 4 6], shape=(7,), dtype=int32)
[...]

This map() method is the one you will call to apply any preprocessing to your
data. Sometimes this will include computations that can be quite intensive, such as
reshaping or rotating an image, so you will usually want to spawn multiple threads to
speed things up. This can be done by setting the num_parallel_calls argument to
the number of threads to run, or to tf.data.AUTOTUNE. Note that the function you
pass to the map() method must be convertible to a TF function (see Chapter 12).

It is also possible to simply filter the dataset using the filter() method. For example,
this code creates a dataset that only contains the batchs whose sum is greater than 50:

444 | Chapter 13: Loading and Preprocessing Data with TensorFlow

1 Imagine a sorted deck of cards on your left: suppose you just take the top three cards and shuffle them, then
pick one randomly and put it to your right, keeping the other two in your hands. Take another card on your
left, shuffle the three cards in your hands and pick one of them randomly, and put it on your right. When you
are done going through all the cards like this, you will have a deck of cards on your right: do you think it will
be perfectly shuffled?

>>> dataset = dataset.filter(lambda x: tf.reduce_sum(x) > 50)
>>> for item in dataset:
... print(item)
...
tf.Tensor([14 16 18 0 2 4 6], shape=(7,), dtype=int32)
tf.Tensor([8 10 12 14 16 18 0], shape=(7,), dtype=int32)
tf.Tensor([2 4 6 8 10 12 14], shape=(7,), dtype=int32)

You will often want to look at just a few items from a dataset. You can use the take()
method for that:

>>> for item in dataset.take(2):
... print(item)
...
tf.Tensor([14 16 18 0 2 4 6], shape=(7,), dtype=int32)
tf.Tensor([8 10 12 14 16 18 0], shape=(7,), dtype=int32)

Shuffling the Data
As we discussed in Chapter 4, gradient descent works best when the instances in the
training set are independent and identically distributed (IID). A simple way to ensure
this is to shuffle the instances, using the shuffle() method. It will create a new
dataset that will start by filling up a buffer with the first items of the source dataset.
Then, whenever it is asked for an item, it will pull one out randomly from the buffer
and replace it with a fresh one from the source dataset, until it has iterated entirely
through the source dataset. At this point it will continue to pull out items randomly
from the buffer until it is empty. You must specify the buffer size, and it is important
to make it large enough, or else shuffling will not be very effective.1 Just don’t exceed
the amount of RAM you have, though even if you have plenty of it, there’s no need
to go beyond the dataset’s size. You can provide a random seed if you want the same
random order every time you run your program. For example, the following code
creates and displays a dataset containing the integers 0 to 9, repeated twice, shuffled
using a buffer of size 4 and a random seed of 42, and batched with a batch size of 7:

>>> dataset = tf.data.Dataset.range(10).repeat(2)
>>> dataset = dataset.shuffle(buffer_size=4, seed=42).batch(7)
>>> for item in dataset:
... print(item)
...
tf.Tensor([3 0 1 6 2 5 7], shape=(7,), dtype=int64)
tf.Tensor([8 4 1 9 4 2 3], shape=(7,), dtype=int64)
tf.Tensor([7 5 0 8 9 6], shape=(6,), dtype=int64)

The tf.data API | 445

If you call repeat() on a shuffled dataset, by default it will generate
a new order at every iteration. This is generally a good idea, but if
you prefer to reuse the same order at each iteration (e.g., for tests
or debugging), you can set reshuffle_each_iteration=False
when calling shuffle().

For a large dataset that does not fit in memory, this simple shuffling-buffer approach
may not be sufficient, since the buffer will be small compared to the dataset. One
solution is to shuffle the source data itself (for example, on Linux you can shuffle text
files using the shuf command). This will definitely improve shuffling a lot! Even if
the source data is shuffled, you will usually want to shuffle it some more, or else the
same order will be repeated at each epoch, and the model may end up being biased
(e.g., due to some spurious patterns present by chance in the source data’s order). To
shuffle the instances some more, a common approach is to split the source data into
multiple files, then read them in a random order during training. However, instances
located in the same file will still end up close to each other. To avoid this you can pick
multiple files randomly and read them simultaneously, interleaving their records.
Then on top of that you can add a shuffling buffer using the shuffle() method. If
this sounds like a lot of work, don’t worry: the tf.data API makes all this possible in
just a few lines of code. Let’s go over how you can do this.

Interleaving Lines from Multiple Files
First, suppose you’ve loaded the California housing dataset, shuffled it (unless it was
already shuffled), and split it into a training set, a validation set, and a test set. Then
you split each set into many CSV files that each look like this (each row contains eight
input features plus the target median house value):

MedInc,HouseAge,AveRooms,AveBedrms,Popul…,AveOccup,Lat…,Long…,MedianHouseValue
3.5214,15.0,3.050,1.107,1447.0,1.606,37.63,-122.43,1.442
5.3275,5.0,6.490,0.991,3464.0,3.443,33.69,-117.39,1.687
3.1,29.0,7.542,1.592,1328.0,2.251,38.44,-122.98,1.621
[...]

Let’s also suppose train_filepaths contains the list of training filepaths (and you
also have valid_filepaths and test_filepaths):

>>> train_filepaths
['datasets/housing/my_train_00.csv', 'datasets/housing/my_train_01.csv', ...]

Alternatively, you could use file patterns; for example, train_filepaths =

"datasets/housing/my_train_*.csv". Now let’s create a dataset containing only
these filepaths:

filepath_dataset = tf.data.Dataset.list_files(train_filepaths, seed=42)

446 | Chapter 13: Loading and Preprocessing Data with TensorFlow

By default, the list_files() function returns a dataset that shuffles the filepaths. In
general this is a good thing, but you can set shuffle=False if you do not want that
for some reason.

Next, you can call the interleave() method to read from five files at a time and
interleave their lines. You can also skip the first line of each file—which is the header
row—using the skip() method):

n_readers = 5
dataset = filepath_dataset.interleave(
 lambda filepath: tf.data.TextLineDataset(filepath).skip(1),
 cycle_length=n_readers)

The interleave() method will create a dataset that will pull five filepaths from the
filepath_dataset, and for each one it will call the function you gave it (a lambda in
this example) to create a new dataset (in this case a TextLineDataset). To be clear, at
this stage there will be seven datasets in all: the filepath dataset, the interleave dataset,
and the five TextLineDatasets created internally by the interleave dataset. When you
iterate over the interleave dataset, it will cycle through these five TextLineDatasets,
reading one line at a time from each until all datasets are out of items. Then it will
fetch the next five filepaths from the filepath_dataset and interleave them the
same way, and so on until it runs out of filepaths. For interleaving to work best, it is
preferable to have files of identical length; otherwise the end of the longest file will
not be interleaved.

By default, interleave() does not use parallelism; it just reads one line at a time
from each file, sequentially. If you want it to actually read files in parallel, you can set
the interleave() method’s num_parallel_calls argument to the number of threads
you want (recall that the map() method also has this argument). You can even set
it to tf.data.AUTOTUNE to make TensorFlow choose the right number of threads
dynamically based on the available CPU. Let’s look at what the dataset contains now:

>>> for line in dataset.take(5):
... print(line)
...
tf.Tensor(b'4.5909,16.0,[...],33.63,-117.71,2.418', shape=(), dtype=string)
tf.Tensor(b'2.4792,24.0,[...],34.18,-118.38,2.0', shape=(), dtype=string)
tf.Tensor(b'4.2708,45.0,[...],37.48,-122.19,2.67', shape=(), dtype=string)
tf.Tensor(b'2.1856,41.0,[...],32.76,-117.12,1.205', shape=(), dtype=string)
tf.Tensor(b'4.1812,52.0,[...],33.73,-118.31,3.215', shape=(), dtype=string)

These are the first rows (ignoring the header row) of five CSV files, chosen randomly.
Looks good!

The tf.data API | 447

It’s possible to pass a list of filepaths to the TextLineDataset con‐
structor: it will go through each file in order, line by line. If you
also set the num_parallel_reads argument to a number greater
than one, then the dataset will read that number of files in parallel
and interleave their lines (without having to call the interleave()
method). However, it will not shuffle the files, nor will it skip the
header lines.

Preprocessing the Data
Now that we have a housing dataset that returns each instance as a tensor containing
a byte string, we need to do a bit of preprocessing, including parsing the strings and
scaling the data. Let’s implement a couple custom functions that will perform this
preprocessing:

X_mean, X_std = [...] # mean and scale of each feature in the training set
n_inputs = 8

def parse_csv_line(line):
 defs = [0.] * n_inputs + [tf.constant([], dtype=tf.float32)]
 fields = tf.io.decode_csv(line, record_defaults=defs)
 return tf.stack(fields[:-1]), tf.stack(fields[-1:])

def preprocess(line):
 x, y = parse_csv_line(line)
 return (x - X_mean) / X_std, y

Let’s walk through this code:

• First, the code assumes that we have precomputed the mean and standard devia‐•
tion of each feature in the training set. X_mean and X_std are just 1D tensors (or
NumPy arrays) containing eight floats, one per input feature. This can be done
using a Scikit-Learn StandardScaler on a large enough random sample of the
dataset. Later in this chapter, we will use a Keras preprocessing layer instead.

• The parse_csv_line() function takes one CSV line and parses it. To help with•
that, it uses the tf.io.decode_csv() function, which takes two arguments: the
first is the line to parse, and the second is an array containing the default value
for each column in the CSV file. This array (defs) tells TensorFlow not only the
default value for each column, but also the number of columns and their types.
In this example, we tell it that all feature columns are floats and that missing
values should default to zero, but we provide an empty array of type tf.float32
as the default value for the last column (the target): the array tells TensorFlow
that this column contains floats, but that there is no default value, so it will raise
an exception if it encounters a missing value.

448 | Chapter 13: Loading and Preprocessing Data with TensorFlow

• The tf.io.decode_csv() function returns a list of scalar tensors (one per col‐•
umn), but we need to return a 1D tensor array. So we call tf.stack() on all
tensors except for the last one (the target): this will stack these tensors into a
1D array. We then do the same for the target value: this makes it a 1D tensor
array with a single value, rather than a scalar tensor. The tf.io.decode_csv()
function is done, so it returns the input features and the target.

• Finally, the custom preprocess() function just calls the parse_csv_line() func‐•
tion, scales the input features by subtracting the feature means and then dividing
by the feature standard deviations, and returns a tuple containing the scaled
features and the target.

Let’s test this preprocessing function:

>>> preprocess(b'4.2083,44.0,5.3232,0.9171,846.0,2.3370,37.47,-122.2,2.782')
(<tf.Tensor: shape=(8,), dtype=float32, numpy=
 array([0.16579159, 1.216324 , -0.05204564, -0.39215982, -0.5277444 ,
 -0.2633488 , 0.8543046 , -1.3072058], dtype=float32)>,
 <tf.Tensor: shape=(1,), dtype=float32, numpy=array([2.782], dtype=float32)>)

Looks good! The preprocess() function can convert an instance from a byte string
to a nice scaled tensor, with its corresponding label. We can now use the dataset’s
map() method to apply the preprocess() function to each sample in the dataset.

Putting Everything Together
To make the code more reusable, let’s put together everything we have discussed so
far into another helper function; it will create and return a dataset that will efficiently
load California housing data from multiple CSV files, preprocess it, shuffle it, and
batch it (see Figure 13-2):

def csv_reader_dataset(filepaths, n_readers=5, n_read_threads=None,
 n_parse_threads=5, shuffle_buffer_size=10_000, seed=42,
 batch_size=32):
 dataset = tf.data.Dataset.list_files(filepaths, seed=seed)
 dataset = dataset.interleave(
 lambda filepath: tf.data.TextLineDataset(filepath).skip(1),
 cycle_length=n_readers, num_parallel_calls=n_read_threads)
 dataset = dataset.map(preprocess, num_parallel_calls=n_parse_threads)
 dataset = dataset.shuffle(shuffle_buffer_size, seed=seed)
 return dataset.batch(batch_size).prefetch(1)

Note that we use the prefetch() method on the very last line. This is important for
performance, as you will see now.

The tf.data API | 449

2 In general, just prefetching one batch is fine, but in some cases you may need to prefetch a few more.
Alternatively, you can let TensorFlow decide automatically by passing tf.data.AUTOTUNE to prefetch().

3 But check out the experimental tf.data.experimental.prefetch_to_device() function, which can prefetch
data directly to the GPU. Any TensorFlow function or class with experimental in its name may change
without warning in future versions. If an experimental function fails, try removing the word experimental:
it may have been moved to the core API. If not, then please check the notebook, as I will ensure it contains
up-to-date code.

Figure 13-2. Loading and preprocessing data from multiple CSV files

Prefetching
By calling prefetch(1) at the end of the custom csv_reader_dataset() function,
we are creating a dataset that will do its best to always be one batch ahead.2 In
other words, while our training algorithm is working on one batch, the dataset will
already be working in parallel on getting the next batch ready (e.g., reading the data
from disk and preprocessing it). This can improve performance dramatically, as is
illustrated in Figure 13-3.

If we also ensure that loading and preprocessing are multithreaded (by setting
num_parallel_calls when calling interleave() and map()), we can exploit multiple
CPU cores and hopefully make preparing one batch of data shorter than running a
training step on the GPU: this way the GPU will be almost 100% utilized (except for
the data transfer time from the CPU to the GPU3), and training will run much faster.

450 | Chapter 13: Loading and Preprocessing Data with TensorFlow

Figure 13-3. With prefetching, the CPU and the GPU work in parallel: as the GPU works
on one batch, the CPU works on the next

If you plan to purchase a GPU card, its processing power and its
memory size are of course very important (in particular, a large
amount of RAM is crucial for large computer vision or natural lan‐
guage processing models). Just as important for good performance
is the GPU’s memory bandwidth; this is the number of gigabytes of
data it can get into or out of its RAM per second.

If the dataset is small enough to fit in memory, you can significantly speed up train‐
ing by using the dataset’s cache() method to cache its content to RAM. You should
generally do this after loading and preprocessing the data, but before shuffling,
repeating, batching, and prefetching. This way, each instance will only be read and
preprocessed once (instead of once per epoch), but the data will still be shuffled
differently at each epoch, and the next batch will still be prepared in advance.

You have now learned how to build efficient input pipelines to load and preprocess
data from multiple text files. We have discussed the most common dataset meth‐
ods, but there are a few more you may want to look at, such as concatenate(),
zip(), window(), reduce(), shard(), flat_map(), apply(), unbatch(), and pad
ded_batch(). There are also a few more class methods, such as from_generator()

The tf.data API | 451

and from_tensors(), which create a new dataset from a Python generator or a list
of tensors, respectively. Please check the API documentation for more details. Also
note that there are experimental features available in tf.data.experimental, many
of which will likely make it to the core API in future releases (e.g., check out the
CsvDataset class, as well as the make_csv_dataset() method, which takes care of
inferring the type of each column).

Using the Dataset with Keras
Now we can use the custom csv_reader_dataset() function we wrote earlier to
create a dataset for the training set, and for the validation set and the test set. The
training set will be shuffled at each epoch (note that the validation set and the test set
will also be shuffled, even though we don’t really need that):

train_set = csv_reader_dataset(train_filepaths)
valid_set = csv_reader_dataset(valid_filepaths)
test_set = csv_reader_dataset(test_filepaths)

Now you can simply build and train a Keras model using these datasets. When you
call the model’s fit() method, you pass train_set instead of X_train, y_train,
and pass validation_data=valid_set instead of validation_data=(X_valid,

y_valid). The fit() method will take care of repeating the training dataset once
per epoch, using a different random order at each epoch:

model = tf.keras.Sequential([...])
model.compile(loss="mse", optimizer="sgd")
model.fit(train_set, validation_data=valid_set, epochs=5)

Similarly, you can pass a dataset to the evaluate() and predict() methods:

test_mse = model.evaluate(test_set)
new_set = test_set.take(3) # pretend we have 3 new samples
y_pred = model.predict(new_set) # or you could just pass a NumPy array

Unlike the other sets, the new_set will usually not contain labels. If it does, as is the
case here, Keras will ignore them. Note that in all these cases, you can still use NumPy
arrays instead of datasets if you prefer (but of course they need to have been loaded
and preprocessed first).

If you want to build your own custom training loop (as discussed in Chapter 12), you
can just iterate over the training set, very naturally:

n_epochs = 5
for epoch in range(n_epochs):
 for X_batch, y_batch in train_set:
 [...] # perform one gradient descent step

In fact, it is even possible to create a TF function (see Chapter 12) that trains the
model for a whole epoch. This can really speed up training:

452 | Chapter 13: Loading and Preprocessing Data with TensorFlow

@tf.function
def train_one_epoch(model, optimizer, loss_fn, train_set):
 for X_batch, y_batch in train_set:
 with tf.GradientTape() as tape:
 y_pred = model(X_batch)
 main_loss = tf.reduce_mean(loss_fn(y_batch, y_pred))
 loss = tf.add_n([main_loss] + model.losses)
 gradients = tape.gradient(loss, model.trainable_variables)
 optimizer.apply_gradients(zip(gradients, model.trainable_variables))

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
loss_fn = tf.keras.losses.mean_squared_error
for epoch in range(n_epochs):
 print("\rEpoch {}/{}".format(epoch + 1, n_epochs), end="")
 train_one_epoch(model, optimizer, loss_fn, train_set)

In Keras, the steps_per_execution argument of the compile() method lets you
define the number of batches that the fit() method will process during each call to
the tf.function it uses for training. The default is just 1, so if you set it to 50 you
will often see a significant performance improvement. However, the on_batch_*()
methods of Keras callbacks will only be called every 50 batches.

Congratulations, you now know how to build powerful input pipelines using the
tf.data API! However, so far we’ve been using CSV files, which are common, simple,
and convenient but not really efficient, and do not support large or complex data
structures (such as images or audio) very well. So, let’s see how to use TFRecords
instead.

If you are happy with CSV files (or whatever other format you are
using), you do not have to use TFRecords. As the saying goes, if it
ain’t broke, don’t fix it! TFRecords are useful when the bottleneck
during training is loading and parsing the data.

The TFRecord Format
The TFRecord format is TensorFlow’s preferred format for storing large amounts of
data and reading it efficiently. It is a very simple binary format that just contains a
sequence of binary records of varying sizes (each record is comprised of a length, a
CRC checksum to check that the length was not corrupted, then the actual data, and
finally a CRC checksum for the data). You can easily create a TFRecord file using the
tf.io.TFRecordWriter class:

with tf.io.TFRecordWriter("my_data.tfrecord") as f:
 f.write(b"This is the first record")
 f.write(b"And this is the second record")

The TFRecord Format | 453

And you can then use a tf.data.TFRecordDataset to read one or more TFRecord
files:

filepaths = ["my_data.tfrecord"]
dataset = tf.data.TFRecordDataset(filepaths)
for item in dataset:
 print(item)

This will output:

tf.Tensor(b'This is the first record', shape=(), dtype=string)
tf.Tensor(b'And this is the second record', shape=(), dtype=string)

By default, a TFRecordDataset will read files one by one, but you
can make it read multiple files in parallel and interleave their
records by passing the constructor a list of filepaths and setting
num_parallel_reads to a number greater than one. Alternatively,
you could obtain the same result by using list_files() and
interleave() as we did earlier to read multiple CSV files.

Compressed TFRecord Files
It can sometimes be useful to compress your TFRecord files, especially if they need to
be loaded via a network connection. You can create a compressed TFRecord file by
setting the options argument:

options = tf.io.TFRecordOptions(compression_type="GZIP")
with tf.io.TFRecordWriter("my_compressed.tfrecord", options) as f:
 f.write(b"Compress, compress, compress!")

When reading a compressed TFRecord file, you need to specify the compression type:

dataset = tf.data.TFRecordDataset(["my_compressed.tfrecord"],
 compression_type="GZIP")

A Brief Introduction to Protocol Buffers
Even though each record can use any binary format you want, TFRecord files usu‐
ally contain serialized protocol buffers (also called protobufs). This is a portable,
extensible, and efficient binary format developed at Google back in 2001 and made
open source in 2008; protobufs are now widely used, in particular in gRPC, Google’s
remote procedure call system. They are defined using a simple language that looks
like this:

syntax = "proto3";
message Person {
 string name = 1;
 int32 id = 2;
 repeated string email = 3;
}

454 | Chapter 13: Loading and Preprocessing Data with TensorFlow

https://grpc.io

4 Since protobuf objects are meant to be serialized and transmitted, they are called messages.
5 This chapter contains the bare minimum you need to know about protobufs to use TFRecords. To learn more

about protobufs, please visit https://homl.info/protobuf.

This protobuf definition says we are using version 3 of the protobuf format, and it
specifies that each Person object4 may (optionally) have a name of type string, an id
of type int32, and zero or more email fields, each of type string. The numbers 1, 2,
and 3 are the field identifiers: they will be used in each record’s binary representation.
Once you have a definition in a .proto file, you can compile it. This requires protoc,
the protobuf compiler, to generate access classes in Python (or some other language).
Note that the protobuf definitions you will generally use in TensorFlow have already
been compiled for you, and their Python classes are part of the TensorFlow library,
so you will not need to use protoc. All you need to know is how to use protobuf
access classes in Python. To illustrate the basics, let’s look at a simple example that
uses the access classes generated for the Person protobuf (the code is explained in the
comments):

>>> from person_pb2 import Person # import the generated access class
>>> person = Person(name="Al", id=123, email=["a@b.com"]) # create a Person
>>> print(person) # display the Person
name: "Al"
id: 123
email: "a@b.com"
>>> person.name # read a field
'Al'
>>> person.name = "Alice" # modify a field
>>> person.email[0] # repeated fields can be accessed like arrays
'a@b.com'
>>> person.email.append("c@d.com") # add an email address
>>> serialized = person.SerializeToString() # serialize person to a byte string
>>> serialized
b'\n\x05Alice\x10{\x1a\x07a@b.com\x1a\x07c@d.com'
>>> person2 = Person() # create a new Person
>>> person2.ParseFromString(serialized) # parse the byte string (27 bytes long)
27
>>> person == person2 # now they are equal
True

In short, we import the Person class generated by protoc, we create an instance and
play with it, visualizing it and reading and writing some fields, then we serialize it
using the SerializeToString() method. This is the binary data that is ready to be
saved or transmitted over the network. When reading or receiving this binary data,
we can parse it using the ParseFromString() method, and we get a copy of the object
that was serialized.5

You could save the serialized Person object to a TFRecord file, then load and parse
it: everything would work fine. However, ParseFromString() is not a TensorFlow

The TFRecord Format | 455

https://homl.info/protobuf

operation, so you couldn’t use it in a preprocessing function in a tf.data pipeline
(except by wrapping it in a tf.py_function() operation, which would make the code
slower and less portable, as you saw in Chapter 12). However, you could use the
tf.io.decode_proto() function, which can parse any protobuf you want, provided
you give it the protobuf definition (see the notebook for an example). That said, in
practice you will generally want to use instead the predefined protobufs for which
TensorFlow provides dedicated parsing operations. Let’s look at these predefined
protobufs now.

TensorFlow Protobufs
The main protobuf typically used in a TFRecord file is the Example protobuf, which
represents one instance in a dataset. It contains a list of named features, where each
feature can either be a list of byte strings, a list of floats, or a list of integers. Here is
the protobuf definition (from TensorFlow’s source code):

syntax = "proto3";
message BytesList { repeated bytes value = 1; }
message FloatList { repeated float value = 1 [packed = true]; }
message Int64List { repeated int64 value = 1 [packed = true]; }
message Feature {
 oneof kind {
 BytesList bytes_list = 1;
 FloatList float_list = 2;
 Int64List int64_list = 3;
 }
};
message Features { map<string, Feature> feature = 1; };
message Example { Features features = 1; };

The definitions of BytesList, FloatList, and Int64List are straightforward
enough. Note that [packed = true] is used for repeated numerical fields, for a
more efficient encoding. A Feature contains either a BytesList, a FloatList, or an
Int64List. A Features (with an s) contains a dictionary that maps a feature name
to the corresponding feature value. And finally, an Example contains only a Features
object.

Why was Example even defined, since it contains no more than
a Features object? Well, TensorFlow’s developers may one day
decide to add more fields to it. As long as the new Example defini‐
tion still contains the features field, with the same ID, it will be
backward compatible. This extensibility is one of the great features
of protobufs.

456 | Chapter 13: Loading and Preprocessing Data with TensorFlow

Here is how you could create a tf.train.Example representing the same person as
earlier:

from tensorflow.train import BytesList, FloatList, Int64List
from tensorflow.train import Feature, Features, Example

person_example = Example(
 features=Features(
 feature={
 "name": Feature(bytes_list=BytesList(value=[b"Alice"])),
 "id": Feature(int64_list=Int64List(value=[123])),
 "emails": Feature(bytes_list=BytesList(value=[b"a@b.com",
 b"c@d.com"]))
 }))

The code is a bit verbose and repetitive, but you could easily wrap it inside a small
helper function. Now that we have an Example protobuf, we can serialize it by calling
its SerializeToString() method, then write the resulting data to a TFRecord file.
Let’s write it five times to pretend we have several contacts:

with tf.io.TFRecordWriter("my_contacts.tfrecord") as f:
 for _ in range(5):
 f.write(person_example.SerializeToString())

Normally you would write much more than five Examples! Typically, you would
create a conversion script that reads from your current format (say, CSV files), creates
an Example protobuf for each instance, serializes them, and saves them to several
TFRecord files, ideally shuffling them in the process. This requires a bit of work, so
once again make sure it is really necessary (perhaps your pipeline works fine with
CSV files).

Now that we have a nice TFRecord file containing several serialized Examples, let’s try
to load it.

Loading and Parsing Examples
To load the serialized Example protobufs, we will use a tf.data.TFRecordDataset
once again, and we will parse each Example using tf.io.parse_single_example(). It
requires at least two arguments: a string scalar tensor containing the serialized data,
and a description of each feature. The description is a dictionary that maps each
feature name to either a tf.io.FixedLenFeature descriptor indicating the feature’s
shape, type, and default value, or a tf.io.VarLenFeature descriptor indicating only
the type if the length of the feature’s list may vary (such as for the "emails" feature).

The following code defines a description dictionary, then creates a TFRecordDataset
and applies a custom preprocessing function to it to parse each serialized Example
protobuf that this dataset contains:

The TFRecord Format | 457

feature_description = {
 "name": tf.io.FixedLenFeature([], tf.string, default_value=""),
 "id": tf.io.FixedLenFeature([], tf.int64, default_value=0),
 "emails": tf.io.VarLenFeature(tf.string),
}

def parse(serialized_example):
 return tf.io.parse_single_example(serialized_example, feature_description)

dataset = tf.data.TFRecordDataset(["my_contacts.tfrecord"]).map(parse)
for parsed_example in dataset:
 print(parsed_example)

The fixed-length features are parsed as regular tensors, but the variable-length fea‐
tures are parsed as sparse tensors. You can convert a sparse tensor to a dense tensor
using tf.sparse.to_dense(), but in this case it is simpler to just access its values:

>>> tf.sparse.to_dense(parsed_example["emails"], default_value=b"")
<tf.Tensor: [...] dtype=string, numpy=array([b'a@b.com', b'c@d.com'], [...])>
>>> parsed_example["emails"].values
<tf.Tensor: [...] dtype=string, numpy=array([b'a@b.com', b'c@d.com'], [...])>

Instead of parsing examples one by one using tf.io.parse_single_example(), you
may want to parse them batch by batch using tf.io.parse_example():

def parse(serialized_examples):
 return tf.io.parse_example(serialized_examples, feature_description)

dataset = tf.data.TFRecordDataset(["my_contacts.tfrecord"]).batch(2).map(parse)
for parsed_examples in dataset:
 print(parsed_examples) # two examples at a time

Lastly, a BytesList can contain any binary data you want, including any serialized
object. For example, you can use tf.io.encode_jpeg() to encode an image using
the JPEG format and put this binary data in a BytesList. Later, when your code
reads the TFRecord, it will start by parsing the Example, then it will need to call
tf.io.decode_jpeg() to parse the data and get the original image (or you can use
tf.io.decode_image(), which can decode any BMP, GIF, JPEG, or PNG image).
You can also store any tensor you want in a BytesList by serializing the tensor
using tf.io.serialize_tensor() then putting the resulting byte string in a Bytes
List feature. Later, when you parse the TFRecord, you can parse this data using
tf.io.parse_tensor(). See this chapter’s notebook at https://homl.info/colab3 for
examples of storing images and tensors in a TFRecord file.

As you can see, the Example protobuf is quite flexible, so it will probably be sufficient
for most use cases. However, it may be a bit cumbersome to use when you are
dealing with lists of lists. For example, suppose you want to classify text documents.
Each document may be represented as a list of sentences, where each sentence is rep‐
resented as a list of words. And perhaps each document also has a list of comments,

458 | Chapter 13: Loading and Preprocessing Data with TensorFlow

https://homl.info/colab3

where each comment is represented as a list of words. There may be some contextual
data too, such as the document’s author, title, and publication date. TensorFlow’s
SequenceExample protobuf is designed for such use cases.

Handling Lists of Lists Using the SequenceExample Protobuf
Here is the definition of the SequenceExample protobuf:

message FeatureList { repeated Feature feature = 1; };
message FeatureLists { map<string, FeatureList> feature_list = 1; };
message SequenceExample {
 Features context = 1;
 FeatureLists feature_lists = 2;
};

A SequenceExample contains a Features object for the contextual data and a
FeatureLists object that contains one or more named FeatureList objects (e.g., a
FeatureList named "content" and another named "comments"). Each FeatureList
contains a list of Feature objects, each of which may be a list of byte strings, a list
of 64-bit integers, or a list of floats (in this example, each Feature would represent a
sentence or a comment, perhaps in the form of a list of word identifiers). Building a
SequenceExample, serializing it, and parsing it is similar to building, serializing, and
parsing an Example, but you must use tf.io.parse_single_sequence_example()
to parse a single SequenceExample or tf.io.parse_sequence_example() to parse a
batch. Both functions return a tuple containing the context features (as a dictionary)
and the feature lists (also as a dictionary). If the feature lists contain sequences of
varying sizes (as in the preceding example), you may want to convert them to ragged
tensors using tf.RaggedTensor.from_sparse() (see the notebook for the full code):

parsed_context, parsed_feature_lists = tf.io.parse_single_sequence_example(
 serialized_sequence_example, context_feature_descriptions,
 sequence_feature_descriptions)
parsed_content = tf.RaggedTensor.from_sparse(parsed_feature_lists["content"])

Now that you know how to efficiently store, load, parse, and preprocess the data
using the tf.data API, TFRecords, and protobufs, it’s time to turn our attention to the
Keras preprocessing layers.

Keras Preprocessing Layers
Preparing your data for a neural network typically requires normalizing the numeri‐
cal features, encoding the categorical features and text, cropping and resizing images,
and more. There are several options for this:

• The preprocessing can be done ahead of time when preparing your training data•
files, using any tools you like, such as NumPy, Pandas, or Scikit-Learn. You will

Keras Preprocessing Layers | 459

need to apply the exact same preprocessing steps in production, to ensure your
production model receives preprocessed inputs similar to the ones it was trained
on.

• Alternatively, you can preprocess your data on the fly while loading it with•
tf.data, by applying a preprocessing function to every element of a dataset using
that dataset’s map() method, as we did earlier in this chapter. Again, you will need
to apply the same preprocessing steps in production.

• One last approach is to include preprocessing layers directly inside your model•
so it can preprocess all the input data on the fly during training, then use the
same preprocessing layers in production. The rest of this chapter will look at this
last approach.

Keras offers many preprocessing layers that you can include in your models: they
can be applied to numerical features, categorical features, images, and text. We’ll
go over the numerical and categorical features in the next sections, as well as basic
text preprocessing, and we will cover image preprocessing in Chapter 14 and more
advanced text preprocessing in Chapter 16.

The Normalization Layer
As we saw in Chapter 10, Keras provides a Normalization layer that we can use to
standardize the input features. We can either specify the mean and variance of each
feature when creating the layer or—more simply—pass the training set to the layer’s
adapt() method before fitting the model, so the layer can measure the feature means
and variances on its own before training:

norm_layer = tf.keras.layers.Normalization()
model = tf.keras.models.Sequential([
 norm_layer,
 tf.keras.layers.Dense(1)
])
model.compile(loss="mse", optimizer=tf.keras.optimizers.SGD(learning_rate=2e-3))
norm_layer.adapt(X_train) # computes the mean and variance of every feature
model.fit(X_train, y_train, validation_data=(X_valid, y_valid), epochs=5)

The data sample passed to the adapt() method must be large
enough to be representative of your dataset, but it does not have to
be the full training set: for the Normalization layer, a few hundred
instances randomly sampled from the training set will generally be
sufficient to get a good estimate of the feature means and variances.

Since we included the Normalization layer inside the model, we can now deploy this
model to production without having to worry about normalization again: the model
will just handle it (see Figure 13-4). Fantastic! This approach completely eliminates

460 | Chapter 13: Loading and Preprocessing Data with TensorFlow

the risk of preprocessing mismatch, which happens when people try to maintain
different preprocessing code for training and production but update one and forget
to update the other. The production model then ends up receiving data preprocessed
in a way it doesn’t expect. If they’re lucky, they get a clear bug. If not, the model’s
accuracy just silently degrades.

Figure 13-4. Including preprocessing layers inside a model

Including the preprocessing layer directly in the model is nice and straightforward,
but it will slow down training (only very slightly in the case of the Normalization
layer): indeed, since preprocessing is performed on the fly during training, it happens
once per epoch. We can do better by normalizing the whole training set just once
before training. To do this, we can use the Normalization layer in a standalone
fashion (much like a Scikit-Learn StandardScaler):

norm_layer = tf.keras.layers.Normalization()
norm_layer.adapt(X_train)
X_train_scaled = norm_layer(X_train)
X_valid_scaled = norm_layer(X_valid)

Now we can train a model on the scaled data, this time without a Normalization
layer:

model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])
model.compile(loss="mse", optimizer=tf.keras.optimizers.SGD(learning_rate=2e-3))
model.fit(X_train_scaled, y_train, epochs=5,
 validation_data=(X_valid_scaled, y_valid))

Good! This should speed up training a bit. But now the model won’t preprocess
its inputs when we deploy it to production. To fix this, we just need to create a
new model that wraps both the adapted Normalization layer and the model we just
trained. We can then deploy this final model to production, and it will take care of
both preprocessing its inputs and making predictions (see Figure 13-5):

final_model = tf.keras.Sequential([norm_layer, model])
X_new = X_test[:3] # pretend we have a few new instances (unscaled)
y_pred = final_model(X_new) # preprocesses the data and makes predictions

Keras Preprocessing Layers | 461

Figure 13-5. Preprocessing the data just once before training using preprocessing layers,
then deploying these layers inside the final model

Now we have the best of both worlds: training is fast because we only preprocess the
data once before training begins, and the final model can preprocess its inputs on the
fly without any risk of preprocessing mismatch.

Moreover, the Keras preprocessing layers play nicely with the tf.data API. For
example, it’s possible to pass a tf.data.Dataset to a preprocessing layer’s adapt()
method. It’s also possible to apply a Keras preprocessing layer to a tf.data.Dataset
using the dataset’s map() method. For example, here’s how you could apply an adap‐
ted Normalization layer to the input features of each batch in a dataset:

dataset = dataset.map(lambda X, y: (norm_layer(X), y))

Lastly, if you ever need more features than the Keras preprocessing layers provide,
you can always write your own Keras layer, just like we discussed in Chapter 12. For
example, if the Normalization layer didn’t exist, you could get a similar result using
the following custom layer:

import numpy as np

class MyNormalization(tf.keras.layers.Layer):
 def adapt(self, X):
 self.mean_ = np.mean(X, axis=0, keepdims=True)
 self.std_ = np.std(X, axis=0, keepdims=True)

 def call(self, inputs):
 eps = tf.keras.backend.epsilon() # a small smoothing term
 return (inputs - self.mean_) / (self.std_ + eps)

Next, let’s look at another Keras preprocessing layer for numerical features: the
Discretization layer.

462 | Chapter 13: Loading and Preprocessing Data with TensorFlow

The Discretization Layer
The Discretization layer’s goal is to transform a numerical feature into a categorical
feature by mapping value ranges (called bins) to categories. This is sometimes useful
for features with multimodal distributions, or with features that have a highly non-
linear relationship with the target. For example, the following code maps a numerical
age feature to three categories, less than 18, 18 to 50 (not included), and 50 or over:

>>> age = tf.constant([[10.], [93.], [57.], [18.], [37.], [5.]])
>>> discretize_layer = tf.keras.layers.Discretization(bin_boundaries=[18., 50.])
>>> age_categories = discretize_layer(age)
>>> age_categories
<tf.Tensor: shape=(6, 1), dtype=int64, numpy=array([[0],[2],[2],[1],[1],[0]])>

In this example, we provided the desired bin boundaries. If you prefer, you can
instead provide the number of bins you want, then call the layer’s adapt() method to
let it find the appropriate bin boundaries based on the value percentiles. For example,
if we set num_bins=3, then the bin boundaries will be located at the values just below
the 33rd and 66th percentiles (in this example, at the values 10 and 37):

>>> discretize_layer = tf.keras.layers.Discretization(num_bins=3)
>>> discretize_layer.adapt(age)
>>> age_categories = discretize_layer(age)
>>> age_categories
<tf.Tensor: shape=(6, 1), dtype=int64, numpy=array([[1],[2],[2],[1],[2],[0]])>

Category identifiers such as these should generally not be passed directly to a neural
network, as their values cannot be meaningfully compared. Instead, they should be
encoded, for example using one-hot encoding. Let’s look at how to do this now.

The CategoryEncoding Layer
When there are only a few categories (e.g., less than a dozen or two), then one-hot
encoding is often a good option (as discussed in Chapter 2). To do this, Keras
provides the CategoryEncoding layer. For example, let’s one-hot encode the age_
categories feature we just created:

>>> onehot_layer = tf.keras.layers.CategoryEncoding(num_tokens=3)
>>> onehot_layer(age_categories)
<tf.Tensor: shape=(6, 3), dtype=float32, numpy=
array([[0., 1., 0.],
 [0., 0., 1.],
 [0., 0., 1.],
 [0., 1., 0.],
 [0., 0., 1.],
 [1., 0., 0.]], dtype=float32)>

Keras Preprocessing Layers | 463

If you try to encode more than one categorical feature at a time (which only makes
sense if they all use the same categories), the CategoryEncoding class will perform
multi-hot encoding by default: the output tensor will contain a 1 for each category
present in any input feature. For example:

>>> two_age_categories = np.array([[1, 0], [2, 2], [2, 0]])
>>> onehot_layer(two_age_categories)
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[1., 1., 0.],
 [0., 0., 1.],
 [1., 0., 1.]], dtype=float32)>

If you believe it’s useful to know how many times each category occurred, you can
set output_mode="count" when creating the CategoryEncoding layer, in which case
the output tensor will contain the number of occurrences of each category. In the
preceding example, the output would be the same except for the second row, which
would become [0., 0., 2.].

Note that both multi-hot encoding and count encoding lose information, since it’s not
possible to know which feature each active category came from. For example, both
[0, 1] and [1, 0] are encoded as [1., 1., 0.]. If you want to avoid this, then
you need to one-hot encode each feature separately and concatenate the outputs. This
way, [0, 1] would get encoded as [1., 0., 0., 0., 1., 0.] and [1, 0] would get
encoded as [0., 1., 0., 1., 0., 0.]. You can get the same result by tweaking the
category identifiers so they don’t overlap. For example:

>>> onehot_layer = tf.keras.layers.CategoryEncoding(num_tokens=3 + 3)
>>> onehot_layer(two_age_categories + [0, 3]) # adds 3 to the second feature
<tf.Tensor: shape=(3, 6), dtype=float32, numpy=
array([[0., 1., 0., 1., 0., 0.],
 [0., 0., 1., 0., 0., 1.],
 [0., 0., 1., 1., 0., 0.]], dtype=float32)>

In this output, the first three columns correspond to the first feature, and the last
three correspond to the second feature. This allows the model to distinguish the
two features. However, it also increases the number of features fed to the model,
and thereby requires more model parameters. It’s hard to know in advance whether
a single multi-hot encoding or a per-feature one-hot encoding will work best: it
depends on the task, and you may need to test both options.

Now you can encode categorical integer features using one-hot or multi-hot encod‐
ing. But what about categorical text features? For this, you can use the StringLookup
layer.

464 | Chapter 13: Loading and Preprocessing Data with TensorFlow

The StringLookup Layer
Let’s use the Keras StringLookup layer to one-hot encode a cities feature:

>>> cities = ["Auckland", "Paris", "Paris", "San Francisco"]
>>> str_lookup_layer = tf.keras.layers.StringLookup()
>>> str_lookup_layer.adapt(cities)
>>> str_lookup_layer([["Paris"], ["Auckland"], ["Auckland"], ["Montreal"]])
<tf.Tensor: shape=(4, 1), dtype=int64, numpy=array([[1], [3], [3], [0]])>

We first create a StringLookup layer, then we adapt it to the data: it finds that there
are three distinct categories. Then we use the layer to encode a few cities. They are
encoded as integers by default. Unknown categories get mapped to 0, as is the case for
“Montreal” in this example. The known categories are numbered starting at 1, from
the most frequent category to the least frequent.

Conveniently, if you set output_mode="one_hot" when creating the StringLookup
layer, it will output a one-hot vector for each category, instead of an integer:

>>> str_lookup_layer = tf.keras.layers.StringLookup(output_mode="one_hot")
>>> str_lookup_layer.adapt(cities)
>>> str_lookup_layer([["Paris"], ["Auckland"], ["Auckland"], ["Montreal"]])
<tf.Tensor: shape=(4, 4), dtype=float32, numpy=
array([[0., 1., 0., 0.],
 [0., 0., 0., 1.],
 [0., 0., 0., 1.],
 [1., 0., 0., 0.]], dtype=float32)>

Keras also includes an IntegerLookup layer that acts much like the
StringLookup layer but takes integers as input, rather than strings.

If the training set is very large, it may be convenient to adapt the layer to just a
random subset of the training set. In this case, the layer’s adapt() method may miss
some of the rarer categories. By default, it would then map them all to category 0,
making them indistinguishable by the model. To reduce this risk (while still adapting
the layer only on a subset of the training set), you can set num_oov_indices to an
integer greater than 1. This is the number of out-of-vocabulary (OOV) buckets to
use: each unknown category will get mapped pseudorandomly to one of the OOV
buckets, using a hash function modulo the number of OOV buckets. This will allow
the model to distinguish at least some of the rare categories. For example:

>>> str_lookup_layer = tf.keras.layers.StringLookup(num_oov_indices=5)
>>> str_lookup_layer.adapt(cities)
>>> str_lookup_layer([["Paris"], ["Auckland"], ["Foo"], ["Bar"], ["Baz"]])
<tf.Tensor: shape=(4, 1), dtype=int64, numpy=array([[5], [7], [4], [3], [4]])>

Keras Preprocessing Layers | 465

Since there are five OOV buckets, the first known category’s ID is now 5 ("Paris").
But "Foo", "Bar", and "Baz" are unknown, so they each get mapped to one of the
OOV buckets. "Bar" gets its own dedicated bucket (with ID 3), but sadly "Foo"
and "Baz" happen to be mapped to the same bucket (with ID 4), so they remain
indistinguishable by the model. This is called a hashing collision. The only way to
reduce the risk of collision is to increase the number of OOV buckets. However, this
will also increase the total number of categories, which will require more RAM and
extra model parameters once the categories are one-hot encoded. So, don’t increase
that number too much.

This idea of mapping categories pseudorandomly to buckets is called the hashing
trick. Keras provides a dedicated layer which does just that: the Hashing layer.

The Hashing Layer
For each category, the Keras Hashing layer computes a hash, modulo the number of
buckets (or “bins”). The mapping is entirely pseudorandom, but stable across runs
and platforms (i.e., the same category will always be mapped to the same integer, as
long as the number of bins is unchanged). For example, let’s use the Hashing layer to
encode a few cities:

>>> hashing_layer = tf.keras.layers.Hashing(num_bins=10)
>>> hashing_layer([["Paris"], ["Tokyo"], ["Auckland"], ["Montreal"]])
<tf.Tensor: shape=(4, 1), dtype=int64, numpy=array([[0], [1], [9], [1]])>

The benefit of this layer is that it does not need to be adapted at all, which may
sometimes be useful, especially in an out-of-core setting (when the dataset is too
large to fit in memory). However, we once again get a hashing collision: “Tokyo” and
“Montreal” are mapped to the same ID, making them indistinguishable by the model.
So, it’s usually preferable to stick to the StringLookup layer.

Let’s now look at another way to encode categories: trainable embeddings.

Encoding Categorical Features Using Embeddings
An embedding is a dense representation of some higher-dimensional data, such as
a category, or a word in a vocabulary. If there are 50,000 possible categories, then
one-hot encoding would produce a 50,000-dimensional sparse vector (i.e., containing
mostly zeros). In contrast, an embedding would be a comparatively small dense
vector; for example, with just 100 dimensions.

In deep learning, embeddings are usually initialized randomly, and they are then
trained by gradient descent, along with the other model parameters. For example, the
"NEAR BAY" category in the California housing dataset could be represented initially
by a random vector such as [0.131, 0.890], while the "NEAR OCEAN" category might
be represented by another random vector such as [0.631, 0.791]. In this example,

466 | Chapter 13: Loading and Preprocessing Data with TensorFlow

6 Tomáš Mikolov et al., “Distributed Representations of Words and Phrases and Their Compositionality”,
Proceedings of the 26th International Conference on Neural Information Processing Systems 2 (2013): 3111–
3119.

we use 2D embeddings, but the number of dimensions is a hyperparameter you can
tweak.

Since these embeddings are trainable, they will gradually improve during training;
and as they represent fairly similar categories in this case, gradient descent will
certainly end up pushing them closer together, while it will tend to move them
away from the "INLAND" category’s embedding (see Figure 13-6). Indeed, the better
the representation, the easier it will be for the neural network to make accurate
predictions, so training tends to make embeddings useful representations of the cate‐
gories. This is called representation learning (you will see other types of representation
learning in Chapter 17).

Figure 13-6. Embeddings will gradually improve during training

Word Embeddings
Not only will embeddings generally be useful representations for the task at hand,
but quite often these same embeddings can be reused successfully for other tasks.
The most common example of this is word embeddings (i.e., embeddings of individual
words): when you are working on a natural language processing task, you are often
better off reusing pretrained word embeddings than training your own.

The idea of using vectors to represent words dates back to the 1960s, and many
sophisticated techniques have been used to generate useful vectors, including using
neural networks. But things really took off in 2013, when Tomáš Mikolov and other
Google researchers published a paper6 describing an efficient technique to learn word
embeddings using neural networks, significantly outperforming previous attempts.

Keras Preprocessing Layers | 467

https://homl.info/word2vec

7 Malvina Nissim et al., “Fair Is Better Than Sensational: Man Is to Doctor as Woman Is to Doctor”, arXiv
preprint arXiv:1905.09866 (2019).

This allowed them to learn embeddings on a very large corpus of text: they trained
a neural network to predict the words near any given word and obtained astounding
word embeddings. For example, synonyms had very close embeddings, and semanti‐
cally related words such as France, Spain, and Italy ended up clustered together.

It’s not just about proximity, though: word embeddings were also organized along
meaningful axes in the embedding space. Here is a famous example: if you compute
King – Man + Woman (adding and subtracting the embedding vectors of these
words), then the result will be very close to the embedding of the word Queen (see
Figure 13-7). In other words, the word embeddings encode the concept of gender!
Similarly, you can compute Madrid – Spain + France, and the result is close to
Paris, which seems to show that the notion of capital city was also encoded in the
embeddings.

Figure 13-7. Word embeddings of similar words tend to be close, and some axes seem to
encode meaningful concepts

Unfortunately, word embeddings sometimes capture our worst biases. For example,
although they correctly learn that Man is to King as Woman is to Queen, they also
seem to learn that Man is to Doctor as Woman is to Nurse: quite a sexist bias! To
be fair, this particular example is probably exaggerated, as was pointed out in a
2019 paper7 by Malvina Nissim et al. Nevertheless, ensuring fairness in deep learning
algorithms is an important and active research topic.

Keras provides an Embedding layer, which wraps an embedding matrix: this matrix
has one row per category and one column per embedding dimension. By default, it
is initialized randomly. To convert a category ID to an embedding, the Embedding
layer just looks up and returns the row that corresponds to that category. That’s all

468 | Chapter 13: Loading and Preprocessing Data with TensorFlow

https://homl.info/fairembeds

there is to it! For example, let’s initialize an Embedding layer with five rows and 2D
embeddings, and use it to encode some categories:

>>> tf.random.set_seed(42)
>>> embedding_layer = tf.keras.layers.Embedding(input_dim=5, output_dim=2)
>>> embedding_layer(np.array([2, 4, 2]))
<tf.Tensor: shape=(3, 2), dtype=float32, numpy=
array([[-0.04663396, 0.01846724],
 [-0.02736737, -0.02768031],
 [-0.04663396, 0.01846724]], dtype=float32)>

As you can see, category 2 gets encoded (twice) as the 2D vector [-0.04663396,
0.01846724], while category 4 gets encoded as [-0.02736737, -0.02768031]. Since
the layer is not trained yet, these encodings are just random.

An Embedding layer is initialized randomly, so it does not make
sense to use it outside of a model as a standalone preprocessing
layer unless you initialize it with pretrained weights.

If you want to embed a categorical text attribute, you can simply chain a String
Lookup layer and an Embedding layer, like this:

>>> tf.random.set_seed(42)
>>> ocean_prox = ["<1H OCEAN", "INLAND", "NEAR OCEAN", "NEAR BAY", "ISLAND"]
>>> str_lookup_layer = tf.keras.layers.StringLookup()
>>> str_lookup_layer.adapt(ocean_prox)
>>> lookup_and_embed = tf.keras.Sequential([
... str_lookup_layer,
... tf.keras.layers.Embedding(input_dim=str_lookup_layer.vocabulary_size(),
... output_dim=2)
...])
...
>>> lookup_and_embed(np.array([["<1H OCEAN"], ["ISLAND"], ["<1H OCEAN"]]))
<tf.Tensor: shape=(3, 2), dtype=float32, numpy=
array([[-0.01896119, 0.02223358],
 [0.02401174, 0.03724445],
 [-0.01896119, 0.02223358]], dtype=float32)>

Note that the number of rows in the embedding matrix needs to be equal to the
vocabulary size: that’s the total number of categories, including the known categories
plus the OOV buckets (just one by default). The vocabulary_size() method of the
StringLookup class conveniently returns this number.

Keras Preprocessing Layers | 469

In this example we used 2D embeddings, but as a rule of thumb
embeddings typically have 10 to 300 dimensions, depending on the
task, the vocabulary size, and the size of your training set. You will
have to tune this hyperparameter.

Putting everything together, we can now create a Keras model that can process a
categorical text feature along with regular numerical features and learn an embedding
for each category (as well as for each OOV bucket):

X_train_num, X_train_cat, y_train = [...] # load the training set
X_valid_num, X_valid_cat, y_valid = [...] # and the validation set

num_input = tf.keras.layers.Input(shape=[8], name="num")
cat_input = tf.keras.layers.Input(shape=[], dtype=tf.string, name="cat")
cat_embeddings = lookup_and_embed(cat_input)
encoded_inputs = tf.keras.layers.concatenate([num_input, cat_embeddings])
outputs = tf.keras.layers.Dense(1)(encoded_inputs)
model = tf.keras.models.Model(inputs=[num_input, cat_input], outputs=[outputs])
model.compile(loss="mse", optimizer="sgd")
history = model.fit((X_train_num, X_train_cat), y_train, epochs=5,
 validation_data=((X_valid_num, X_valid_cat), y_valid))

This model takes two inputs: num_input, which contains eight numerical features
per instance, plus cat_input, which contains a single categorical text input per
instance. The model uses the lookup_and_embed model we created earlier to encode
each ocean-proximity category as the corresponding trainable embedding. Next, it
concatenates the numerical inputs and the embeddings using the concatenate()
function to produce the complete encoded inputs, which are ready to be fed to a
neural network. We could add any kind of neural network at this point, but for
simplicity we just add a single dense output layer, and then we create the Keras Model
with the inputs and output we’ve just defined. Next we compile the model and train
it, passing both the numerical and categorical inputs.

As you saw in Chapter 10, since the Input layers are named "num" and "cat", we
could also have passed the training data to the fit() method using a dictionary
instead of a tuple: {"num": X_train_num, "cat": X_train_cat}. Alternatively,
we could have passed a tf.data.Dataset containing batches, each represented as
((X_batch_num, X_batch_cat), y_batch) or as ({"num": X_batch_num, "cat":
X_batch_cat}, y_batch). And of course the same goes for the validation data.

470 | Chapter 13: Loading and Preprocessing Data with TensorFlow

One-hot encoding followed by a Dense layer (with no activation
function and no biases) is equivalent to an Embedding layer.
However, the Embedding layer uses way fewer computations as it
avoids many multiplications by zero—the performance difference
becomes clear when the size of the embedding matrix grows.
The Dense layer’s weight matrix plays the role of the embedding
matrix. For example, using one-hot vectors of size 20 and a Dense
layer with 10 units is equivalent to using an Embedding layer with
input_dim=20 and output_dim=10. As a result, it would be wasteful
to use more embedding dimensions than the number of units in
the layer that follows the Embedding layer.

OK, now that you have learned how to encode categorical features, it’s time to turn
our attention to text preprocessing.

Text Preprocessing
Keras provides a TextVectorization layer for basic text preprocessing. Much like the
StringLookup layer, you must either pass it a vocabulary upon creation, or let it learn
the vocabulary from some training data using the adapt() method. Let’s look at an
example:

>>> train_data = ["To be", "!(to be)", "That's the question", "Be, be, be."]
>>> text_vec_layer = tf.keras.layers.TextVectorization()
>>> text_vec_layer.adapt(train_data)
>>> text_vec_layer(["Be good!", "Question: be or be?"])
<tf.Tensor: shape=(2, 4), dtype=int64, numpy=
array([[2, 1, 0, 0],
 [6, 2, 1, 2]])>

The two sentences “Be good!” and “Question: be or be?” were encoded as [2, 1,
0, 0] and [6, 2, 1, 2], respectively. The vocabulary was learned from the four
sentences in the training data: “be” = 2, “to” = 3, etc. To construct the vocabulary,
the adapt() method first converted the training sentences to lowercase and removed
punctuation, which is why “Be”, “be”, and “be?” are all encoded as “be” = 2. Next,
the sentences were split on whitespace, and the resulting words were sorted by
descending frequency, producing the final vocabulary. When encoding sentences,
unknown words get encoded as 1s. Lastly, since the first sentence is shorter than the
second, it was padded with 0s.

Keras Preprocessing Layers | 471

The TextVectorization layer has many options. For example, you
can preserve the case and punctuation if you want, by setting
standardize=None, or you can pass any standardization function
you please as the standardize argument. You can prevent splitting
by setting split=None, or you can pass your own splitting function
instead. You can set the output_sequence_length argument to
ensure that the output sequences all get cropped or padded to the
desired length, or you can set ragged=True to get a ragged tensor
instead of a regular tensor. Please check out the documentation for
more options.

The word IDs must be encoded, typically using an Embedding layer: we will do this
in Chapter 16. Alternatively, you can set the TextVectorization layer’s output_mode
argument to "multi_hot" or "count" to get the corresponding encodings. However,
simply counting words is usually not ideal: words like “to” and “the” are so frequent
that they hardly matter at all, whereas, rarer words such as “basketball” are much
more informative. So, rather than setting output_mode to "multi_hot" or "count", it
is usually preferable to set it to "tf_idf", which stands for term-frequency × inverse-
document-frequency (TF-IDF). This is similar to the count encoding, but words that
occur frequently in the training data are downweighted, and conversely, rare words
are upweighted. For example:

>>> text_vec_layer = tf.keras.layers.TextVectorization(output_mode="tf_idf")
>>> text_vec_layer.adapt(train_data)
>>> text_vec_layer(["Be good!", "Question: be or be?"])
<tf.Tensor: shape=(2, 6), dtype=float32, numpy=
array([[0.96725637, 0.6931472 , 0. , 0. , 0. , 0.],
 [0.96725637, 1.3862944 , 0. , 0. , 0. , 1.0986123]], dtype=float32)>

There are many TF-IDF variants, but the way the TextVectorization layer imple‐
ments it is by multiplying each word count by a weight equal to log(1 + d / (f + 1)),
where d is the total number of sentences (a.k.a., documents) in the training data and
f counts how many of these training sentences contain the given word. For example,
in this case there are d = 4 sentences in the training data, and the word “be” appears
in f = 3 of these. Since the word “be” occurs twice in the sentence “Question: be or
be?”, it gets encoded as 2 × log(1 + 4 / (1 + 3)) ≈ 1.3862944. The word “question” only
appears once, but since it is a less common word, its encoding is almost as high: 1 ×
log(1 + 4 / (1 + 1)) ≈ 1.0986123. Note that the average weight is used for unknown
words.

472 | Chapter 13: Loading and Preprocessing Data with TensorFlow

8 TensorFlow Hub is not bundled with TensorFlow, but if you are running on Colab or if you followed the
installation instructions at https://homl.info/install, then it’s already installed.

This approach to text encoding is straightforward to use and it can give fairly good
results for basic natural language processing tasks, but it has several important lim‐
itations: it only works with languages that separate words with spaces, it doesn’t
distinguish between homonyms (e.g., “to bear” versus “teddy bear”), it gives no hint
to your model that words like “evolution” and “evolutionary” are related, etc. And if
you use multi-hot, count, or TF-IDF encoding, then the order of the words is lost. So
what are the other options?

One option is to use the TensorFlow Text library, which provides more advanced text
preprocessing features than the TextVectorization layer. For example, it includes
several subword tokenizers capable of splitting the text into tokens smaller than
words, which makes it possible for the model to more easily detect that “evolution”
and “evolutionary” have something in common (more on subword tokenization in
Chapter 16).

Yet another option is to use pretrained language model components. Let’s look at this
now.

Using Pretrained Language Model Components
The TensorFlow Hub library makes it easy to reuse pretrained model components
in your own models, for text, image, audio, and more. These model components
are called modules. Simply browse the TF Hub repository, find the one you need,
and copy the code example into your project, and the module will be automatically
downloaded and bundled into a Keras layer that you can directly include in your
model. Modules typically contain both preprocessing code and pretrained weights,
and they generally require no extra training (but of course, the rest of your model will
certainly require training).

For example, some powerful pretrained language models are available. The most
powerful are quite large (several gigabytes), so for a quick example let’s use the
nnlm-en-dim50 module, version 2, which is a fairly basic module that takes raw text
as input and outputs 50-dimensional sentence embeddings. We’ll import TensorFlow
Hub and use it to load the module, then use that module to encode two sentences to
vectors:8

>>> import tensorflow_hub as hub
>>> hub_layer = hub.KerasLayer("https://tfhub.dev/google/nnlm-en-dim50/2")
>>> sentence_embeddings = hub_layer(tf.constant(["To be", "Not to be"]))
>>> sentence_embeddings.numpy().round(2)
array([[-0.25, 0.28, 0.01, 0.1 , [...] , 0.05, 0.31],
 [-0.2 , 0.2 , -0.08, 0.02, [...] , -0.04, 0.15]], dtype=float32)

Keras Preprocessing Layers | 473

https://homl.info/install
https://tensorflow.org/text
https://tensorflow.org/hub
https://tfhub.dev

9 To be precise, the sentence embedding is equal to the mean word embedding multiplied by the square root of
the number of words in the sentence. This compensates for the fact that the mean of n random vectors gets
shorter as n grows.

The hub.KerasLayer layer downloads the module from the given URL. This particu‐
lar module is a sentence encoder: it takes strings as input and encodes each one as
a single vector (in this case, a 50-dimensional vector). Internally, it parses the string
(splitting words on spaces) and embeds each word using an embedding matrix that
was pretrained on a huge corpus: the Google News 7B corpus (seven billion words
long!). Then it computes the mean of all the word embeddings, and the result is the
sentence embedding.9

You just need to include this hub_layer in your model, and you’re ready to go. Note
that this particular language model was trained on the English language, but many
other languages are available, as well as multilingual models.

Last but not least, the excellent open source Transformers library by Hugging Face
also makes it easy to include powerful language model components inside your own
models. You can browse the Hugging Face Hub, choose the model you want, and use
the provided code examples to get started. It used to contain only language models,
but it has now expanded to include image models and more.

We will come back to natural language processing in more depth in Chapter 16. Let’s
now look at Keras’s image preprocessing layers.

Image Preprocessing Layers
The Keras preprocessing API includes three image preprocessing layers:

• tf.keras.layers.Resizing resizes the input images to the desired size. For•
example, Resizing(height=100, width=200) resizes each image to 100 × 200,
possibly distorting the image. If you set crop_to_aspect_ratio=True, then the
image will be cropped to the target image ratio, to avoid distortion.

• tf.keras.layers.Rescaling rescales the pixel values. For example, Rescaling•
(scale=2/255, offset=-1) scales the values from 0 → 255 to –1 → 1.

• tf.keras.layers.CenterCrop crops the image, keeping only a center patch of•
the desired height and width.

For example, let’s load a couple of sample images and center-crop them. For this, we
will use Scikit-Learn’s load_sample_images() function; this loads two color images,
one of a Chinese temple and the other of a flower (this requires the Pillow library,
which should already be installed if you are using Colab or if you followed the
installation instructions):

474 | Chapter 13: Loading and Preprocessing Data with TensorFlow

https://huggingface.co/docs/transformers
https://huggingface.co/models

from sklearn.datasets import load_sample_images

images = load_sample_images()["images"]
crop_image_layer = tf.keras.layers.CenterCrop(height=100, width=100)
cropped_images = crop_image_layer(images)

Keras also includes several layers for data augmentation, such as RandomCrop,
RandomFlip, RandomTranslation, RandomRotation, RandomZoom, RandomHeight,
RandomWidth, and RandomContrast. These layers are only active during training,
and they randomly apply some transformation to the input images (their names are
self-explanatory). Data augmentation will artificially increase the size of the training
set, which often leads to improved performance, as long as the transformed images
look like realistic (nonaugmented) images. We’ll cover image processing more closely
in the next chapter.

Under the hood, the Keras preprocessing layers are based on
TensorFlow’s low-level API. For example, the Normalization

layer uses tf.nn.moments() to compute both the mean and var‐
iance, the Discretization layer uses tf.raw_ops.Bucketize(),
CategoricalEncoding uses tf.math.bincount(), IntegerLookup
and StringLookup use the tf.lookup package, Hashing and
TextVectorization use several ops from the tf.strings package,
Embedding uses tf.nn.embedding_lookup(), and the image pre‐
processing layers use the ops from the tf.image package. If the
Keras preprocessing API isn’t sufficient for your needs, you may
occasionally need to use TensorFlow’s low-level API directly.

Now let’s look at another way to load data easily and efficiently in TensorFlow.

The TensorFlow Datasets Project
The TensorFlow Datasets (TFDS) project makes it very easy to load common data‐
sets, from small ones like MNIST or Fashion MNIST to huge datasets like ImageNet
(you will need quite a bit of disk space!). The list includes image datasets, text datasets
(including translation datasets), audio and video datasets, time series, and much
more. You can visit https://homl.info/tfds to view the full list, along with a description
of each dataset. You can also check out Know Your Data, which is a tool to explore
and understand many of the datasets provided by TFDS.

The TensorFlow Datasets Project | 475

https://tensorflow.org/datasets
https://homl.info/tfds
https://knowyourdata.withgoogle.com

TFDS is not bundled with TensorFlow, but if you are running on Colab or if
you followed the installation instructions at https://homl.info/install, then it’s already
installed. You can then import tensorflow_datasets, usually as tfds, then call the
tfds.load() function, which will download the data you want (unless it was already
downloaded earlier) and return the data as a dictionary of datasets (typically one
for training and one for testing, but this depends on the dataset you choose). For
example, let’s download MNIST:

import tensorflow_datasets as tfds

datasets = tfds.load(name="mnist")
mnist_train, mnist_test = datasets["train"], datasets["test"]

You can then apply any transformation you want (typically shuffling, batching, and
prefetching), and you’re ready to train your model. Here is a simple example:

for batch in mnist_train.shuffle(10_000, seed=42).batch(32).prefetch(1):
 images = batch["image"]
 labels = batch["label"]
 # [...] do something with the images and labels

The load() function can shuffle the files it downloads: just set
shuffle_files=True. However, this may be insufficient, so it’s best
to shuffle the training data some more.

Note that each item in the dataset is a dictionary containing both the features and the
labels. But Keras expects each item to be a tuple containing two elements (again, the
features and the labels). You could transform the dataset using the map() method, like
this:

mnist_train = mnist_train.shuffle(buffer_size=10_000, seed=42).batch(32)
mnist_train = mnist_train.map(lambda items: (items["image"], items["label"]))
mnist_train = mnist_train.prefetch(1)

But it’s simpler to ask the load() function to do this for you by setting
as_supervised=True (obviously this works only for labeled datasets).

Lastly, TFDS provides a convenient way to split the data using the split argument.
For example, if you want to use the first 90% of the training set for training, the
remaining 10% for validation, and the whole test set for testing, then you can set
split=["train[:90%]", "train[90%:]", "test"]. The load() function will return
all three sets. Here is a complete example, loading and splitting the MNIST dataset
using TFDS, then using these sets to train and evaluate a simple Keras model:

476 | Chapter 13: Loading and Preprocessing Data with TensorFlow

https://homl.info/install

train_set, valid_set, test_set = tfds.load(
 name="mnist",
 split=["train[:90%]", "train[90%:]", "test"],
 as_supervised=True
)
train_set = train_set.shuffle(buffer_size=10_000, seed=42).batch(32).prefetch(1)
valid_set = valid_set.batch(32).cache()
test_set = test_set.batch(32).cache()
tf.random.set_seed(42)
model = tf.keras.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(10, activation="softmax")
])
model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam",
 metrics=["accuracy"])
history = model.fit(train_set, validation_data=valid_set, epochs=5)
test_loss, test_accuracy = model.evaluate(test_set)

Congratulations, you’ve reached the end of this quite technical chapter! You may feel
that it is a bit far from the abstract beauty of neural networks, but the fact is deep
learning often involves large amounts of data, and knowing how to load, parse, and
preprocess it efficiently is a crucial skill to have. In the next chapter, we will look
at convolutional neural networks, which are among the most successful neural net
architectures for image processing and many other applications.

Exercises
1. Why would you want to use the tf.data API?1.
2. What are the benefits of splitting a large dataset into multiple files?2.
3. During training, how can you tell that your input pipeline is the bottleneck?3.

What can you do to fix it?
4. Can you save any binary data to a TFRecord file, or only serialized protocol4.

buffers?
5. Why would you go through the hassle of converting all your data to the Example5.

protobuf format? Why not use your own protobuf definition?
6. When using TFRecords, when would you want to activate compression? Why6.

not do it systematically?
7. Data can be preprocessed directly when writing the data files, or within the7.

tf.data pipeline, or in preprocessing layers within your model. Can you list a few
pros and cons of each option?

8. Name a few common ways you can encode categorical integer features. What8.
about text?

Exercises | 477

10 For large images, you could use tf.io.encode_jpeg() instead. This would save a lot of space, but it would
lose a bit of image quality.

9. Load the Fashion MNIST dataset (introduced in Chapter 10); split it into a9.
training set, a validation set, and a test set; shuffle the training set; and save each
dataset to multiple TFRecord files. Each record should be a serialized Example
protobuf with two features: the serialized image (use tf.io.serialize_tensor()
to serialize each image), and the label.10 Then use tf.data to create an efficient
dataset for each set. Finally, use a Keras model to train these datasets, including
a preprocessing layer to standardize each input feature. Try to make the input
pipeline as efficient as possible, using TensorBoard to visualize profiling data.

10. In this exercise you will download a dataset, split it, create a tf.data.Dataset10.
to load it and preprocess it efficiently, then build and train a binary classification
model containing an Embedding layer:
a. Download the Large Movie Review Dataset, which contains 50,000 moviea.

reviews from the Internet Movie Database (IMDb). The data is organized
in two directories, train and test, each containing a pos subdirectory with
12,500 positive reviews and a neg subdirectory with 12,500 negative reviews.
Each review is stored in a separate text file. There are other files and folders
(including preprocessed bag-of-words versions), but we will ignore them in
this exercise.

b. Split the test set into a validation set (15,000) and a test set (10,000).b.
c. Use tf.data to create an efficient dataset for each set.c.
d. Create a binary classification model, using a TextVectorization layer tod.

preprocess each review.
e. Add an Embedding layer and compute the mean embedding for each review,e.

multiplied by the square root of the number of words (see Chapter 16). This
rescaled mean embedding can then be passed to the rest of your model.

f. Train the model and see what accuracy you get. Try to optimize your pipelinesf.
to make training as fast as possible.

g. Use TFDS to load the same dataset more easily: tfds.load("imdb_reviews").g.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

478 | Chapter 13: Loading and Preprocessing Data with TensorFlow

https://homl.info/imdb
https://imdb.com
https://homl.info/colab3

CHAPTER 14

Deep Computer Vision Using
Convolutional Neural Networks

Although IBM’s Deep Blue supercomputer beat the chess world champion Garry
Kasparov back in 1996, it wasn’t until fairly recently that computers were able to
reliably perform seemingly trivial tasks such as detecting a puppy in a picture or
recognizing spoken words. Why are these tasks so effortless to us humans? The
answer lies in the fact that perception largely takes place outside the realm of our
consciousness, within specialized visual, auditory, and other sensory modules in our
brains. By the time sensory information reaches our consciousness, it is already
adorned with high-level features; for example, when you look at a picture of a cute
puppy, you cannot choose not to see the puppy, not to notice its cuteness. Nor can
you explain how you recognize a cute puppy; it’s just obvious to you. Thus, we cannot
trust our subjective experience: perception is not trivial at all, and to understand it we
must look at how our sensory modules work.

Convolutional neural networks (CNNs) emerged from the study of the brain’s visual
cortex, and they have been used in computer image recognition since the 1980s.
Over the last 10 years, thanks to the increase in computational power, the amount of
available training data, and the tricks presented in Chapter 11 for training deep nets,
CNNs have managed to achieve superhuman performance on some complex visual
tasks. They power image search services, self-driving cars, automatic video classifica‐
tion systems, and more. Moreover, CNNs are not restricted to visual perception:
they are also successful at many other tasks, such as voice recognition and natural
language processing. However, we will focus on visual applications for now.

479

1 David H. Hubel, “Single Unit Activity in Striate Cortex of Unrestrained Cats”, The Journal of Physiology 147
(1959): 226–238.

2 David H. Hubel and Torsten N. Wiesel, “Receptive Fields of Single Neurons in the Cat’s Striate Cortex”, The
Journal of Physiology 148 (1959): 574–591.

3 David H. Hubel and Torsten N. Wiesel, “Receptive Fields and Functional Architecture of Monkey Striate
Cortex”, The Journal of Physiology 195 (1968): 215–243.

In this chapter we will explore where CNNs came from, what their building blocks
look like, and how to implement them using Keras. Then we will discuss some of
the best CNN architectures, as well as other visual tasks, including object detection
(classifying multiple objects in an image and placing bounding boxes around them)
and semantic segmentation (classifying each pixel according to the class of the object
it belongs to).

The Architecture of the Visual Cortex
David H. Hubel and Torsten Wiesel performed a series of experiments on cats in
19581 and 19592 (and a few years later on monkeys3), giving crucial insights into the
structure of the visual cortex (the authors received the Nobel Prize in Physiology or
Medicine in 1981 for their work). In particular, they showed that many neurons in
the visual cortex have a small local receptive field, meaning they react only to visual
stimuli located in a limited region of the visual field (see Figure 14-1, in which the
local receptive fields of five neurons are represented by dashed circles). The receptive
fields of different neurons may overlap, and together they tile the whole visual field.

Figure 14-1. Biological neurons in the visual cortex respond to specific patterns in small
regions of the visual field called receptive fields; as the visual signal makes its way
through consecutive brain modules, neurons respond to more complex patterns in larger
receptive fields

480 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

https://homl.info/71
https://homl.info/72
https://homl.info/73

4 Kunihiko Fukushima, “Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern
Recognition Unaffected by Shift in Position”, Biological Cybernetics 36 (1980): 193–202.

5 Yann LeCun et al., “Gradient-Based Learning Applied to Document Recognition”, Proceedings of the IEEE 86,
no. 11 (1998): 2278–2324.

6 A convolution is a mathematical operation that slides one function over another and measures the integral of
their pointwise multiplication. It has deep connections with the Fourier transform and the Laplace transform
and is heavily used in signal processing. Convolutional layers actually use cross-correlations, which are very
similar to convolutions (see https://homl.info/76 for more details).

Moreover, the authors showed that some neurons react only to images of horizontal
lines, while others react only to lines with different orientations (two neurons may
have the same receptive field but react to different line orientations). They also
noticed that some neurons have larger receptive fields, and they react to more com‐
plex patterns that are combinations of the lower-level patterns. These observations
led to the idea that the higher-level neurons are based on the outputs of neighboring
lower-level neurons (in Figure 14-1, notice that each neuron is connected only to
nearby neurons from the previous layer). This powerful architecture is able to detect
all sorts of complex patterns in any area of the visual field.

These studies of the visual cortex inspired the neocognitron,4 introduced in 1980,
which gradually evolved into what we now call convolutional neural networks. An
important milestone was a 1998 paper5 by Yann LeCun et al. that introduced the
famous LeNet-5 architecture, which became widely used by banks to recognize hand‐
written digits on checks. This architecture has some building blocks that you already
know, such as fully connected layers and sigmoid activation functions, but it also
introduces two new building blocks: convolutional layers and pooling layers. Let’s look
at them now.

Why not simply use a deep neural network with fully connec‐
ted layers for image recognition tasks? Unfortunately, although
this works fine for small images (e.g., MNIST), it breaks down
for larger images because of the huge number of parameters it
requires. For example, a 100 × 100–pixel image has 10,000 pixels,
and if the first layer has just 1,000 neurons (which already severely
restricts the amount of information transmitted to the next layer),
this means a total of 10 million connections. And that’s just the first
layer. CNNs solve this problem using partially connected layers and
weight sharing.

Convolutional Layers
The most important building block of a CNN is the convolutional layer:6 neurons in
the first convolutional layer are not connected to every single pixel in the input image
(like they were in the layers discussed in previous chapters), but only to pixels in their

Convolutional Layers | 481

https://homl.info/76
https://homl.info/74
https://homl.info/75

receptive fields (see Figure 14-2). In turn, each neuron in the second convolutional
layer is connected only to neurons located within a small rectangle in the first layer.
This architecture allows the network to concentrate on small low-level features in the
first hidden layer, then assemble them into larger higher-level features in the next
hidden layer, and so on. This hierarchical structure is common in real-world images,
which is one of the reasons why CNNs work so well for image recognition.

Figure 14-2. CNN layers with rectangular local receptive fields

All the multilayer neural networks we’ve looked at so far had layers
composed of a long line of neurons, and we had to flatten input
images to 1D before feeding them to the neural network. In a CNN
each layer is represented in 2D, which makes it easier to match
neurons with their corresponding inputs.

A neuron located in row i, column j of a given layer is connected to the outputs of
the neurons in the previous layer located in rows i to i + fh – 1, columns j to j + fw
– 1, where fh and fw are the height and width of the receptive field (see Figure 14-3).
In order for a layer to have the same height and width as the previous layer, it is
common to add zeros around the inputs, as shown in the diagram. This is called zero
padding.

It is also possible to connect a large input layer to a much smaller layer by spacing out
the receptive fields, as shown in Figure 14-4. This dramatically reduces the model’s
computational complexity. The horizontal or vertical step size from one receptive
field to the next is called the stride. In the diagram, a 5 × 7 input layer (plus zero
padding) is connected to a 3 × 4 layer, using 3 × 3 receptive fields and a stride of 2 (in
this example the stride is the same in both directions, but it does not have to be so). A
neuron located in row i, column j in the upper layer is connected to the outputs of the

482 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

neurons in the previous layer located in rows i × sh to i × sh + fh – 1, columns j × sw to
j × sw + fw – 1, where sh and sw are the vertical and horizontal strides.

Figure 14-3. Connections between layers and zero padding

Figure 14-4. Reducing dimensionality using a stride of 2

Convolutional Layers | 483

Filters
A neuron’s weights can be represented as a small image the size of the receptive
field. For example, Figure 14-5 shows two possible sets of weights, called filters (or
convolution kernels, or just kernels). The first one is represented as a black square with
a vertical white line in the middle (it’s a 7 × 7 matrix full of 0s except for the central
column, which is full of 1s); neurons using these weights will ignore everything
in their receptive field except for the central vertical line (since all inputs will be
multiplied by 0, except for the ones in the central vertical line). The second filter is a
black square with a horizontal white line in the middle. Neurons using these weights
will ignore everything in their receptive field except for the central horizontal line.

Figure 14-5. Applying two different filters to get two feature maps

Now if all neurons in a layer use the same vertical line filter (and the same bias
term), and you feed the network the input image shown in Figure 14-5 (the bottom
image), the layer will output the top-left image. Notice that the vertical white lines
get enhanced while the rest gets blurred. Similarly, the upper-right image is what
you get if all neurons use the same horizontal line filter; notice that the horizontal
white lines get enhanced while the rest is blurred out. Thus, a layer full of neurons
using the same filter outputs a feature map, which highlights the areas in an image
that activate the filter the most. But don’t worry, you won’t have to define the filters
manually: instead, during training the convolutional layer will automatically learn the
most useful filters for its task, and the layers above will learn to combine them into
more complex patterns.

484 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

Stacking Multiple Feature Maps
Up to now, for simplicity, I have represented the output of each convolutional layer
as a 2D layer, but in reality a convolutional layer has multiple filters (you decide how
many) and outputs one feature map per filter, so it is more accurately represented in
3D (see Figure 14-6). It has one neuron per pixel in each feature map, and all neurons
within a given feature map share the same parameters (i.e., the same kernel and
bias term). Neurons in different feature maps use different parameters. A neuron’s
receptive field is the same as described earlier, but it extends across all the feature
maps of the previous layer. In short, a convolutional layer simultaneously applies
multiple trainable filters to its inputs, making it capable of detecting multiple features
anywhere in its inputs.

Figure 14-6. Two convolutional layers with multiple filters each (kernels), processing a
color image with three color channels; each convolutional layer outputs one feature map
per filter

Convolutional Layers | 485

The fact that all neurons in a feature map share the same parame‐
ters dramatically reduces the number of parameters in the model.
Once the CNN has learned to recognize a pattern in one location,
it can recognize it in any other location. In contrast, once a fully
connected neural network has learned to recognize a pattern in one
location, it can only recognize it in that particular location.

Input images are also composed of multiple sublayers: one per color channel. As men‐
tioned in Chapter 9, there are typically three: red, green, and blue (RGB). Grayscale
images have just one channel, but some images may have many more—for example,
satellite images that capture extra light frequencies (such as infrared).

Specifically, a neuron located in row i, column j of the feature map k in a given
convolutional layer l is connected to the outputs of the neurons in the previous layer
l – 1, located in rows i × sh to i × sh + fh – 1 and columns j × sw to j × sw + fw – 1, across
all feature maps (in layer l – 1). Note that, within a layer, all neurons located in the
same row i and column j but in different feature maps are connected to the outputs of
the exact same neurons in the previous layer.

Equation 14-1 summarizes the preceding explanations in one big mathematical equa‐
tion: it shows how to compute the output of a given neuron in a convolutional layer.
It is a bit ugly due to all the different indices, but all it does is calculate the weighted
sum of all the inputs, plus the bias term.

Equation 14-1. Computing the output of a neuron in a convolutional layer

zi, j, k = bk + ∑
u = 0

fℎ − 1
∑
v = 0

fw − 1
∑
k′ = 0

fn′ − 1
xi′, j′, k′ ×wu, v, k′, k with

i′ = i × sℎ + u
j′ = j × sw + v

In this equation:

• zi, j, k is the output of the neuron located in row i, column j in feature map k of the•
convolutional layer (layer l).

• As explained earlier, sh and sw are the vertical and horizontal strides, fh and fw are•
the height and width of the receptive field, and fn′ is the number of feature maps
in the previous layer (layer l – 1).

• xi′, j′, k′ is the output of the neuron located in layer l – 1, row i′, column j′, feature•
map k′ (or channel k′ if the previous layer is the input layer).

• bk is the bias term for feature map k (in layer l). You can think of it as a knob that•
tweaks the overall brightness of the feature map k.

486 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

• wu, v, k′, k is the connection weight between any neuron in feature map k of the layer•
l and its input located at row u, column v (relative to the neuron’s receptive field),
and feature map k′.

Let’s see how to create and use a convolutional layer using Keras.

Implementing Convolutional Layers with Keras
First, let’s load and preprocess a couple of sample images, using Scikit-Learn’s
load_sample_image() function and Keras’s CenterCrop and Rescaling layers (all
of which were introduced in Chapter 13):

from sklearn.datasets import load_sample_images
import tensorflow as tf

images = load_sample_images()["images"]
images = tf.keras.layers.CenterCrop(height=70, width=120)(images)
images = tf.keras.layers.Rescaling(scale=1 / 255)(images)

Let’s look at the shape of the images tensor:

>>> images.shape
TensorShape([2, 70, 120, 3])

Yikes, it’s a 4D tensor; we haven’t seen this before! What do all these dimensions
mean? Well, there are two sample images, which explains the first dimension. Then
each image is 70 × 120, since that’s the size we specified when creating the Center
Crop layer (the original images were 427 × 640). This explains the second and third
dimensions. And lastly, each pixel holds one value per color channel, and there are
three of them—red, green, and blue—which explains the last dimension.

Now let’s create a 2D convolutional layer and feed it these images to see what
comes out. For this, Keras provides a Convolution2D layer, alias Conv2D. Under
the hood, this layer relies on TensorFlow’s tf.nn.conv2d() operation. Let’s create a
convolutional layer with 32 filters, each of size 7 × 7 (using kernel_size=7, which is
equivalent to using kernel_size=(7 , 7)), and apply this layer to our small batch of
two images:

conv_layer = tf.keras.layers.Conv2D(filters=32, kernel_size=7)
fmaps = conv_layer(images)

When we talk about a 2D convolutional layer, “2D” refers to the
number of spatial dimensions (height and width), but as you can
see, the layer takes 4D inputs: as we saw, the two additional dimen‐
sions are the batch size (first dimension) and the channels (last
dimension).

Convolutional Layers | 487

Now let’s look at the output’s shape:

>>> fmaps.shape
TensorShape([2, 64, 114, 32])

The output shape is similar to the input shape, with two main differences. First, there
are 32 channels instead of 3. This is because we set filters=32, so we get 32 output
feature maps: instead of the intensity of red, green, and blue at each location, we now
have the intensity of each feature at each location. Second, the height and width have
both shrunk by 6 pixels. This is due to the fact that the Conv2D layer does not use
any zero-padding by default, which means that we lose a few pixels on the sides of
the output feature maps, depending on the size of the filters. In this case, since the
kernel size is 7, we lose 6 pixels horizontally and 6 pixels vertically (i.e., 3 pixels on
each side).

The default option is surprisingly named padding="valid", which
actually means no zero-padding at all! This name comes from
the fact that in this case every neuron’s receptive field lies strictly
within valid positions inside the input (it does not go out of
bounds). It’s not a Keras naming quirk: everyone uses this odd
nomenclature.

If instead we set padding="same", then the inputs are padded with enough zeros on
all sides to ensure that the output feature maps end up with the same size as the
inputs (hence the name of this option):

>>> conv_layer = tf.keras.layers.Conv2D(filters=32, kernel_size=7,
... padding="same")
...
>>> fmaps = conv_layer(images)
>>> fmaps.shape
TensorShape([2, 70, 120, 32])

These two padding options are illustrated in Figure 14-7. For simplicity, only the
horizontal dimension is shown here, but of course the same logic applies to the
vertical dimension as well.

If the stride is greater than 1 (in any direction), then the output size will not be
equal to the input size, even if padding="same". For example, if you set strides=2 (or
equivalently strides=(2, 2)), then the output feature maps will be 35 × 60: halved
both vertically and horizontally. Figure 14-8 shows what happens when strides=2,
with both padding options.

488 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

Figure 14-7. The two padding options, when strides=1

Figure 14-8. With strides greater than 1, the output is much smaller even when using
"same" padding (and "valid" padding may ignore some inputs)

If you are curious, this is how the output size is computed:

• With padding="valid", if the width of the input is ih, then the output width is•
equal to (ih – fh + sh) / sh, rounded down. Recall that fh is the kernel width, and
sh is the horizontal stride. Any remainder in the division corresponds to ignored
columns on the right side of the input image. The same logic can be used to
compute the output height, and any ignored rows at the bottom of the image.

• With padding="same", the output width is equal to ih / sh, rounded up. To make•
this possible, the appropriate number of zero columns are padded to the left and
right of the input image (an equal number if possible, or just one more on the
right side). Assuming the output width is ow, then the number of padded zero
columns is (ow – 1) × sh + fh – ih. Again, the same logic can be used to compute the
output height and the number of padded rows.

Convolutional Layers | 489

Now let’s look at the layer’s weights (which were noted wu, v, k′, k and bk in Equation
14-1). Just like a Dense layer, a Conv2D layer holds all the layer’s weights, including
the kernels and biases. The kernels are initialized randomly, while the biases are
initialized to zero. These weights are accessible as TF variables via the weights
attribute, or as NumPy arrays via the get_weights() method:

>>> kernels, biases = conv_layer.get_weights()
>>> kernels.shape
(7, 7, 3, 32)
>>> biases.shape
(32,)

The kernels array is 4D, and its shape is [kernel_height, kernel_width, input_channels,
output_channels]. The biases array is 1D, with shape [output_channels]. The number
of output channels is equal to the number of output feature maps, which is also equal
to the number of filters.

Most importantly, note that the height and width of the input images do not appear in
the kernel’s shape: this is because all the neurons in the output feature maps share the
same weights, as explained earlier. This means that you can feed images of any size to
this layer, as long as they are at least as large as the kernels, and if they have the right
number of channels (three in this case).

Lastly, you will generally want to specify an activation function (such as ReLU) when
creating a Conv2D layer, and also specify the corresponding kernel initializer (such
as He initialization). This is for the same reason as for Dense layers: a convolutional
layer performs a linear operation, so if you stacked multiple convolutional layers
without any activation functions they would all be equivalent to a single convolu‐
tional layer, and they wouldn’t be able to learn anything really complex.

As you can see, convolutional layers have quite a few hyperparameters: filters,
kernel_size, padding, strides, activation, kernel_initializer, etc. As always,
you can use cross-validation to find the right hyperparameter values, but this is very
time-consuming. We will discuss common CNN architectures later in this chapter, to
give you some idea of which hyperparameter values work best in practice.

Memory Requirements
Another challenge with CNNs is that the convolutional layers require a huge amount
of RAM. This is especially true during training, because the reverse pass of backpro‐
pagation requires all the intermediate values computed during the forward pass.

For example, consider a convolutional layer with 200 5 × 5 filters, with stride 1 and
"same" padding. If the input is a 150 × 100 RGB image (three channels), then the
number of parameters is (5 × 5 × 3 + 1) × 200 = 15,200 (the + 1 corresponds to

490 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

7 To produce the same size outputs, a fully connected layer would need 200 × 150 × 100 neurons, each
connected to all 150 × 100 × 3 inputs. It would have 200 × 150 × 100 × (150 × 100 × 3 + 1) ≈ 135 billion
parameters!

8 In the international system of units (SI), 1 MB = 1,000 KB = 1,000 × 1,000 bytes = 1,000 × 1,000 × 8 bits. And
1 MiB = 1,024 kiB = 1,024 × 1,024 bytes. So 12 MB ≈ 11.44 MiB.

the bias terms), which is fairly small compared to a fully connected layer.7 However,
each of the 200 feature maps contains 150 × 100 neurons, and each of these neurons
needs to compute a weighted sum of its 5 × 5 × 3 = 75 inputs: that’s a total of 225
million float multiplications. Not as bad as a fully connected layer, but still quite
computationally intensive. Moreover, if the feature maps are represented using 32-bit
floats, then the convolutional layer’s output will occupy 200 × 150 × 100 × 32 = 96
million bits (12 MB) of RAM.8 And that’s just for one instance—if a training batch
contains 100 instances, then this layer will use up 1.2 GB of RAM!

During inference (i.e., when making a prediction for a new instance) the RAM
occupied by one layer can be released as soon as the next layer has been computed,
so you only need as much RAM as required by two consecutive layers. But during
training everything computed during the forward pass needs to be preserved for the
reverse pass, so the amount of RAM needed is (at least) the total amount of RAM
required by all layers.

If training crashes because of an out-of-memory error, you can try
reducing the mini-batch size. Alternatively, you can try reducing
dimensionality using a stride, removing a few layers, using 16-bit
floats instead of 32-bit floats, or distributing the CNN across multi‐
ple devices (you will see how to do this in Chapter 19).

Now let’s look at the second common building block of CNNs: the pooling layer.

Pooling Layers
Once you understand how convolutional layers work, the pooling layers are quite
easy to grasp. Their goal is to subsample (i.e., shrink) the input image in order to
reduce the computational load, the memory usage, and the number of parameters
(thereby limiting the risk of overfitting).

Just like in convolutional layers, each neuron in a pooling layer is connected to the
outputs of a limited number of neurons in the previous layer, located within a small
rectangular receptive field. You must define its size, the stride, and the padding type,
just like before. However, a pooling neuron has no weights; all it does is aggregate the
inputs using an aggregation function such as the max or mean. Figure 14-9 shows a
max pooling layer, which is the most common type of pooling layer. In this example,

Pooling Layers | 491

9 Other kernels we’ve discussed so far had weights, but pooling kernels do not: they are just stateless sliding
windows.

we use a 2 × 2 pooling kernel,9 with a stride of 2 and no padding. Only the max input
value in each receptive field makes it to the next layer, while the other inputs are
dropped. For example, in the lower-left receptive field in Figure 14-9, the input values
are 1, 5, 3, 2, so only the max value, 5, is propagated to the next layer. Because of the
stride of 2, the output image has half the height and half the width of the input image
(rounded down since we use no padding).

Figure 14-9. Max pooling layer (2 × 2 pooling kernel, stride 2, no padding)

A pooling layer typically works on every input channel independ‐
ently, so the output depth (i.e., the number of channels) is the same
as the input depth.

Other than reducing computations, memory usage, and the number of parameters,
a max pooling layer also introduces some level of invariance to small translations, as
shown in Figure 14-10. Here we assume that the bright pixels have a lower value than
dark pixels, and we consider three images (A, B, C) going through a max pooling
layer with a 2 × 2 kernel and stride 2. Images B and C are the same as image A, but
shifted by one and two pixels to the right. As you can see, the outputs of the max
pooling layer for images A and B are identical. This is what translation invariance
means. For image C, the output is different: it is shifted one pixel to the right (but
there is still 50% invariance). By inserting a max pooling layer every few layers in
a CNN, it is possible to get some level of translation invariance at a larger scale.
Moreover, max pooling offers a small amount of rotational invariance and a slight
scale invariance. Such invariance (even if it is limited) can be useful in cases where
the prediction should not depend on these details, such as in classification tasks.

492 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

However, max pooling has some downsides too. It’s obviously very destructive: even
with a tiny 2 × 2 kernel and a stride of 2, the output will be two times smaller in
both directions (so its area will be four times smaller), simply dropping 75% of the
input values. And in some applications, invariance is not desirable. Take semantic
segmentation (the task of classifying each pixel in an image according to the object
that pixel belongs to, which we’ll explore later in this chapter): obviously, if the input
image is translated by one pixel to the right, the output should also be translated by
one pixel to the right. The goal in this case is equivariance, not invariance: a small
change to the inputs should lead to a corresponding small change in the output.

Figure 14-10. Invariance to small translations

Implementing Pooling Layers with Keras
The following code creates a MaxPooling2D layer, alias MaxPool2D, using a 2 × 2 ker‐
nel. The strides default to the kernel size, so this layer uses a stride of 2 (horizontally
and vertically). By default, it uses "valid" padding (i.e., no padding at all):

max_pool = tf.keras.layers.MaxPool2D(pool_size=2)

To create an average pooling layer, just use AveragePooling2D, alias AvgPool2D,
instead of MaxPool2D. As you might expect, it works exactly like a max pooling
layer, except it computes the mean rather than the max. Average pooling layers used
to be very popular, but people mostly use max pooling layers now, as they generally
perform better. This may seem surprising, since computing the mean generally loses
less information than computing the max. But on the other hand, max pooling
preserves only the strongest features, getting rid of all the meaningless ones, so the

Implementing Pooling Layers with Keras | 493

next layers get a cleaner signal to work with. Moreover, max pooling offers stronger
translation invariance than average pooling, and it requires slightly less compute.

Note that max pooling and average pooling can be performed along the depth
dimension instead of the spatial dimensions, although it’s not as common. This can
allow the CNN to learn to be invariant to various features. For example, it could learn
multiple filters, each detecting a different rotation of the same pattern (such as hand‐
written digits; see Figure 14-11), and the depthwise max pooling layer would ensure
that the output is the same regardless of the rotation. The CNN could similarly learn
to be invariant to anything: thickness, brightness, skew, color, and so on.

Figure 14-11. Depthwise max pooling can help the CNN learn to be invariant (to
rotation in this case)

Keras does not include a depthwise max pooling layer, but it’s not too difficult to
implement a custom layer for that:

class DepthPool(tf.keras.layers.Layer):
 def __init__(self, pool_size=2, **kwargs):
 super().__init__(**kwargs)
 self.pool_size = pool_size

 def call(self, inputs):
 shape = tf.shape(inputs) # shape[-1] is the number of channels
 groups = shape[-1] // self.pool_size # number of channel groups
 new_shape = tf.concat([shape[:-1], [groups, self.pool_size]], axis=0)
 return tf.reduce_max(tf.reshape(inputs, new_shape), axis=-1)

494 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

This layer reshapes its inputs to split the channels into groups of the desired size
(pool_size), then it uses tf.reduce_max() to compute the max of each group. This
implementation assumes that the stride is equal to the pool size, which is generally
what you want. Alternatively, you could use TensorFlow’s tf.nn.max_pool() opera‐
tion, and wrap in a Lambda layer to use it inside a Keras model, but sadly this op does
not implement depthwise pooling for the GPU, only for the CPU.

One last type of pooling layer that you will often see in modern architectures is the
global average pooling layer. It works very differently: all it does is compute the mean
of each entire feature map (it’s like an average pooling layer using a pooling kernel
with the same spatial dimensions as the inputs). This means that it just outputs a
single number per feature map and per instance. Although this is of course extremely
destructive (most of the information in the feature map is lost), it can be useful just
before the output layer, as you will see later in this chapter. To create such a layer,
simply use the GlobalAveragePooling2D class, alias GlobalAvgPool2D:

global_avg_pool = tf.keras.layers.GlobalAvgPool2D()

It’s equivalent to the following Lambda layer, which computes the mean over the
spatial dimensions (height and width):

global_avg_pool = tf.keras.layers.Lambda(
 lambda X: tf.reduce_mean(X, axis=[1, 2]))

For example, if we apply this layer to the input images, we get the mean intensity of
red, green, and blue for each image:

>>> global_avg_pool(images)
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[0.64338624, 0.5971759 , 0.5824972],
 [0.76306933, 0.26011038, 0.10849128]], dtype=float32)>

Now you know all the building blocks to create convolutional neural networks. Let’s
see how to assemble them.

CNN Architectures
Typical CNN architectures stack a few convolutional layers (each one generally fol‐
lowed by a ReLU layer), then a pooling layer, then another few convolutional layers
(+ReLU), then another pooling layer, and so on. The image gets smaller and smaller
as it progresses through the network, but it also typically gets deeper and deeper (i.e.,
with more feature maps), thanks to the convolutional layers (see Figure 14-12). At
the top of the stack, a regular feedforward neural network is added, composed of a
few fully connected layers (+ReLUs), and the final layer outputs the prediction (e.g., a
softmax layer that outputs estimated class probabilities).

CNN Architectures | 495

Figure 14-12. Typical CNN architecture

A common mistake is to use convolution kernels that are too large.
For example, instead of using a convolutional layer with a 5 ×
5 kernel, stack two layers with 3 × 3 kernels: it will use fewer
parameters and require fewer computations, and it will usually
perform better. One exception is for the first convolutional layer: it
can typically have a large kernel (e.g., 5 × 5), usually with a stride
of 2 or more. This will reduce the spatial dimension of the image
without losing too much information, and since the input image
only has three channels in general, it will not be too costly.

Here is how you can implement a basic CNN to tackle the Fashion MNIST dataset
(introduced in Chapter 10):

from functools import partial

DefaultConv2D = partial(tf.keras.layers.Conv2D, kernel_size=3, padding="same",
 activation="relu", kernel_initializer="he_normal")
model = tf.keras.Sequential([
 DefaultConv2D(filters=64, kernel_size=7, input_shape=[28, 28, 1]),
 tf.keras.layers.MaxPool2D(),
 DefaultConv2D(filters=128),
 DefaultConv2D(filters=128),
 tf.keras.layers.MaxPool2D(),
 DefaultConv2D(filters=256),
 DefaultConv2D(filters=256),
 tf.keras.layers.MaxPool2D(),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(units=128, activation="relu",
 kernel_initializer="he_normal"),
 tf.keras.layers.Dropout(0.5),
 tf.keras.layers.Dense(units=64, activation="relu",
 kernel_initializer="he_normal"),
 tf.keras.layers.Dropout(0.5),
 tf.keras.layers.Dense(units=10, activation="softmax")
])

496 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

Let’s go through this code:

• We use the functools.partial() function (introduced in Chapter 11) to define•
DefaultConv2D, which acts just like Conv2D but with different default arguments:
a small kernel size of 3, "same" padding, the ReLU activation function, and its
corresponding He initializer.

• Next, we create the Sequential model. Its first layer is a DefaultConv2D with•
64 fairly large filters (7 × 7). It uses the default stride of 1 because the input
images are not very large. It also sets input_shape=[28, 28, 1], because the
images are 28 × 28 pixels, with a single color channel (i.e., grayscale). When you
load the Fashion MNIST dataset, make sure each image has this shape: you may
need to use np.reshape() or np.expanddims() to add the channels dimension.
Alternatively, you could use a Reshape layer as the first layer in the model.

• We then add a max pooling layer that uses the default pool size of 2, so it divides•
each spatial dimension by a factor of 2.

• Then we repeat the same structure twice: two convolutional layers followed by a•
max pooling layer. For larger images, we could repeat this structure several more
times. The number of repetitions is a hyperparameter you can tune.

• Note that the number of filters doubles as we climb up the CNN toward the•
output layer (it is initially 64, then 128, then 256): it makes sense for it to grow,
since the number of low-level features is often fairly low (e.g., small circles,
horizontal lines), but there are many different ways to combine them into higher-
level features. It is a common practice to double the number of filters after each
pooling layer: since a pooling layer divides each spatial dimension by a factor of
2, we can afford to double the number of feature maps in the next layer without
fear of exploding the number of parameters, memory usage, or computational
load.

• Next is the fully connected network, composed of two hidden dense layers and•
a dense output layer. Since it’s a classification task with 10 classes, the output
layer has 10 units, and it uses the softmax activation function. Note that we must
flatten the inputs just before the first dense layer, since it expects a 1D array of
features for each instance. We also add two dropout layers, with a dropout rate of
50% each, to reduce overfitting.

If you compile this model using the "sparse_categorical_crossentropy" loss and
you fit the model to the Fashion MNIST training set, it should reach over 92%
accuracy on the test set. It’s not state of the art, but it is pretty good, and clearly much
better than what we achieved with dense networks in Chapter 10.

CNN Architectures | 497

10 Yann LeCun et al., “Gradient-Based Learning Applied to Document Recognition”, Proceedings of the IEEE 86,
no. 11 (1998): 2278–2324.

Over the years, variants of this fundamental architecture have been developed, lead‐
ing to amazing advances in the field. A good measure of this progress is the error
rate in competitions such as the ILSVRC ImageNet challenge. In this competition,
the top-five error rate for image classification—that is, the number of test images
for which the system’s top five predictions did not include the correct answer—fell
from over 26% to less than 2.3% in just six years. The images are fairly large (e.g.,
256 pixels high) and there are 1,000 classes, some of which are really subtle (try
distinguishing 120 dog breeds). Looking at the evolution of the winning entries is
a good way to understand how CNNs work, and how research in deep learning
progresses.

We will first look at the classical LeNet-5 architecture (1998), then several winners
of the ILSVRC challenge: AlexNet (2012), GoogLeNet (2014), ResNet (2015), and
SENet (2017). Along the way, we will also look at a few more architectures, including
Xception, ResNeXt, DenseNet, MobileNet, CSPNet, and EfficientNet.

LeNet-5
The LeNet-5 architecture10 is perhaps the most widely known CNN architecture. As
mentioned earlier, it was created by Yann LeCun in 1998 and has been widely used
for handwritten digit recognition (MNIST). It is composed of the layers shown in
Table 14-1.

Table 14-1. LeNet-5 architecture

Layer Type Maps Size Kernel size Stride Activation
Out Fully connected – 10 – – RBF

F6 Fully connected – 84 – – tanh

C5 Convolution 120 1 × 1 5 × 5 1 tanh

S4 Avg pooling 16 5 × 5 2 × 2 2 tanh

C3 Convolution 16 10 × 10 5 × 5 1 tanh

S2 Avg pooling 6 14 × 14 2 × 2 2 tanh

C1 Convolution 6 28 × 28 5 × 5 1 tanh

In Input 1 32 × 32 – – –

As you can see, this looks pretty similar to our Fashion MNIST model: a stack of
convolutional layers and pooling layers, followed by a dense network. Perhaps the
main difference with more modern classification CNNs is the activation functions:
today, we would use ReLU instead of tanh and softmax instead of RBF. There were

498 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

https://image-net.org
https://homl.info/lenet5

11 Alex Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks”, Proceedings of
the 25th International Conference on Neural Information Processing Systems 1 (2012): 1097–1105.

several other minor differences that don’t really matter much, but in case you are
interested, they are listed in this chapter’s notebook at https://homl.info/colab3. Yann
LeCun’s website also features great demos of LeNet-5 classifying digits.

AlexNet
The AlexNet CNN architecture11 won the 2012 ILSVRC challenge by a large margin:
it achieved a top-five error rate of 17%, while the second best competitor achieved
only 26%! AlexaNet was developed by Alex Krizhevsky (hence the name), Ilya Sutsk‐
ever, and Geoffrey Hinton. It is similar to LeNet-5, only much larger and deeper, and
it was the first to stack convolutional layers directly on top of one another, instead of
stacking a pooling layer on top of each convolutional layer. Table 14-2 presents this
architecture.

Table 14-2. AlexNet architecture

Layer Type Maps Size Kernel size Stride Padding Activation
Out Fully connected – 1,000 – – – Softmax

F10 Fully connected – 4,096 – – – ReLU

F9 Fully connected – 4,096 – – – ReLU

S8 Max pooling 256 6 × 6 3 × 3 2 valid –

C7 Convolution 256 13 × 13 3 × 3 1 same ReLU

C6 Convolution 384 13 × 13 3 × 3 1 same ReLU

C5 Convolution 384 13 × 13 3 × 3 1 same ReLU

S4 Max pooling 256 13 × 13 3 × 3 2 valid –

C3 Convolution 256 27 × 27 5 × 5 1 same ReLU

S2 Max pooling 96 27 × 27 3 × 3 2 valid –

C1 Convolution 96 55 × 55 11 × 11 4 valid ReLU

In Input 3 (RGB) 227 × 227 – – – –

To reduce overfitting, the authors used two regularization techniques. First, they
applied dropout (introduced in Chapter 11) with a 50% dropout rate during training
to the outputs of layers F9 and F10. Second, they performed data augmentation by
randomly shifting the training images by various offsets, flipping them horizontally,
and changing the lighting conditions.

CNN Architectures | 499

https://homl.info/colab3
http://yann.lecun.com/exdb/lenet
https://homl.info/80

Data Augmentation
Data augmentation artificially increases the size of the training set by generating
many realistic variants of each training instance. This reduces overfitting, making this
a regularization technique. The generated instances should be as realistic as possible:
ideally, given an image from the augmented training set, a human should not be able
to tell whether it was augmented or not. Simply adding white noise will not help; the
modifications should be learnable (white noise is not).

For example, you can slightly shift, rotate, and resize every picture in the training
set by various amounts and add the resulting pictures to the training set (see Fig‐
ure 14-13). To do this, you can use Keras’s data augmentation layers, introduced in
Chapter 13 (e.g., RandomCrop, RandomRotation, etc.). This forces the model to be
more tolerant to variations in the position, orientation, and size of the objects in the
pictures. To produce a model that’s more tolerant of different lighting conditions, you
can similarly generate many images with various contrasts. In general, you can also
flip the pictures horizontally (except for text, and other asymmetrical objects). By
combining these transformations, you can greatly increase your training set size.

Figure 14-13. Generating new training instances from existing ones

Data augmentation is also useful when you have an unbalanced dataset: you can use
it to generate more samples of the less frequent classes. This is called the synthetic
minority oversampling technique, or SMOTE for short.

500 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

12 Matthew D. Zeiler and Rob Fergus, “Visualizing and Understanding Convolutional Networks”, Proceedings of
the European Conference on Computer Vision (2014): 818–833.

AlexNet also uses a competitive normalization step immediately after the ReLU step
of layers C1 and C3, called local response normalization (LRN): the most strongly
activated neurons inhibit other neurons located at the same position in neighboring
feature maps. Such competitive activation has been observed in biological neurons.
This encourages different feature maps to specialize, pushing them apart and forcing
them to explore a wider range of features, ultimately improving generalization. Equa‐
tion 14-2 shows how to apply LRN.

Equation 14-2. Local response normalization (LRN)

bi = ai k + α ∑
j = jlow

jhigh
aj

2
−β

with
jhigh = min i + r2 , fn − 1

jlow = max 0, i − r2

In this equation:

• bi is the normalized output of the neuron located in feature map i, at some row u•
and column v (note that in this equation we consider only neurons located at this
row and column, so u and v are not shown).

• ai is the activation of that neuron after the ReLU step, but before normalization.•
• k, α, β, and r are hyperparameters. k is called the bias, and r is called the depth•

radius.
• fn is the number of feature maps.•

For example, if r = 2 and a neuron has a strong activation, it will inhibit the activation
of the neurons located in the feature maps immediately above and below its own.

In AlexNet, the hyperparameters are set as: r = 5, α = 0.0001, β = 0.75, and k = 2.
You can implement this step by using the tf.nn.local_response_normalization()
function (which you can wrap in a Lambda layer if you want to use it in a Keras
model).

A variant of AlexNet called ZF Net12 was developed by Matthew Zeiler and Rob
Fergus and won the 2013 ILSVRC challenge. It is essentially AlexNet with a few
tweaked hyperparameters (number of feature maps, kernel size, stride, etc.).

CNN Architectures | 501

https://homl.info/zfnet

13 Christian Szegedy et al., “Going Deeper with Convolutions”, Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2015): 1–9.

14 In the 2010 movie Inception, the characters keep going deeper and deeper into multiple layers of dreams;
hence the name of these modules.

GoogLeNet
The GoogLeNet architecture was developed by Christian Szegedy et al. from Google
Research,13 and it won the ILSVRC 2014 challenge by pushing the top-five error rate
below 7%. This great performance came in large part from the fact that the network
was much deeper than previous CNNs (as you’ll see in Figure 14-15). This was made
possible by subnetworks called inception modules,14 which allow GoogLeNet to use
parameters much more efficiently than previous architectures: GoogLeNet actually
has 10 times fewer parameters than AlexNet (roughly 6 million instead of 60 million).

Figure 14-14 shows the architecture of an inception module. The notation “3 × 3 +
1(S)” means that the layer uses a 3 × 3 kernel, stride 1, and "same" padding. The input
signal is first fed to four different layers in parallel. All convolutional layers use the
ReLU activation function. Note that the top convolutional layers use different kernel
sizes (1 × 1, 3 × 3, and 5 × 5), allowing them to capture patterns at different scales.
Also note that every single layer uses a stride of 1 and "same" padding (even the max
pooling layer), so their outputs all have the same height and width as their inputs.
This makes it possible to concatenate all the outputs along the depth dimension in
the final depth concatenation layer (i.e., to stack the feature maps from all four top
convolutional layers). It can be implemented using Keras’s Concatenate layer, using
the default axis=-1.

Figure 14-14. Inception module

502 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

https://homl.info/81

You may wonder why inception modules have convolutional layers with 1 × 1 ker‐
nels. Surely these layers cannot capture any features because they look at only one
pixel at a time, right? In fact, these layers serve three purposes:

• Although they cannot capture spatial patterns, they can capture patterns along•
the depth dimension (i.e., across channels).

• They are configured to output fewer feature maps than their inputs, so they•
serve as bottleneck layers, meaning they reduce dimensionality. This cuts the
computational cost and the number of parameters, speeding up training and
improving generalization.

• Each pair of convolutional layers ([1 × 1, 3 × 3] and [1 × 1, 5 × 5]) acts like a•
single powerful convolutional layer, capable of capturing more complex patterns.
A convolutional layer is equivalent to sweeping a dense layer across the image
(at each location, it only looks at a small receptive field), and these pairs of
convolutional layers are equivalent to sweeping two-layer neural networks across
the image.

In short, you can think of the whole inception module as a convolutional layer on
steroids, able to output feature maps that capture complex patterns at various scales.

Now let’s look at the architecture of the GoogLeNet CNN (see Figure 14-15). The
number of feature maps output by each convolutional layer and each pooling layer is
shown before the kernel size. The architecture is so deep that it has to be represented
in three columns, but GoogLeNet is actually one tall stack, including nine inception
modules (the boxes with the spinning tops). The six numbers in the inception
modules represent the number of feature maps output by each convolutional layer in
the module (in the same order as in Figure 14-14). Note that all the convolutional
layers use the ReLU activation function.

Let’s go through this network:

• The first two layers divide the image’s height and width by 4 (so its area is divided•
by 16), to reduce the computational load. The first layer uses a large kernel size,
7 × 7, so that much of the information is preserved.

• Then the local response normalization layer ensures that the previous layers learn•
a wide variety of features (as discussed earlier).

• Two convolutional layers follow, where the first acts like a bottleneck layer. As•
mentioned, you can think of this pair as a single smarter convolutional layer.

• Again, a local response normalization layer ensures that the previous layers•
capture a wide variety of patterns.

• Next, a max pooling layer reduces the image height and width by 2, again to•
speed up computations.

CNN Architectures | 503

• Then comes the CNN’s backbone: a tall stack of nine inception modules, inter‐•
leaved with a couple of max pooling layers to reduce dimensionality and speed
up the net.

• Next, the global average pooling layer outputs the mean of each feature map:•
this drops any remaining spatial information, which is fine because there is not
much spatial information left at that point. Indeed, GoogLeNet input images
are typically expected to be 224 × 224 pixels, so after 5 max pooling layers,
each dividing the height and width by 2, the feature maps are down to 7 × 7.
Moreover, this is a classification task, not localization, so it doesn’t matter where
the object is. Thanks to the dimensionality reduction brought by this layer, there
is no need to have several fully connected layers at the top of the CNN (like
in AlexNet), and this considerably reduces the number of parameters in the
network and limits the risk of overfitting.

• The last layers are self-explanatory: dropout for regularization, then a fully•
connected layer with 1,000 units (since there are 1,000 classes) and a softmax
activation function to output estimated class probabilities.

Figure 14-15. GoogLeNet architecture

504 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

15 Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recog‐
nition”, arXiv preprint arXiv:1409.1556 (2014).

16 Kaiming He et al., “Deep Residual Learning for Image Recognition”, arXiv preprint arXiv:1512:03385 (2015).

The original GoogLeNet architecture included two auxiliary classifiers plugged on
top of the third and sixth inception modules. They were both composed of one aver‐
age pooling layer, one convolutional layer, two fully connected layers, and a softmax
activation layer. During training, their loss (scaled down by 70%) was added to the
overall loss. The goal was to fight the vanishing gradients problem and regularize the
network, but it was later shown that their effect was relatively minor.

Several variants of the GoogLeNet architecture were later proposed by Google
researchers, including Inception-v3 and Inception-v4, using slightly different incep‐
tion modules to reach even better performance.

VGGNet
The runner-up in the ILSVRC 2014 challenge was VGGNet,15 Karen Simonyan and
Andrew Zisserman, from the Visual Geometry Group (VGG) research lab at Oxford
University, developed a very simple and classical architecture; it had 2 or 3 convolu‐
tional layers and a pooling layer, then again 2 or 3 convolutional layers and a pooling
layer, and so on (reaching a total of 16 or 19 convolutional layers, depending on the
VGG variant), plus a final dense network with 2 hidden layers and the output layer. It
used small 3 × 3 filters, but it had many of them.

ResNet
Kaiming He et al. won the ILSVRC 2015 challenge using a Residual Network
(ResNet)16 that delivered an astounding top-five error rate under 3.6%. The winning
variant used an extremely deep CNN composed of 152 layers (other variants had 34,
50, and 101 layers). It confirmed the general trend: computer vision models were
getting deeper and deeper, with fewer and fewer parameters. The key to being able to
train such a deep network is to use skip connections (also called shortcut connections):
the signal feeding into a layer is also added to the output of a layer located higher up
the stack. Let’s see why this is useful.

When training a neural network, the goal is to make it model a target function h(x).
If you add the input x to the output of the network (i.e., you add a skip connection),
then the network will be forced to model f(x) = h(x) – x rather than h(x). This is
called residual learning (see Figure 14-16).

CNN Architectures | 505

https://homl.info/83
https://homl.info/82
https://homl.info/82

Figure 14-16. Residual learning

When you initialize a regular neural network, its weights are close to zero, so the
network just outputs values close to zero. If you add a skip connection, the resulting
network just outputs a copy of its inputs; in other words, it initially models the
identity function. If the target function is fairly close to the identity function (which is
often the case), this will speed up training considerably.

Moreover, if you add many skip connections, the network can start making progress
even if several layers have not started learning yet (see Figure 14-17). Thanks to skip
connections, the signal can easily make its way across the whole network. The deep
residual network can be seen as a stack of residual units (RUs), where each residual
unit is a small neural network with a skip connection.

Now let’s look at ResNet’s architecture (see Figure 14-18). It is surprisingly simple.
It starts and ends exactly like GoogLeNet (except without a dropout layer), and in
between is just a very deep stack of residual units. Each residual unit is composed
of two convolutional layers (and no pooling layer!), with batch normalization (BN)
and ReLU activation, using 3 × 3 kernels and preserving spatial dimensions (stride 1,
"same" padding).

506 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

Figure 14-17. Regular deep neural network (left) and deep residual network (right)

Figure 14-18. ResNet architecture

CNN Architectures | 507

17 It is a common practice when describing a neural network to count only layers with parameters.
18 Christian Szegedy et al., “Inception–v4, Inception-ResNet and the Impact of Residual Connections on Learn‐

ing”, arXiv preprint arXiv:1602.07261 (2016).

Note that the number of feature maps is doubled every few residual units, at the same
time as their height and width are halved (using a convolutional layer with stride 2).
When this happens, the inputs cannot be added directly to the outputs of the residual
unit because they don’t have the same shape (for example, this problem affects the
skip connection represented by the dashed arrow in Figure 14-18). To solve this
problem, the inputs are passed through a 1 × 1 convolutional layer with stride 2 and
the right number of output feature maps (see Figure 14-19).

Figure 14-19. Skip connection when changing feature map size and depth

Different variations of the architecture exist, with different numbers of layers.
ResNet-34 is a ResNet with 34 layers (only counting the convolutional layers and
the fully connected layer)17 containing 3 RUs that output 64 feature maps, 4 RUs with
128 maps, 6 RUs with 256 maps, and 3 RUs with 512 maps. We will implement this
architecture later in this chapter.

Google’s Inception-v418 architecture merged the ideas of GoogLe‐
Net and ResNet and achieved a top-five error rate of close to 3% on
ImageNet classification.

ResNets deeper than that, such as ResNet-152, use slightly different residual units.
Instead of two 3 × 3 convolutional layers with, say, 256 feature maps, they use three
convolutional layers: first a 1 × 1 convolutional layer with just 64 feature maps (4 ×
less), which acts as a bottleneck layer (as discussed already), then a 3 × 3 layer with
64 feature maps, and finally another 1 × 1 convolutional layer with 256 feature maps
(4 times 64) that restores the original depth. ResNet-152 contains 3 such RUs that

508 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

https://homl.info/84

19 François Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions”, arXiv preprint
arXiv:1610.02357 (2016).

20 This name can sometimes be ambiguous, since spatially separable convolutions are often called “separable
convolutions” as well.

output 256 maps, then 8 RUs with 512 maps, a whopping 36 RUs with 1,024 maps,
and finally 3 RUs with 2,048 maps.

Xception
Another variant of the GoogLeNet architecture is worth noting: Xception19 (which
stands for Extreme Inception) was proposed in 2016 by François Chollet (the author
of Keras), and it significantly outperformed Inception-v3 on a huge vision task (350
million images and 17,000 classes). Just like Inception-v4, it merges the ideas of
GoogLeNet and ResNet, but it replaces the inception modules with a special type
of layer called a depthwise separable convolution layer (or separable convolution layer
for short20). These layers had been used before in some CNN architectures, but they
were not as central as in the Xception architecture. While a regular convolutional
layer uses filters that try to simultaneously capture spatial patterns (e.g., an oval) and
cross-channel patterns (e.g., mouth + nose + eyes = face), a separable convolutional
layer makes the strong assumption that spatial patterns and cross-channel patterns
can be modeled separately (see Figure 14-20). Thus, it is composed of two parts: the
first part applies a single spatial filter to each input feature map, then the second part
looks exclusively for cross-channel patterns—it is just a regular convolutional layer
with 1 × 1 filters.

Since separable convolutional layers only have one spatial filter per input channel,
you should avoid using them after layers that have too few channels, such as the input
layer (granted, that’s what Figure 14-20 represents, but it is just for illustration pur‐
poses). For this reason, the Xception architecture starts with 2 regular convolutional
layers, but then the rest of the architecture uses only separable convolutions (34 in
all), plus a few max pooling layers and the usual final layers (a global average pooling
layer and a dense output layer).

You might wonder why Xception is considered a variant of GoogLeNet, since it con‐
tains no inception modules at all. Well, as discussed earlier, an inception module con‐
tains convolutional layers with 1 × 1 filters: these look exclusively for cross-channel
patterns. However, the convolutional layers that sit on top of them are regular convo‐
lutional layers that look both for spatial and cross-channel patterns. So, you can think
of an inception module as an intermediate between a regular convolutional layer
(which considers spatial patterns and cross-channel patterns jointly) and a separable
convolutional layer (which considers them separately). In practice, it seems that
separable convolutional layers often perform better.

CNN Architectures | 509

https://homl.info/xception

21 Jie Hu et al., “Squeeze-and-Excitation Networks”, Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2018): 7132–7141.

Figure 14-20. Depthwise separable convolutional layer

Separable convolutional layers use fewer parameters, less memory,
and fewer computations than regular convolutional layers, and
they often perform better. Consider using them by default, except
after layers with few channels (such as the input channel). In Keras,
just use SeparableConv2D instead of Conv2D: it’s a drop-in replace‐
ment. Keras also offers a DepthwiseConv2D layer that implements
the first part of a depthwise separable convolutional layer (i.e.,
applying one spatial filter per input feature map).

SENet
The winning architecture in the ILSVRC 2017 challenge was the Squeeze-and-
Excitation Network (SENet).21 This architecture extends existing architectures such
as inception networks and ResNets, and boosts their performance. This allowed
SENet to win the competition with an astonishing 2.25% top-five error rate! The
extended versions of inception networks and ResNets are called SE-Inception and
SE-ResNet, respectively. The boost comes from the fact that a SENet adds a small
neural network, called an SE block, to every inception module or residual unit in the
original architecture, as shown in Figure 14-21.

510 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

https://homl.info/senet
https://homl.info/senet

Figure 14-21. SE-Inception module (left) and SE-ResNet unit (right)

An SE block analyzes the output of the unit it is attached to, focusing exclusively on
the depth dimension (it does not look for any spatial pattern), and it learns which
features are usually most active together. It then uses this information to recalibrate
the feature maps, as shown in Figure 14-22. For example, an SE block may learn that
mouths, noses, and eyes usually appear together in pictures: if you see a mouth and
a nose, you should expect to see eyes as well. So, if the block sees a strong activation
in the mouth and nose feature maps, but only mild activation in the eye feature map,
it will boost the eye feature map (more accurately, it will reduce irrelevant feature
maps). If the eyes were somewhat confused with something else, this feature map
recalibration will help resolve the ambiguity.

Figure 14-22. An SE block performs feature map recalibration

An SE block is composed of just three layers: a global average pooling layer, a hidden
dense layer using the ReLU activation function, and a dense output layer using the
sigmoid activation function (see Figure 14-23).

CNN Architectures | 511

22 Saining Xie et al., “Aggregated Residual Transformations for Deep Neural Networks”, arXiv preprint
arXiv:1611.05431 (2016).

Figure 14-23. SE block architecture

As earlier, the global average pooling layer computes the mean activation for each
feature map: for example, if its input contains 256 feature maps, it will output 256
numbers representing the overall level of response for each filter. The next layer is
where the “squeeze” happens: this layer has significantly fewer than 256 neurons—
typically 16 times fewer than the number of feature maps (e.g., 16 neurons)—so
the 256 numbers get compressed into a small vector (e.g., 16 dimensions). This
is a low-dimensional vector representation (i.e., an embedding) of the distribution
of feature responses. This bottleneck step forces the SE block to learn a general
representation of the feature combinations (we will see this principle in action again
when we discuss autoencoders in Chapter 17). Finally, the output layer takes the
embedding and outputs a recalibration vector containing one number per feature
map (e.g., 256), each between 0 and 1. The feature maps are then multiplied by this
recalibration vector, so irrelevant features (with a low recalibration score) get scaled
down while relevant features (with a recalibration score close to 1) are left alone.

Other Noteworthy Architectures
There are many other CNN architectures to explore. Here’s a brief overview of some
of the most noteworthy:

ResNeXt22

ResNeXt improves the residual units in ResNet. Whereas the residual units in
the best ResNet models just contain 3 convolutional layers each, the ResNeXt
residual units are composed of many parallel stacks (e.g., 32 stacks), with 3
convolutional layers each. However, the first two layers in each stack only use a
few filters (e.g., just four), so the overall number of parameters remains the same
as in ResNet. Then the outputs of all the stacks are added together, and the result
is passed to the next residual unit (along with the skip connection).

512 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

https://homl.info/resnext

23 Gao Huang et al., “Densely Connected Convolutional Networks”, arXiv preprint arXiv:1608.06993 (2016).
24 Andrew G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applica‐

tions”, arXiv preprint arxiv:1704.04861 (2017).
25 Chien-Yao Wang et al., “CSPNet: A New Backbone That Can Enhance Learning Capability of CNN”, arXiv

preprint arXiv:1911.11929 (2019).
26 Mingxing Tan and Quoc V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”,

arXiv preprint arXiv:1905.11946 (2019).

DenseNet23

A DenseNet is composed of several dense blocks, each made up of a few densely
connected convolutional layers. This architecture achieved excellent accuracy
while using comparatively few parameters. What does “densely connected”
mean? The output of each layer is fed as input to every layer after it within
the same block. For example, layer 4 in a block takes as input the depthwise
concatenation of the outputs of layers 1, 2, and 3 in that block. Dense blocks are
separated by a few transition layers.

MobileNet24

MobileNets are streamlined models designed to be lightweight and fast, making
them popular in mobile and web applications. They are based on depthwise sepa‐
rable convolutional layers, like Xception. The authors proposed several variants,
trading a bit of accuracy for faster and smaller models.

CSPNet25

A Cross Stage Partial Network (CSPNet) is similar to a DenseNet, but part of
each dense block’s input is concatenated directly to that block’s output, without
going through the block.

EfficientNet26

EfficientNet is arguably the most important model in this list. The authors
proposed a method to scale any CNN efficiently, by jointly increasing the depth
(number of layers), width (number of filters per layer), and resolution (size of
the input image) in a principled way. This is called compound scaling. They used
neural architecture search to find a good architecture for a scaled-down version
of ImageNet (with smaller and fewer images), and then used compound scaling
to create larger and larger versions of this architecture. When EfficientNet mod‐
els came out, they vastly outperformed all existing models, across all compute
budgets, and they remain among the best models out there today.

Understanding EfficientNet’s compound scaling method is helpful to gain a deeper
understanding of CNNs, especially if you ever need to scale a CNN architecture. It
is based on a logarithmic measure of the compute budget, noted ϕ: if your compute
budget doubles, then ϕ increases by 1. In other words, the number of floating-point
operations available for training is proportional to 2ϕ. Your CNN architecture’s depth,

CNN Architectures | 513

https://homl.info/densenet
https://homl.info/mobilenet
https://homl.info/cspnet
https://homl.info/efficientnet

27 A 92-core AMD EPYC CPU with IBPB, 1.7 TB of RAM, and an Nvidia Tesla A100 GPU.

width, and resolution should scale as αϕ, βϕ, and γϕ, respectively. The factors α, β,
and γ must be greater than 1, and α + β2 + γ2 should be close to 2. The optimal
values for these factors depend on the CNN’s architecture. To find the optimal values
for the EfficientNet architecture, the authors started with a small baseline model
(EfficientNetB0), fixed ϕ = 1, and simply ran a grid search: they found α = 1.2, β =
1.1, and γ = 1.1. They then used these factors to create several larger architectures,
named EfficientNetB1 to EfficientNetB7, for increasing values of ϕ.

Choosing the Right CNN Architecture
With so many CNN architectures, how do you choose which one is best for your
project? Well, it depends on what matters most to you: Accuracy? Model size (e.g.,
for deployment to a mobile device)? Inference speed on CPU? On GPU? Table 14-3
lists the best pretrained models currently available in Keras (you’ll see how to use
them later in this chapter), sorted by model size. You can find the full list at https://
keras.io/api/applications. For each model, the table shows the Keras class name to
use (in the tf.keras.applications package), the model’s size in MB, the top-1
and top-5 validation accuracy on the ImageNet dataset, the number of parameters
(millions), and the inference time on CPU and GPU in ms, using batches of 32
images on reasonably powerful hardware.27 For each column, the best value is high‐
lighted. As you can see, larger models are generally more accurate, but not always;
for example, EfficientNetB2 outperforms InceptionV3 both in size and accuracy. I
only kept InceptionV3 in the list because it is almost twice as fast as EfficientNetB2
on a CPU. Similarly, InceptionResNetV2 is fast on a CPU, and ResNet50V2 and
ResNet101V2 are blazingly fast on a GPU.

Table 14-3. Pretrained models available in Keras

Class name Size (MB) Top-1 acc Top-5 acc Params CPU (ms) GPU (ms)
MobileNetV2 14 71.3% 90.1% 3.5M 25.9 3.8

MobileNet 16 70.4% 89.5% 4.3M 22.6 3.4

NASNetMobile 23 74.4% 91.9% 5.3M 27.0 6.7

EfficientNetB0 29 77.1% 93.3% 5.3M 46.0 4.9

EfficientNetB1 31 79.1% 94.4% 7.9M 60.2 5.6

EfficientNetB2 36 80.1% 94.9% 9.2M 80.8 6.5

EfficientNetB3 48 81.6% 95.7% 12.3M 140.0 8.8

EfficientNetB4 75 82.9% 96.4% 19.5M 308.3 15.1

InceptionV3 92 77.9% 93.7% 23.9M 42.2 6.9

ResNet50V2 98 76.0% 93.0% 25.6M 45.6 4.4

514 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

https://keras.io/api/applications
https://keras.io/api/applications

Class name Size (MB) Top-1 acc Top-5 acc Params CPU (ms) GPU (ms)
EfficientNetB5 118 83.6% 96.7% 30.6M 579.2 25.3

EfficientNetB6 166 84.0% 96.8% 43.3M 958.1 40.4

ResNet101V2 171 77.2% 93.8% 44.7M 72.7 5.4

InceptionResNetV2 215 80.3% 95.3% 55.9M 130.2 10.0

EfficientNetB7 256 84.3% 97.0% 66.7M 1578.9 61.6

I hope you enjoyed this deep dive into the main CNN architectures! Now let’s see
how to implement one of them using Keras.

Implementing a ResNet-34 CNN Using Keras
Most CNN architectures described so far can be implemented pretty naturally using
Keras (although generally you would load a pretrained network instead, as you will
see). To illustrate the process, let’s implement a ResNet-34 from scratch with Keras.
First, we’ll create a ResidualUnit layer:

DefaultConv2D = partial(tf.keras.layers.Conv2D, kernel_size=3, strides=1,
 padding="same", kernel_initializer="he_normal",
 use_bias=False)

class ResidualUnit(tf.keras.layers.Layer):
 def __init__(self, filters, strides=1, activation="relu", **kwargs):
 super().__init__(**kwargs)
 self.activation = tf.keras.activations.get(activation)
 self.main_layers = [
 DefaultConv2D(filters, strides=strides),
 tf.keras.layers.BatchNormalization(),
 self.activation,
 DefaultConv2D(filters),
 tf.keras.layers.BatchNormalization()
]
 self.skip_layers = []
 if strides > 1:
 self.skip_layers = [
 DefaultConv2D(filters, kernel_size=1, strides=strides),
 tf.keras.layers.BatchNormalization()
]

 def call(self, inputs):
 Z = inputs
 for layer in self.main_layers:
 Z = layer(Z)
 skip_Z = inputs
 for layer in self.skip_layers:
 skip_Z = layer(skip_Z)
 return self.activation(Z + skip_Z)

Implementing a ResNet-34 CNN Using Keras | 515

As you can see, this code matches Figure 14-19 pretty closely. In the constructor, we
create all the layers we will need: the main layers are the ones on the right side of
the diagram, and the skip layers are the ones on the left (only needed if the stride is
greater than 1). Then in the call() method, we make the inputs go through the main
layers and the skip layers (if any), and we add both outputs and apply the activation
function.

Now we can build a ResNet-34 using a Sequential model, since it’s really just a long
sequence of layers—we can treat each residual unit as a single layer now that we have
the ResidualUnit class. The code closely matches Figure 14-18:

model = tf.keras.Sequential([
 DefaultConv2D(64, kernel_size=7, strides=2, input_shape=[224, 224, 3]),
 tf.keras.layers.BatchNormalization(),
 tf.keras.layers.Activation("relu"),
 tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding="same"),
])
prev_filters = 64
for filters in [64] * 3 + [128] * 4 + [256] * 6 + [512] * 3:
 strides = 1 if filters == prev_filters else 2
 model.add(ResidualUnit(filters, strides=strides))
 prev_filters = filters

model.add(tf.keras.layers.GlobalAvgPool2D())
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(10, activation="softmax"))

The only tricky part in this code is the loop that adds the ResidualUnit layers to the
model: as explained earlier, the first 3 RUs have 64 filters, then the next 4 RUs have
128 filters, and so on. At each iteration, we must set the stride to 1 when the number
of filters is the same as in the previous RU, or else we set it to 2; then we add the
ResidualUnit, and finally we update prev_filters.

It is amazing that in about 40 lines of code, we can build the model that won the
ILSVRC 2015 challenge! This demonstrates both the elegance of the ResNet model
and the expressiveness of the Keras API. Implementing the other CNN architectures
is a bit longer, but not much harder. However, Keras comes with several of these
architectures built in, so why not use them instead?

Using Pretrained Models from Keras
In general, you won’t have to implement standard models like GoogLeNet or ResNet
manually, since pretrained networks are readily available with a single line of code in
the tf.keras.applications package.

516 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

28 In the ImageNet dataset, each image is mapped to a word in the WordNet dataset: the class ID is just a
WordNet ID.

For example, you can load the ResNet-50 model, pretrained on ImageNet, with the
following line of code:

model = tf.keras.applications.ResNet50(weights="imagenet")

That’s all! This will create a ResNet-50 model and download weights pretrained on
the ImageNet dataset. To use it, you first need to ensure that the images have the
right size. A ResNet-50 model expects 224 × 224–pixel images (other models may
expect other sizes, such as 299 × 299), so let’s use Keras’s Resizing layer (introduced
in Chapter 13) to resize two sample images (after cropping them to the target aspect
ratio):

images = load_sample_images()["images"]
images_resized = tf.keras.layers.Resizing(height=224, width=224,
 crop_to_aspect_ratio=True)(images)

The pretrained models assume that the images are preprocessed in a specific way. In
some cases they may expect the inputs to be scaled from 0 to 1, or from –1 to 1,
and so on. Each model provides a preprocess_input() function that you can use to
preprocess your images. These functions assume that the original pixel values range
from 0 to 255, which is the case here:

inputs = tf.keras.applications.resnet50.preprocess_input(images_resized)

Now we can use the pretrained model to make predictions:

>>> Y_proba = model.predict(inputs)
>>> Y_proba.shape
(2, 1000)

As usual, the output Y_proba is a matrix with one row per image and one column
per class (in this case, there are 1,000 classes). If you want to display the top K
predictions, including the class name and the estimated probability of each predicted
class, use the decode_predictions() function. For each image, it returns an array
containing the top K predictions, where each prediction is represented as an array
containing the class identifier,28 its name, and the corresponding confidence score:

top_K = tf.keras.applications.resnet50.decode_predictions(Y_proba, top=3)
for image_index in range(len(images)):
 print(f"Image #{image_index}")
 for class_id, name, y_proba in top_K[image_index]:
 print(f" {class_id} - {name:12s} {y_proba:.2%}")

The output looks like this:

Using Pretrained Models from Keras | 517

https://wordnet.princeton.edu

Image #0
 n03877845 - palace 54.69%
 n03781244 - monastery 24.72%
 n02825657 - bell_cote 18.55%
Image #1
 n04522168 - vase 32.66%
 n11939491 - daisy 17.81%
 n03530642 - honeycomb 12.06%

The correct classes are palace and dahlia, so the model is correct for the first image
but wrong for the second. However, that’s because dahlia is not one of the 1,000
ImageNet classes. With that in mind, vase is a reasonable guess (perhaps the flower
is in a vase?), and daisy is not a bad choice either, since dahlias and daisies are both
from the same Compositae family.

As you can see, it is very easy to create a pretty good image classifier using a
pretrained model. As you saw in Table 14-3, many other vision models are available
in tf.keras.applications, from lightweight and fast models to large and accurate
ones.

But what if you want to use an image classifier for classes of images that are not part
of ImageNet? In that case, you may still benefit from the pretrained models by using
them to perform transfer learning.

Pretrained Models for Transfer Learning
If you want to build an image classifier but you do not have enough data to train it
from scratch, then it is often a good idea to reuse the lower layers of a pretrained
model, as we discussed in Chapter 11. For example, let’s train a model to classify
pictures of flowers, reusing a pretrained Xception model. First, we’ll load the flowers
dataset using TensorFlow Datasets (introduced in Chapter 13):

import tensorflow_datasets as tfds

dataset, info = tfds.load("tf_flowers", as_supervised=True, with_info=True)
dataset_size = info.splits["train"].num_examples # 3670
class_names = info.features["label"].names # ["dandelion", "daisy", ...]
n_classes = info.features["label"].num_classes # 5

Note that you can get information about the dataset by setting with_info=True. Here,
we get the dataset size and the names of the classes. Unfortunately, there is only a
"train" dataset, no test set or validation set, so we need to split the training set. Let’s
call tfds.load() again, but this time taking the first 10% of the dataset for testing,
the next 15% for validation, and the remaining 75% for training:

test_set_raw, valid_set_raw, train_set_raw = tfds.load(
 "tf_flowers",
 split=["train[:10%]", "train[10%:25%]", "train[25%:]"],
 as_supervised=True)

518 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

All three datasets contain individual images. We need to batch them, but first
we need to ensure they all have the same size, or batching will fail. We can
use a Resizing layer for this. We must also call the tf.keras.applications.
xception.preprocess_input() function to preprocess the images appropriately for
the Xception model. Lastly, we’ll also shuffle the training set and use prefetching:

batch_size = 32
preprocess = tf.keras.Sequential([
 tf.keras.layers.Resizing(height=224, width=224, crop_to_aspect_ratio=True),
 tf.keras.layers.Lambda(tf.keras.applications.xception.preprocess_input)
])
train_set = train_set_raw.map(lambda X, y: (preprocess(X), y))
train_set = train_set.shuffle(1000, seed=42).batch(batch_size).prefetch(1)
valid_set = valid_set_raw.map(lambda X, y: (preprocess(X), y)).batch(batch_size)
test_set = test_set_raw.map(lambda X, y: (preprocess(X), y)).batch(batch_size)

Now each batch contains 32 images, all of them 224 × 224 pixels, with pixel values
ranging from –1 to 1. Perfect!

Since the dataset is not very large, a bit of data augmentation will certainly help. Let’s
create a data augmentation model that we will embed in our final model. During
training, it will randomly flip the images horizontally, rotate them a little bit, and
tweak the contrast:

data_augmentation = tf.keras.Sequential([
 tf.keras.layers.RandomFlip(mode="horizontal", seed=42),
 tf.keras.layers.RandomRotation(factor=0.05, seed=42),
 tf.keras.layers.RandomContrast(factor=0.2, seed=42)
])

The tf.keras.preprocessing.image.ImageDataGenerator class
makes it easy to load images from disk and augment them in
various ways: you can shift each image, rotate it, rescale it, flip
it horizontally or vertically, shear it, or apply any transformation
function you want to it. This is very convenient for simple projects.
However, a tf.data pipeline is not much more complicated, and it’s
generally faster. Moreover, if you have a GPU and you include the
preprocessing or data augmentation layers inside your model, they
will benefit from GPU acceleration during training.

Next let’s load an Xception model, pretrained on ImageNet. We exclude the top of
the network by setting include_top=False. This excludes the global average pooling
layer and the dense output layer. We then add our own global average pooling layer
(feeding it the output of the base model), followed by a dense output layer with one
unit per class, using the softmax activation function. Finally, we wrap all this in a
Keras Model:

Pretrained Models for Transfer Learning | 519

base_model = tf.keras.applications.xception.Xception(weights="imagenet",
 include_top=False)
avg = tf.keras.layers.GlobalAveragePooling2D()(base_model.output)
output = tf.keras.layers.Dense(n_classes, activation="softmax")(avg)
model = tf.keras.Model(inputs=base_model.input, outputs=output)

As explained in Chapter 11, it’s usually a good idea to freeze the weights of the
pretrained layers, at least at the beginning of training:

for layer in base_model.layers:
 layer.trainable = False

Since our model uses the base model’s layers directly, rather than
the base_model object itself, setting base_model.trainable=False
would have no effect.

Finally, we can compile the model and start training:

optimizer = tf.keras.optimizers.SGD(learning_rate=0.1, momentum=0.9)
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer,
 metrics=["accuracy"])
history = model.fit(train_set, validation_data=valid_set, epochs=3)

If you are running in Colab, make sure the runtime is using a
GPU: select Runtime → “Change runtime type”, choose “GPU” in
the “Hardware accelerator” drop-down menu, then click Save. It’s
possible to train the model without a GPU, but it will be terribly
slow (minutes per epoch, as opposed to seconds).

After training the model for a few epochs, its validation accuracy should reach a bit
over 80% and then stop improving. This means that the top layers are now pretty
well trained, and we are ready to unfreeze some of the base model’s top layers, then
continue training. For example, let’s unfreeze layers 56 and above (that’s the start of
residual unit 7 out of 14, as you can see if you list the layer names):

for layer in base_model.layers[56:]:
 layer.trainable = True

Don’t forget to compile the model whenever you freeze or unfreeze layers. Also make
sure to use a much lower learning rate to avoid damaging the pretrained weights:

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9)
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer,
 metrics=["accuracy"])
history = model.fit(train_set, validation_data=valid_set, epochs=10)

This model should reach around 92% accuracy on the test set, in just a few minutes
of training (with a GPU). If you tune the hyperparameters, lower the learning rate,

520 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

29 Adriana Kovashka et al., “Crowdsourcing in Computer Vision”, Foundations and Trends in Computer Graphics
and Vision 10, no. 3 (2014): 177–243.

and train for quite a bit longer, you should be able to reach 95% to 97%. With that,
you can start training amazing image classifiers on your own images and classes! But
there’s more to computer vision than just classification. For example, what if you also
want to know where the flower is in a picture? Let’s look at this now.

Classification and Localization
Localizing an object in a picture can be expressed as a regression task, as discussed
in Chapter 10: to predict a bounding box around the object, a common approach is
to predict the horizontal and vertical coordinates of the object’s center, as well as its
height and width. This means we have four numbers to predict. It does not require
much change to the model; we just need to add a second dense output layer with four
units (typically on top of the global average pooling layer), and it can be trained using
the MSE loss:

base_model = tf.keras.applications.xception.Xception(weights="imagenet",
 include_top=False)
avg = tf.keras.layers.GlobalAveragePooling2D()(base_model.output)
class_output = tf.keras.layers.Dense(n_classes, activation="softmax")(avg)
loc_output = tf.keras.layers.Dense(4)(avg)
model = tf.keras.Model(inputs=base_model.input,
 outputs=[class_output, loc_output])
model.compile(loss=["sparse_categorical_crossentropy", "mse"],
 loss_weights=[0.8, 0.2], # depends on what you care most about
 optimizer=optimizer, metrics=["accuracy"])

But now we have a problem: the flowers dataset does not have bounding boxes
around the flowers. So, we need to add them ourselves. This is often one of the
hardest and most costly parts of a machine learning project: getting the labels. It’s
a good idea to spend time looking for the right tools. To annotate images with
bounding boxes, you may want to use an open source image labeling tool like VGG
Image Annotator, LabelImg, OpenLabeler, or ImgLab, or perhaps a commercial tool
like LabelBox or Supervisely. You may also want to consider crowdsourcing platforms
such as Amazon Mechanical Turk if you have a very large number of images to
annotate. However, it is quite a lot of work to set up a crowdsourcing platform,
prepare the form to be sent to the workers, supervise them, and ensure that the
quality of the bounding boxes they produce is good, so make sure it is worth the
effort. Adriana Kovashka et al. wrote a very practical paper29 about crowdsourcing
in computer vision. I recommend you check it out, even if you do not plan to use
crowdsourcing. If there are just a few hundred or a even a couple thousand images
to label, and you don’t plan to do this frequently, it may be preferable to do it

Classification and Localization | 521

https://homl.info/crowd

yourself: with the right tools, it will only take a few days, and you’ll also gain a better
understanding of your dataset and task.

Now let’s suppose you’ve obtained the bounding boxes for every image in the flowers
dataset (for now we will assume there is a single bounding box per image). You then
need to create a dataset whose items will be batches of preprocessed images along
with their class labels and their bounding boxes. Each item should be a tuple of the
form (images, (class_labels, bounding_boxes)). Then you are ready to train
your model!

The bounding boxes should be normalized so that the horizontal
and vertical coordinates, as well as the height and width, all range
from 0 to 1. Also, it is common to predict the square root of the
height and width rather than the height and width directly: this
way, a 10-pixel error for a large bounding box will not be penalized
as much as a 10-pixel error for a small bounding box.

The MSE often works fairly well as a cost function to train the model, but it is
not a great metric to evaluate how well the model can predict bounding boxes.
The most common metric for this is the intersection over union (IoU): the area of
overlap between the predicted bounding box and the target bounding box, divided
by the area of their union (see Figure 14-24). In Keras, it is implemented by the
tf.keras.metrics.MeanIoU class.

Classifying and localizing a single object is nice, but what if the images contain
multiple objects (as is often the case in the flowers dataset)?

Figure 14-24. IoU metric for bounding boxes

522 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

Object Detection
The task of classifying and localizing multiple objects in an image is called object
detection. Until a few years ago, a common approach was to take a CNN that was
trained to classify and locate a single object roughly centered in the image, then
slide this CNN across the image and make predictions at each step. The CNN was
generally trained to predict not only class probabilities and a bounding box, but
also an objectness score: this is the estimated probability that the image does indeed
contain an object centered near the middle. This is a binary classification output;
it can be produced by a dense output layer with a single unit, using the sigmoid
activation function and trained using the binary cross-entropy loss.

Instead of an objectness score, a “no-object” class was sometimes
added, but in general this did not work as well: the questions “Is an
object present?” and “What type of object is it?” are best answered
separately.

This sliding-CNN approach is illustrated in Figure 14-25. In this example, the image
was chopped into a 5 × 7 grid, and we see a CNN—the thick black rectangle—sliding
across all 3 × 3 regions and making predictions at each step.

Figure 14-25. Detecting multiple objects by sliding a CNN across the image

Object Detection | 523

In this figure, the CNN has already made predictions for three of these 3 × 3 regions:

• When looking at the top-left 3 × 3 region (centered on the red-shaded grid cell•
located in the second row and second column), it detected the leftmost rose.
Notice that the predicted bounding box exceeds the boundary of this 3 × 3
region. That’s absolutely fine: even though the CNN could not see the bottom
part of the rose, it was able to make a reasonable guess as to where it might
be. It also predicted class probabilities, giving a high probability to the “rose”
class. Lastly, it predicted a fairly high objectness score, since the center of the
bounding box lies within the central grid cell (in this figure, the objectness score
is represented by the thickness of the bounding box).

• When looking at the next 3 × 3 region, one grid cell to the right (centered on•
the shaded blue square), it did not detect any flower centered in that region, so it
predicted a very low objectness score; therefore, the predicted bounding box and
class probabilities can safely be ignored. You can see that the predicted bounding
box was no good anyway.

• finally, when looking at the next 3 × 3 region, again one grid cell to the right•
(centered on the shaded green cell), it detected the rose at the top, although
not perfectly: this rose is not well centered within this region, so the predicted
objectness score was not very high.

You can imagine how sliding the CNN across the whole image would give you a total
of 15 predicted bounding boxes, organized in a 3 × 5 grid, with each bounding box
accompanied by its estimated class probabilities and objectness score. Since objects
can have varying sizes, you may then want to slide the CNN again across larger 4 × 4
regions as well, to get even more bounding boxes.

This technique is fairly straightforward, but as you can see it will often detect the
same object multiple times, at slightly different positions. Some postprocessing is
needed to get rid of all the unnecessary bounding boxes. A common approach for
this is called non-max suppression. Here’s how it works:

1. First, get rid of all the bounding boxes for which the objectness score is below1.
some threshold: since the CNN believes there’s no object at that location, the
bounding box is useless.

2. Find the remaining bounding box with the highest objectness score, and get rid2.
of all the other remaining bounding boxes that overlap a lot with it (e.g., with an
IoU greater than 60%). For example, in Figure 14-25, the bounding box with the
max objectness score is the thick bounding box over the leftmost rose. The other
bounding box that touches this same rose overlaps a lot with the max bounding
box, so we will get rid of it (although in this example it would already have been
removed in the previous step).

524 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

30 Jonathan Long et al., “Fully Convolutional Networks for Semantic Segmentation”, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2015): 3431–3440.

31 There is one small exception: a convolutional layer using "valid" padding will complain if the input size is
smaller than the kernel size.

3. Repeat step 2 until there are no more bounding boxes to get rid of.3.

This simple approach to object detection works pretty well, but it requires running
the CNN many times (15 times in this example), so it is quite slow. Fortunately, there
is a much faster way to slide a CNN across an image: using a fully convolutional
network (FCN).

Fully Convolutional Networks
The idea of FCNs was first introduced in a 2015 paper30 by Jonathan Long et al., for
semantic segmentation (the task of classifying every pixel in an image according to
the class of the object it belongs to). The authors pointed out that you could replace
the dense layers at the top of a CNN with convolutional layers. To understand this,
let’s look at an example: suppose a dense layer with 200 neurons sits on top of a
convolutional layer that outputs 100 feature maps, each of size 7 × 7 (this is the
feature map size, not the kernel size). Each neuron will compute a weighted sum
of all 100 × 7 × 7 activations from the convolutional layer (plus a bias term). Now
let’s see what happens if we replace the dense layer with a convolutional layer using
200 filters, each of size 7 × 7, and with "valid" padding. This layer will output 200
feature maps, each 1 × 1 (since the kernel is exactly the size of the input feature maps
and we are using "valid" padding). In other words, it will output 200 numbers, just
like the dense layer did; and if you look closely at the computations performed by a
convolutional layer, you will notice that these numbers will be precisely the same as
those the dense layer produced. The only difference is that the dense layer’s output
was a tensor of shape [batch size, 200], while the convolutional layer will output a
tensor of shape [batch size, 1, 1, 200].

To convert a dense layer to a convolutional layer, the number of
filters in the convolutional layer must be equal to the number of
units in the dense layer, the filter size must be equal to the size of
the input feature maps, and you must use "valid" padding. The
stride may be set to 1 or more, as you will see shortly.

Why is this important? Well, while a dense layer expects a specific input size (since it
has one weight per input feature), a convolutional layer will happily process images
of any size31 (however, it does expect its inputs to have a specific number of channels,
since each kernel contains a different set of weights for each input channel). Since

Object Detection | 525

https://homl.info/fcn

32 This assumes we used only "same" padding in the network: "valid" padding would reduce the size of the
feature maps. Moreover, 448 can be neatly divided by 2 several times until we reach 7, without any rounding
error. If any layer uses a different stride than 1 or 2, then there may be some rounding error, so again the
feature maps may end up being smaller.

an FCN contains only convolutional layers (and pooling layers, which have the same
property), it can be trained and executed on images of any size!

For example, suppose we’d already trained a CNN for flower classification and locali‐
zation. It was trained on 224 × 224 images, and it outputs 10 numbers:

• Outputs 0 to 4 are sent through the softmax activation function, and this gives•
the class probabilities (one per class).

• Output 5 is sent through the sigmoid activation function, and this gives the•
objectness score.

• Outputs 6 and 7 represent the bounding box’s center coordinates; they also go•
through a sigmoid activation function to ensure they range from 0 to 1.

• Lastly, outputs 8 and 9 represent the bounding box’s height and width; they do•
not go through any activation function to allow the bounding boxes to extend
beyond the borders of the image.

We can now convert the CNN’s dense layers to convolutional layers. In fact, we don’t
even need to retrain it; we can just copy the weights from the dense layers to the
convolutional layers! Alternatively, we could have converted the CNN into an FCN
before training.

Now suppose the last convolutional layer before the output layer (also called the
bottleneck layer) outputs 7 × 7 feature maps when the network is fed a 224 × 224
image (see the left side of Figure 14-26). If we feed the FCN a 448 × 448 image
(see the right side of Figure 14-26), the bottleneck layer will now output 14 × 14
feature maps.32 Since the dense output layer was replaced by a convolutional layer
using 10 filters of size 7 × 7, with "valid" padding and stride 1, the output will be
composed of 10 features maps, each of size 8 × 8 (since 14 – 7 + 1 = 8). In other
words, the FCN will process the whole image only once, and it will output an 8 ×
8 grid where each cell contains 10 numbers (5 class probabilities, 1 objectness score,
and 4 bounding box coordinates). It’s exactly like taking the original CNN and sliding
it across the image using 8 steps per row and 8 steps per column. To visualize this,
imagine chopping the original image into a 14 × 14 grid, then sliding a 7 × 7 window
across this grid; there will be 8 × 8 = 64 possible locations for the window, hence 8 ×
8 predictions. However, the FCN approach is much more efficient, since the network
only looks at the image once. In fact, You Only Look Once (YOLO) is the name of a
very popular object detection architecture, which we’ll look at next.

526 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

33 Joseph Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2016): 779–788.

Figure 14-26. The same fully convolutional network processing a small image (left) and a
large one (right)

You Only Look Once
YOLO is a fast and accurate object detection architecture proposed by Joseph Red‐
mon et al. in a 2015 paper.33 It is so fast that it can run in real time on a video, as seen
in Redmon’s demo. YOLO’s architecture is quite similar to the one we just discussed,
but with a few important differences:

• For each grid cell, YOLO only considers objects whose bounding box center lies•
within that cell. The bounding box coordinates are relative to that cell, where
(0, 0) means the top-left corner of the cell and (1, 1) means the bottom right.
However, the bounding box’s height and width may extend well beyond the cell.

Object Detection | 527

https://homl.info/yolo
https://homl.info/yolodemo

• It outputs two bounding boxes for each grid cell (instead of just one), which•
allows the model to handle cases where two objects are so close to each other
that their bounding box centers lie within the same cell. Each bounding box also
comes with its own objectness score.

• YOLO also outputs a class probability distribution for each grid cell, predicting•
20 class probabilities per grid cell since YOLO was trained on the PASCAL VOC
dataset, which contains 20 classes. This produces a coarse class probability map.
Note that the model predicts one class probability distribution per grid cell, not
per bounding box. However, it’s possible to estimate class probabilities for each
bounding box during postprocessing, by measuring how well each bounding box
matches each class in the class probability map. For example, imagine a picture
of a person standing in front of a car. There will be two bounding boxes: one
large horizontal one for the car, and a smaller vertical one for the person. These
bounding boxes may have their centers within the same grid cell. So how can
we tell which class should be assigned to each bounding box? Well, the class
probability map will contain a large region where the “car” class is dominant,
and inside it there will be a smaller region where the “person” class is dominant.
Hopefully, the car’s bounding box will roughly match the “car” region, while the
person’s bounding box will roughly match the “person” region: this will allow the
correct class to be assigned to each bounding box.

YOLO was originally developed using Darknet, an open source deep learning frame‐
work initially developed in C by Joseph Redmon, but it was soon ported to Tensor‐
Flow, Keras, PyTorch, and more. It was continuously improved over the years, with
YOLOv2, YOLOv3, and YOLO9000 (again by Joseph Redmon et al.), YOLOv4 (by
Alexey Bochkovskiy et al.), YOLOv5 (by Glenn Jocher), and PP-YOLO (by Xiang
Long et al.).

Each version brought some impressive improvements in speed and accuracy, using
a variety of techniques; for example, YOLOv3 boosted accuracy in part thanks to
anchor priors, exploiting the fact that some bounding box shapes are more likely than
others, depending on the class (e.g., people tend to have vertical bounding boxes,
while cars usually don’t). They also increased the number of bounding boxes per grid
cell, they trained on different datasets with many more classes (up to 9,000 classes
organized in a hierarchy in the case of YOLO9000), they added skip connections to
recover some of the spatial resolution that is lost in the CNN (we will discuss this
shortly, when we look at semantic segmentation), and much more. There are many
variants of these models too, such as YOLOv4-tiny, which is optimized to be trained
on less powerful machines and which can run extremely fast (at over 1,000 frames per
second!), but with a slightly lower mean average precision (mAP).

528 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

Mean Average Precision
A very common metric used in object detection tasks is the mean average precision.
“Mean average” sounds a bit redundant, doesn’t it? To understand this metric, let’s
go back to two classification metrics we discussed in Chapter 3: precision and recall.
Remember the trade-off: the higher the recall, the lower the precision. You can
visualize this in a precision/recall curve (see Figure 3-6). To summarize this curve
into a single number, we could compute its area under the curve (AUC). But note that
the precision/recall curve may contain a few sections where precision actually goes up
when recall increases, especially at low recall values (you can see this at the top left of
Figure 3-6). This is one of the motivations for the mAP metric.

Suppose the classifier has 90% precision at 10% recall, but 96% precision at 20%
recall. There’s really no trade-off here: it simply makes more sense to use the classifier
at 20% recall rather than at 10% recall, as you will get both higher recall and higher
precision. So instead of looking at the precision at 10% recall, we should really be
looking at the maximum precision that the classifier can offer with at least 10%
recall. It would be 96%, not 90%. Therefore, one way to get a fair idea of the model’s
performance is to compute the maximum precision you can get with at least 0%
recall, then 10% recall, 20%, and so on up to 100%, and then calculate the mean
of these maximum precisions. This is called the average precision (AP) metric. Now
when there are more than two classes, we can compute the AP for each class, and
then compute the mean AP (mAP). That’s it!

In an object detection system, there is an additional level of complexity: what if
the system detected the correct class, but at the wrong location (i.e., the bounding
box is completely off)? Surely we should not count this as a positive prediction.
One approach is to define an IoU threshold: for example, we may consider that a
prediction is correct only if the IoU is greater than, say, 0.5, and the predicted class
is correct. The corresponding mAP is generally noted mAP@0.5 (or mAP@50%, or
sometimes just AP50). In some competitions (such as the PASCAL VOC challenge),
this is what is done. In others (such as the COCO competition), the mAP is computed
for different IoU thresholds (0.50, 0.55, 0.60, …, 0.95), and the final metric is the
mean of all these mAPs (noted mAP@[.50:.95] or mAP@[.50:0.05:.95]). Yes, that’s a
mean mean average.

Object Detection | 529

34 You can find YOLOv3, YOLOv4, and their tiny variants in the TensorFlow Models project at https://homl.info/
yolotf.

35 Wei Liu et al., “SSD: Single Shot Multibox Detector”, Proceedings of the 14th European Conference on Computer
Vision 1 (2016): 21–37.

36 Shaoqing Ren et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”,
Proceedings of the 28th International Conference on Neural Information Processing Systems 1 (2015): 91–99.

37 Mingxing Tan et al., “EfficientDet: Scalable and Efficient Object Detection”, arXiv preprint arXiv:1911.09070
(2019).

38 Nicolai Wojke et al., “Simple Online and Realtime Tracking with a Deep Association Metric”, arXiv preprint
arXiv:1703.07402 (2017).

Many object detection models are available on TensorFlow Hub, often with pre‐
trained weights, such as YOLOv5,34 SSD,35 Faster R-CNN,36 and EfficentDet.37

SSD and EfficientDet are “look once” detection models, similar to YOLO. Efficient‐
Det is based on the EfficientNet convolutional architecture. Faster R-CNN is more
complex: the image first goes through a CNN, then the output is passed to a region
proposal network (RPN) that proposes bounding boxes that are most likely to contain
an object; a classifier is then run for each bounding box, based on the cropped output
of the CNN. The best place to start using these models is TensorFlow Hub’s excellent
object detection tutorial.

So far, we’ve only considered detecting objects in single images. But what about
videos? Objects must not only be detected in each frame, they must also be tracked
over time. Let’s take a quick look at object tracking now.

Object Tracking
Object tracking is a challenging task: objects move, they may grow or shrink as they
get closer to or further away from the camera, their appearance may change as they
turn around or move to different lighting conditions or backgrounds, they may be
temporarily occluded by other objects, and so on.

One of the most popular object tracking systems is DeepSORT.38 It is based on a
combination of classical algorithms and deep learning:

• It uses Kalman filters to estimate the most likely current position of an object•
given prior detections, and assuming that objects tend to move at a constant
speed.

• It uses a deep learning model to measure the resemblance between new detec‐•
tions and existing tracked objects.

530 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

https://homl.info/yolotf
https://homl.info/yolotf
https://homl.info/ssd
https://homl.info/fasterrcnn
https://homl.info/efficientdet
https://homl.info/objdet
https://homl.info/deepsort

• Lastly, it uses the Hungarian algorithm to map new detections to existing•
tracked objects (or to new tracked objects): this algorithm efficiently finds the
combination of mappings that minimizes the distance between the detections
and the predicted positions of tracked objects, while also minimizing the appear‐
ance discrepancy.

For example, imagine a red ball that just bounced off a blue ball traveling in the
opposite direction. Based on the previous positions of the balls, the Kalman filter
will predict that the balls will go through each other: indeed, it assumes that objects
move at a constant speed, so it will not expect the bounce. If the Hungarian algorithm
only considered positions, then it would happily map the new detections to the
wrong balls, as if they had just gone through each other and swapped colors. But
thanks to the resemblance measure, the Hungarian algorithm will notice the problem.
Assuming the balls are not too similar, the algorithm will map the new detections to
the correct balls.

There are a few DeepSORT implementations available on GitHub,
including a TensorFlow implementation of YOLOv4 + DeepSORT:
https://github.com/theAIGuysCode/yolov4-deepsort.

So far we have located objects using bounding boxes. This is often sufficient, but
sometimes you need to locate objects with much more precision—for example, to
remove the background behind a person during a videoconference call. Let’s see how
to go down to the pixel level.

Semantic Segmentation
In semantic segmentation, each pixel is classified according to the class of the object
it belongs to (e.g., road, car, pedestrian, building, etc.), as shown in Figure 14-27.
Note that different objects of the same class are not distinguished. For example, all
the bicycles on the right side of the segmented image end up as one big lump of
pixels. The main difficulty in this task is that when images go through a regular CNN,
they gradually lose their spatial resolution (due to the layers with strides greater than
1); so, a regular CNN may end up knowing that there’s a person somewhere in the
bottom left of the image, but it will not be much more precise than that.

Semantic Segmentation | 531

https://github.com/theAIGuysCode/yolov4-deepsort

39 This type of layer is sometimes referred to as a deconvolution layer, but it does not perform what mathemati‐
cians call a deconvolution, so this name should be avoided.

Figure 14-27. Semantic segmentation

Just like for object detection, there are many different approaches to tackle this
problem, some quite complex. However, a fairly simple solution was proposed in
the 2015 paper by Jonathan Long et al. I mentioned earlier, on fully convolutional
networks. The authors start by taking a pretrained CNN and turning it into an FCN.
The CNN applies an overall stride of 32 to the input image (i.e., if you add up all
the strides greater than 1), meaning the last layer outputs feature maps that are 32
times smaller than the input image. This is clearly too coarse, so they added a single
upsampling layer that multiplies the resolution by 32.

There are several solutions available for upsampling (increasing the size of an image),
such as bilinear interpolation, but that only works reasonably well up to ×4 or ×8.
Instead, they use a transposed convolutional layer:39 this is equivalent to first stretching
the image by inserting empty rows and columns (full of zeros), then performing a
regular convolution (see Figure 14-28). Alternatively, some people prefer to think of
it as a regular convolutional layer that uses fractional strides (e.g., the stride is 1/2
in Figure 14-28). The transposed convolutional layer can be initialized to perform
something close to linear interpolation, but since it is a trainable layer, it will learn to
do better during training. In Keras, you can use the Conv2DTranspose layer.

In a transposed convolutional layer, the stride defines how much
the input will be stretched, not the size of the filter steps, so the
larger the stride, the larger the output (unlike for convolutional
layers or pooling layers).

532 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

Figure 14-28. Upsampling using a transposed convolutional layer

Other Keras Convolutional Layers
Keras also offers a few other kinds of convolutional layers:

tf.keras.layers.Conv1D

A convolutional layer for 1D inputs, such as time series or text (sequences of
letters or words), as you will see in Chapter 15.

tf.keras.layers.Conv3D

A convolutional layer for 3D inputs, such as 3D PET scans.

dilation_rate

Setting the dilation_rate hyperparameter of any convolutional layer to a value
of 2 or more creates an à-trous convolutional layer (“à trous” is French for “with
holes”). This is equivalent to using a regular convolutional layer with a filter
dilated by inserting rows and columns of zeros (i.e., holes). For example, a 1 ×
3 filter equal to [[1,2,3]] may be dilated with a dilation rate of 4, resulting in
a dilated filter of [[1, 0, 0, 0, 2, 0, 0, 0, 3]]. This lets the convolutional
layer have a larger receptive field at no computational price and using no extra
parameters.

Using transposed convolutional layers for upsampling is OK, but still too imprecise.
To do better, Long et al. added skip connections from lower layers: for example, they
upsampled the output image by a factor of 2 (instead of 32), and they added the
output of a lower layer that had this double resolution. Then they upsampled the
result by a factor of 16, leading to a total upsampling factor of 32 (see Figure 14-29).
This recovered some of the spatial resolution that was lost in earlier pooling layers.

Semantic Segmentation | 533

40 Kaiming He et al., “Mask R-CNN”, arXiv preprint arXiv:1703.06870 (2017).

In their best architecture, they used a second similar skip connection to recover even
finer details from an even lower layer. In short, the output of the original CNN goes
through the following extra steps: upsample ×2, add the output of a lower layer (of
the appropriate scale), upsample ×2, add the output of an even lower layer, and finally
upsample ×8. It is even possible to scale up beyond the size of the original image:
this can be used to increase the resolution of an image, which is a technique called
super-resolution.

Figure 14-29. Skip layers recover some spatial resolution from lower layers

Instance segmentation is similar to semantic segmentation, but instead of merging
all objects of the same class into one big lump, each object is distinguished from
the others (e.g., it identifies each individual bicycle). For example the Mask R-CNN
architecture, proposed in a 2017 paper40 by Kaiming He et al., extends the Faster
R-CNN model by additionally producing a pixel mask for each bounding box. So,
not only do you get a bounding box around each object, with a set of estimated class
probabilities, but you also get a pixel mask that locates pixels in the bounding box
that belong to the object. This model is available on TensorFlow Hub, pretrained
on the COCO 2017 dataset. The field is moving fast, though so if you want to try
the latest and greatest models, please check out the state-of-the-art section of https://
paperswithcode.com.

As you can see, the field of deep computer vision is vast and fast-paced, with all sorts
of architectures popping up every year. Almost all of them are based on convolutional
neural networks, but since 2020 another neural net architecture has entered the
computer vision space: transformers (which we will discuss in Chapter 16). The
progress made over the last decade has been astounding, and researchers are now
focusing on harder and harder problems, such as adversarial learning (which attempts
to make the network more resistant to images designed to fool it), explainability
(understanding why the network makes a specific classification), realistic image gen‐
eration (which we will come back to in Chapter 17), single-shot learning (a system that

534 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

https://homl.info/maskrcnn
https://paperswithcode.com
https://paperswithcode.com

can recognize an object after it has seen it just once), predicting the next frames in a
video, combining text and image tasks, and more.

Now on to the next chapter, where we will look at how to process sequential data such
as time series using recurrent neural networks and convolutional neural networks.

Exercises
1. What are the advantages of a CNN over a fully connected DNN for image1.

classification?
2. Consider a CNN composed of three convolutional layers, each with 3 × 3 kernels,2.

a stride of 2, and "same" padding. The lowest layer outputs 100 feature maps, the
middle one outputs 200, and the top one outputs 400. The input images are RGB
images of 200 × 300 pixels:
a. What is the total number of parameters in the CNN?a.
b. If we are using 32-bit floats, at least how much RAM will this network requireb.

when making a prediction for a single instance?
c. What about when training on a mini-batch of 50 images?c.

3. If your GPU runs out of memory while training a CNN, what are five things you3.
could try to solve the problem?

4. Why would you want to add a max pooling layer rather than a convolutional4.
layer with the same stride?

5. When would you want to add a local response normalization layer?5.
6. Can you name the main innovations in AlexNet, as compared to LeNet-5?6.

What about the main innovations in GoogLeNet, ResNet, SENet, Xception, and
EfficientNet?

7. What is a fully convolutional network? How can you convert a dense layer into a7.
convolutional layer?

8. What is the main technical difficulty of semantic segmentation?8.
9. Build your own CNN from scratch and try to achieve the highest possible9.

accuracy on MNIST.
10. Use transfer learning for large image classification, going through these steps:10.

a. Create a training set containing at least 100 images per class. For example, youa.
could classify your own pictures based on the location (beach, mountain, city,
etc.), or alternatively you can use an existing dataset (e.g., from TensorFlow
Datasets).

b. Split it into a training set, a validation set, and a test set.b.

Exercises | 535

c. Build the input pipeline, apply the appropriate preprocessing operations, andc.
optionally add data augmentation.

d. Fine-tune a pretrained model on this dataset.d.
11. Go through TensorFlow’s Style Transfer tutorial. This is a fun way to generate art11.

using deep learning.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

536 | Chapter 14: Deep Computer Vision Using Convolutional Neural Networks

https://homl.info/styletuto
https://homl.info/colab3

CHAPTER 15

Processing Sequences Using
RNNs and CNNs

Predicting the future is something you do all the time, whether you are finishing a
friend’s sentence or anticipating the smell of coffee at breakfast. In this chapter we
will discuss recurrent neural networks (RNNs)—a class of nets that can predict the
future (well, up to a point). RNNs can analyze time series data, such as the number
of daily active users on your website, the hourly temperature in your city, your home’s
daily power consumption, the trajectories of nearby cars, and more. Once an RNN
learns past patterns in the data, it is able to use its knowledge to forecast the future,
assuming of course that past patterns still hold in the future.

More generally, RNNs can work on sequences of arbitrary lengths, rather than
on fixed-sized inputs. For example, they can take sentences, documents, or audio
samples as input, making them extremely useful for natural language processing
applications such as automatic translation or speech-to-text.

In this chapter, we will first go through the fundamental concepts underlying RNNs
and how to train them using backpropagation through time. Then, we will use them
to forecast a time series. Along the way, we will look at the popular ARMA family of
models, often used to forecast time series, and use them as baselines to compare with
our RNNs. After that, we’ll explore the two main difficulties that RNNs face:

• Unstable gradients (discussed in Chapter 11), which can be alleviated using vari‐•
ous techniques, including recurrent dropout and recurrent layer normalization.

• A (very) limited short-term memory, which can be extended using LSTM and•
GRU cells.

537

RNNs are not the only types of neural networks capable of handling sequential data.
For small sequences, a regular dense network can do the trick, and for very long
sequences, such as audio samples or text, convolutional neural networks can actually
work quite well too. We will discuss both of these possibilities, and we will finish
this chapter by implementing a WaveNet—a CNN architecture capable of handling
sequences of tens of thousands of time steps. Let’s get started!

Recurrent Neurons and Layers
Up to now we have focused on feedforward neural networks, where the activations
flow only in one direction, from the input layer to the output layer. A recurrent
neural network looks very much like a feedforward neural network, except it also has
connections pointing backward.

Let’s look at the simplest possible RNN, composed of one neuron receiving inputs,
producing an output, and sending that output back to itself, as shown in Figure 15-1
(left). At each time step t (also called a frame), this recurrent neuron receives the inputs
x(t) as well as its own output from the previous time step, ŷ(t–1). Since there is no
previous output at the first time step, it is generally set to 0. We can represent this tiny
network against the time axis, as shown in Figure 15-1 (right). This is called unrolling
the network through time (it’s the same recurrent neuron represented once per time
step).

Figure 15-1. A recurrent neuron (left) unrolled through time (right)

You can easily create a layer of recurrent neurons. At each time step t, every neuron
receives both the input vector x(t) and the output vector from the previous time step
ŷ(t–1), as shown in Figure 15-2. Note that both the inputs and outputs are now vectors
(when there was just a single neuron, the output was a scalar).

538 | Chapter 15: Processing Sequences Using RNNs and CNNs

1 Note that many researchers prefer to use the hyperbolic tangent (tanh) activation function in RNNs rather
than the ReLU activation function. For example, see Vu Pham et al.’s 2013 paper “Dropout Improves Recur‐
rent Neural Networks for Handwriting Recognition”. ReLU-based RNNs are also possible, as shown in Quoc
V. Le et al.’s 2015 paper “A Simple Way to Initialize Recurrent Networks of Rectified Linear Units”.

Figure 15-2. A layer of recurrent neurons (left) unrolled through time (right)

Each recurrent neuron has two sets of weights: one for the inputs x(t) and the other for
the outputs of the previous time step, ŷ(t–1). Let’s call these weight vectors wx and wŷ.
If we consider the whole recurrent layer instead of just one recurrent neuron, we can
place all the weight vectors in two weight matrices: Wx and Wŷ.

The output vector of the whole recurrent layer can then be computed pretty much as
you might expect, as shown in Equation 15-1, where b is the bias vector and ϕ(·) is
the activation function (e.g., ReLU1).

Equation 15-1. Output of a recurrent layer for a single instance

ŷ t = ϕ Wx
⊺x t + Wŷ

⊺ŷ t − 1 + b

Just as with feedforward neural networks, we can compute a recurrent layer’s output
in one shot for an entire mini-batch by placing all the inputs at time step t into an
input matrix X(t) (see Equation 15-2).

Equation 15-2. Outputs of a layer of recurrent neurons for all instances in a pass:
[mini-batch

Ŷ t = ϕ X t Wx + Ŷ t − 1 Wŷ + b

= ϕ X t Ŷ t − 1 W + b with W =
Wx

Wŷ

Recurrent Neurons and Layers | 539

https://homl.info/91
https://homl.info/92

In this equation:

• Ŷ(t) is an m × nneurons matrix containing the layer’s outputs at time step t for each•
instance in the mini-batch (m is the number of instances in the mini-batch and
nneurons is the number of neurons).

• X(t) is an m × ninputs matrix containing the inputs for all instances (ninputs is the•
number of input features).

• Wx is an ninputs × nneurons matrix containing the connection weights for the inputs•
of the current time step.

• Wŷ is an nneurons × nneurons matrix containing the connection weights for the•
outputs of the previous time step.

• b is a vector of size nneurons containing each neuron’s bias term.•
• The weight matrices Wx and Wŷ are often concatenated vertically into a single•

weight matrix W of shape (ninputs + nneurons) × nneurons (see the second line of
Equation 15-2).

• The notation [X(t) Ŷ(t–1)] represents the horizontal concatenation of the matrices•
X(t) and Ŷ(t–1).

Notice that Ŷ(t) is a function of X(t) and Ŷ(t–1), which is a function of X(t–1) and Ŷ(t–2),
which is a function of X(t–2) and Ŷ(t–3), and so on. This makes Ŷ(t) a function of all the
inputs since time t = 0 (that is, X(0), X(1), …, X(t)). At the first time step, t = 0, there are
no previous outputs, so they are typically assumed to be all zeros.

Memory Cells
Since the output of a recurrent neuron at time step t is a function of all the inputs
from previous time steps, you could say it has a form of memory. A part of a neural
network that preserves some state across time steps is called a memory cell (or simply
a cell). A single recurrent neuron, or a layer of recurrent neurons, is a very basic cell,
capable of learning only short patterns (typically about 10 steps long, but this varies
depending on the task). Later in this chapter, we will look at some more complex and
powerful types of cells capable of learning longer patterns (roughly 10 times longer,
but again, this depends on the task).

A cell’s state at time step t, denoted h(t) (the “h” stands for “hidden”), is a function of
some inputs at that time step and its state at the previous time step: h(t) = f(x(t), h(t–1)).
Its output at time step t, denoted ŷ(t), is also a function of the previous state and the
current inputs. In the case of the basic cells we have discussed so far, the output is just
equal to the state, but in more complex cells this is not always the case, as shown in
Figure 15-3.

540 | Chapter 15: Processing Sequences Using RNNs and CNNs

2 Nal Kalchbrenner and Phil Blunsom, “Recurrent Continuous Translation Models”, Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing (2013): 1700–1709.

Figure 15-3. A cell’s hidden state and its output may be different

Input and Output Sequences
An RNN can simultaneously take a sequence of inputs and produce a sequence of
outputs (see the top-left network in Figure 15-4). This type of sequence-to-sequence
network is useful to forecast time series, such as your home’s daily power consump‐
tion: you feed it the data over the last N days, and you train it to output the
power consumption shifted by one day into the future (i.e., from N – 1 days ago to
tomorrow).

Alternatively, you could feed the network a sequence of inputs and ignore all outputs
except for the last one (see the top-right network in Figure 15-4). This is a sequence-
to-vector network. For example, you could feed the network a sequence of words
corresponding to a movie review, and the network would output a sentiment score
(e.g., from 0 [hate] to 1 [love]).

Conversely, you could feed the network the same input vector over and over again
at each time step and let it output a sequence (see the bottom-left network of
Figure 15-4). This is a vector-to-sequence network. For example, the input could be an
image (or the output of a CNN), and the output could be a caption for that image.

Lastly, you could have a sequence-to-vector network, called an encoder, followed
by a vector-to-sequence network, called a decoder (see the bottom-right network of
Figure 15-4). For example, this could be used for translating a sentence from one
language to another. You would feed the network a sentence in one language, the
encoder would convert this sentence into a single vector representation, and then the
decoder would decode this vector into a sentence in another language. This two-step
model, called an encoder–decoder,2 works much better than trying to translate on
the fly with a single sequence-to-sequence RNN (like the one represented at the top
left): the last words of a sentence can affect the first words of the translation, so you

Recurrent Neurons and Layers | 541

https://homl.info/seq2seq

need to wait until you have seen the whole sentence before translating it. We will go
through the implementation of an encoder–decoder in Chapter 16 (as you will see, it
is a bit more complex than what Figure 15-4 suggests).

Figure 15-4. Sequence-to-sequence (top left), sequence-to-vector (top right), vector-to-
sequence (bottom left), and encoder–decoder (bottom right) networks

This versatility sounds promising, but how do you train a recurrent neural network?

Training RNNs
To train an RNN, the trick is to unroll it through time (like we just did) and then
use regular backpropagation (see Figure 15-5). This strategy is called backpropagation
through time (BPTT).

Just like in regular backpropagation, there is a first forward pass through the unrolled
network (represented by the dashed arrows). Then the output sequence is evaluated
using a loss function ℒ(Y(0), Y(1), …, Y(T); Ŷ(0), Ŷ(1), …, Ŷ(T)) (where Y(i) is the ith

target, Ŷ(i) is the ith prediction, and T is the max time step). Note that this loss
function may ignore some outputs. For example, in a sequence-to-vector RNN, all
outputs are ignored except for the very last one. In Figure 15-5, the loss function is
computed based on the last three outputs only. The gradients of that loss function are
then propagated backward through the unrolled network (represented by the solid
arrows). In this example, since the outputs Ŷ(0) and Ŷ(1) are not used to compute
the loss, the gradients do not flow backward through them; they only flow through

542 | Chapter 15: Processing Sequences Using RNNs and CNNs

3 The latest data from the Chicago Transit Authority is available at the Chicago Data Portal.

Ŷ(2), Ŷ(3), and Ŷ(4). Moreover, since the same parameters W and b are used at each
time step, their gradients will be tweaked multiple times during backprop. Once the
backward phase is complete and all the gradients have been computed, BPTT can
perform a gradient descent step to update the parameters (this is no different from
regular backprop).

Figure 15-5. Backpropagation through time

Fortunately, Keras takes care of all of this complexity for you, as you will see. But
before we get there, let’s load a time series and start analyzing it using classical tools
to better understand what we’re dealing with, and to get some baseline metrics.

Forecasting a Time Series
All right! Let’s pretend you’ve just been hired as a data scientist by Chicago’s Transit
Authority. Your first task is to build a model capable of forecasting the number
of passengers that will ride on bus and rail the next day. You have access to daily
ridership data since 2001. Let’s walk through together how you would handle this.
We’ll start by loading and cleaning up the data:3

import pandas as pd
from pathlib import Path

path = Path("datasets/ridership/CTA_-_Ridership_-_Daily_Boarding_Totals.csv")
df = pd.read_csv(path, parse_dates=["service_date"])
df.columns = ["date", "day_type", "bus", "rail", "total"] # shorter names
df = df.sort_values("date").set_index("date")

Forecasting a Time Series | 543

https://homl.info/ridership

df = df.drop("total", axis=1) # no need for total, it's just bus + rail
df = df.drop_duplicates() # remove duplicated months (2011-10 and 2014-07)

We load the CSV file, set short column names, sort the rows by date, remove the
redundant total column, and drop duplicate rows. Now let’s check what the first few
rows look like:

>>> df.head()
 day_type bus rail
date
2001-01-01 U 297192 126455
2001-01-02 W 780827 501952
2001-01-03 W 824923 536432
2001-01-04 W 870021 550011
2001-01-05 W 890426 557917

On January 1st, 2001, 297,192 people boarded a bus in Chicago, and 126,455 boarded
a train. The day_type column contains W for Weekdays, A for Saturdays, and U for
Sundays or holidays.

Now let’s plot the bus and rail ridership figures over a few months in 2019, to see
what it looks like (see Figure 15-6):

import matplotlib.pyplot as plt

df["2019-03":"2019-05"].plot(grid=True, marker=".", figsize=(8, 3.5))
plt.show()

Figure 15-6. Daily ridership in Chicago

544 | Chapter 15: Processing Sequences Using RNNs and CNNs

Note that Pandas includes both the start and end month in the range, so this plots the
data from the 1st of March all the way up to the 31st of May. This is a time series: data
with values at different time steps, usually at regular intervals. More specifically, since
there are multiple values per time step, this is called a multivariate time series. If we
only looked at the bus column, it would be a univariate time series, with a single value
per time step. Predicting future values (i.e., forecasting) is the most typical task when
dealing with time series, and this is what we will focus on in this chapter. Other tasks
include imputation (filling in missing past values), classification, anomaly detection,
and more.

Looking at Figure 15-6, we can see that a similar pattern is clearly repeated every
week. This is called a weekly seasonality. In fact, it’s so strong in this case that
forecasting tomorrow’s ridership by just copying the values from a week earlier will
yield reasonably good results. This is called naive forecasting: simply copying a past
value to make our forecast. Naive forecasting is often a great baseline, and it can even
be tricky to beat in some cases.

In general, naive forecasting means copying the latest known value
(e.g., forecasting that tomorrow will be the same as today). How‐
ever, in our case, copying the value from the previous week works
better, due to the strong weekly seasonality.

To visualize these naive forecasts, let’s overlay the two time series (for bus and rail) as
well as the same time series lagged by one week (i.e., shifted toward the right) using
dotted lines. We’ll also plot the difference between the two (i.e., the value at time t
minus the value at time t – 7); this is called differencing (see Figure 15-7):

diff_7 = df[["bus", "rail"]].diff(7)["2019-03":"2019-05"]

fig, axs = plt.subplots(2, 1, sharex=True, figsize=(8, 5))
df.plot(ax=axs[0], legend=False, marker=".") # original time series
df.shift(7).plot(ax=axs[0], grid=True, legend=False, linestyle=":") # lagged
diff_7.plot(ax=axs[1], grid=True, marker=".") # 7-day difference time series
plt.show()

Not too bad! Notice how closely the lagged time series track the actual time series.
When a time series is correlated with a lagged version of itself, we say that the time
series is autocorrelated. As you can see, most of the differences are fairly small, except
at the end of May. Maybe there was a holiday at that time? Let’s check the day_type
column:

>>> list(df.loc["2019-05-25":"2019-05-27"]["day_type"])
['A', 'U', 'U']

Forecasting a Time Series | 545

Figure 15-7. Time series overlaid with 7-day lagged time series (top), and difference
between t and t – 7 (bottom)

Indeed, there was a long weekend back then: the Monday was the Memorial Day
holiday. We could use this column to improve our forecasts, but for now let’s just
measure the mean absolute error over the three-month period we’re arbitrarily focus‐
ing on—March, April, and May 2019—to get a rough idea:

>>> diff_7.abs().mean()
bus 43915.608696
rail 42143.271739
dtype: float64

Our naive forecasts get an MAE of about 43,916 bus riders, and about 42,143 rail
riders. It’s hard to tell at a glance how good or bad this is, so let’s put the forecast
errors into perspective by dividing them by the target values:

>>> targets = df[["bus", "rail"]]["2019-03":"2019-05"]
>>> (diff_7 / targets).abs().mean()
bus 0.082938
rail 0.089948
dtype: float64

What we just computed is called the mean absolute percentage error (MAPE): it looks
like our naive forecasts give us a MAPE of roughly 8.3% for bus and 9.0% for rail. It’s
interesting to note that the MAE for the rail forecasts looks slightly better than the
MAE for the bus forecasts, while the opposite is true for the MAPE. That’s because
the bus ridership is larger than the rail ridership, so naturally the forecast errors are

546 | Chapter 15: Processing Sequences Using RNNs and CNNs

also larger, but when we put the errors into perspective, it turns out that the bus
forecasts are actually slightly better than the rail forecasts.

The MAE, MAPE, and MSE are among the most common metrics
you can use to evaluate your forecasts. As always, choosing the
right metric depends on the task. For example, if your project
suffers quadratically more from large errors than from small ones,
then the MSE may be preferable, as it strongly penalizes large
errors.

Looking at the time series, there doesn’t appear to be any significant monthly season‐
ality, but let’s check whether there’s any yearly seasonality. We’ll look at the data from
2001 to 2019. To reduce the risk of data snooping, we’ll ignore more recent data for
now. Let’s also plot a 12-month rolling average for each series to visualize long-term
trends (see Figure 15-8):

period = slice("2001", "2019")
df_monthly = df.resample('M').mean() # compute the mean for each month
rolling_average_12_months = df_monthly[period].rolling(window=12).mean()

fig, ax = plt.subplots(figsize=(8, 4))
df_monthly[period].plot(ax=ax, marker=".")
rolling_average_12_months.plot(ax=ax, grid=True, legend=False)
plt.show()

Figure 15-8. Yearly seasonality and long-term trends

Yep! There’s definitely some yearly seasonality as well, although it is noisier than the
weekly seasonality, and more visible for the rail series than the bus series: we see
peaks and troughs at roughly the same dates each year. Let’s check what we get if we
plot the 12-month difference (see Figure 15-9):

Forecasting a Time Series | 547

df_monthly.diff(12)[period].plot(grid=True, marker=".", figsize=(8, 3))
plt.show()

Figure 15-9. The 12-month difference

Notice how differencing not only removed the yearly seasonality, but it also removed
the long-term trends. For example, the linear downward trend present in the time
series from 2016 to 2019 became a roughly constant negative value in the differenced
time series. In fact, differencing is a common technique used to remove trend and
seasonality from a time series: it’s easier to study a stationary time series, meaning
one whose statistical properties remain constant over time, without any seasonality or
trends. Once you’re able to make accurate forecasts on the differenced time series, it’s
easy to turn them into forecasts for the actual time series by just adding back the past
values that were previously subtracted.

You may be thinking that we’re only trying to predict tomorrow’s ridership, so the
long-term patterns matter much less than the short-term ones. You’re right, but still,
we may be able to improve performance slightly by taking long-term patterns into
account. For example, daily bus ridership dropped by about 2,500 in October 2017,
which represents about 570 fewer passengers each week, so if we were at the end of
October 2017, it would make sense to forecast tomorrow’s ridership by copying the
value from last week, minus 570. Accounting for the trend will make your forecasts a
bit more accurate on average.

Now that you’re familiar with the ridership time series, as well as some of the most
important concepts in time series analysis, including seasonality, trend, differencing,
and moving averages, let’s take a quick look at a very popular family of statistical
models that are commonly used to analyze time series.

548 | Chapter 15: Processing Sequences Using RNNs and CNNs

The ARMA Model Family
We’ll start with the autoregressive moving average (ARMA) model, developed by
Herman Wold in the 1930s: it computes its forecasts using a simple weighted sum
of lagged values and corrects these forecasts by adding a moving average, very much
like we just discussed. Specifically, the moving average component is computed using
a weighted sum of the last few forecast errors. Equation 15-3 shows how the model
makes its forecasts.

Equation 15-3. Forecasting using an ARMA model

y t = ∑i = 1
p

αiy t − i + ∑i = 1
q

θiϵ t − i

with ϵ t = y t − y t

In this equation:

• ŷ(t) is the model’s forecast for time step t.•
• y(t) is the time series’ value at time step t.•
• The first sum is the weighted sum of the past p values of the time series, using•

the learned weights αi. The number p is a hyperparameter, and it determines
how far back into the past the model should look. This sum is the autoregressive
component of the model: it performs regression based on past values.

• The second sum is the weighted sum over the past q forecast errors ε(t), using the•
learned weights θi. The number q is a hyperparameter. This sum is the moving
average component of the model.

Importantly, this model assumes that the time series is stationary. If it is not, then
differencing may help. Using differencing over a single time step will produce an
approximation of the derivative of the time series: indeed, it will give the slope
of the series at each time step. This means that it will eliminate any linear trend,
transforming it into a constant value. For example, if you apply one-step differencing
to the series [3, 5, 7, 9, 11], you get the differenced series [2, 2, 2, 2].

If the original time series has a quadratic trend instead of a linear trend, then a single
round of differencing will not be enough. For example, the series [1, 4, 9, 16, 25, 36]
becomes [3, 5, 7, 9, 11] after one round of differencing, but if you run differencing
for a second round, then you get [2, 2, 2, 2]. So, running two rounds of differencing
will eliminate quadratic trends. More generally, running d consecutive rounds of
differencing computes an approximation of the dth order derivative of the time series,
so it will eliminate polynomial trends up to degree d. This hyperparameter d is called
the order of integration.

Forecasting a Time Series | 549

Differencing is the central contribution of the autoregressive integrated moving average
(ARIMA) model, introduced in 1970 by George Box and Gwilym Jenkins in their
book Time Series Analysis (Wiley): this model runs d rounds of differencing to make
the time series more stationary, then it applies a regular ARMA model. When making
forecasts, it uses this ARMA model, then it adds back the terms that were subtracted
by differencing.

One last member of the ARMA family is the seasonal ARIMA (SARIMA) model:
it models the time series in the same way as ARIMA, but it additionally models
a seasonal component for a given frequency (e.g., weekly), using the exact same
ARIMA approach. It has a total of seven hyperparameters: the same p, d, and q
hyperparameters as ARIMA, plus additional P, D, and Q hyperparameters to model
the seasonal pattern, and lastly the period of the seasonal pattern, noted s. The
hyperparameters P, D, and Q are just like p, d, and q, but they are used to model the
time series at t – s, t – 2s, t – 3s, etc.

Let’s see how to fit a SARIMA model to the rail time series, and use it to make a
forecast for tomorrow’s ridership. We’ll pretend today is the last day of May 2019, and
we want to forecast the rail ridership for “tomorrow”, the 1st of June, 2019. For this,
we can use the statsmodels library, which contains many different statistical models,
including the ARMA model and its variants, implemented by the ARIMA class:

from statsmodels.tsa.arima.model import ARIMA

origin, today = "2019-01-01", "2019-05-31"
rail_series = df.loc[origin:today]["rail"].asfreq("D")
model = ARIMA(rail_series,
 order=(1, 0, 0),
 seasonal_order=(0, 1, 1, 7))
model = model.fit()
y_pred = model.forecast() # returns 427,758.6

In this code example:

• We start by importing the ARIMA class, then we take the rail ridership data from•
the start of 2019 up to “today”, and we use asfreq("D") to set the time series’
frequency to daily: this doesn’t change the data at all in this case, since it’s already
daily, but without this the ARIMA class would have to guess the frequency, and it
would display a warning.

• Next, we create an ARIMA instance, passing it all the data until “today”, and we set•
the model hyperparameters: order=(1, 0, 0) means that p = 1, d = 0, q = 0, and
seasonal_order=(0, 1, 1, 7) means that P = 0, D = 1, Q = 1, and s = 7. Notice
that the statsmodels API differs a bit from Scikit-Learn’s API, since we pass the
data to the model at construction time, instead of passing it to the fit() method.

550 | Chapter 15: Processing Sequences Using RNNs and CNNs

4 There are other more principled approaches to selecting good hyperparameters, based on analyzing the
autocorrelation function (ACF) and partial autocorrelation function (PACF), or minimizing the AIC or BIC
metrics (introduced in Chapter 9) to penalize models that use too many parameters and reduce the risk of
overfitting the data, but grid search is a good place to start. For more details on the ACF-PACF approach,
check out this very nice post by Jason Brownlee.

• Next, we fit the model, and we use it to make a forecast for “tomorrow”, the 1st of•
June, 2019.

The forecast is 427,759 passengers, when in fact there were 379,044. Yikes, we’re
12.9% off—that’s pretty bad. It’s actually slightly worse than naive forecasting, which
forecasts 426,932, off by 12.6%. But perhaps we were just unlucky that day? To check
this, we can run the same code in a loop to make forecasts for every day in March,
April, and May, and compute the MAE over that period:

origin, start_date, end_date = "2019-01-01", "2019-03-01", "2019-05-31"
time_period = pd.date_range(start_date, end_date)
rail_series = df.loc[origin:end_date]["rail"].asfreq("D")
y_preds = []
for today in time_period.shift(-1):
 model = ARIMA(rail_series[origin:today], # train on data up to "today"
 order=(1, 0, 0),
 seasonal_order=(0, 1, 1, 7))
 model = model.fit() # note that we retrain the model every day!
 y_pred = model.forecast()[0]
 y_preds.append(y_pred)

y_preds = pd.Series(y_preds, index=time_period)
mae = (y_preds - rail_series[time_period]).abs().mean() # returns 32,040.7

Ah, that’s much better! The MAE is about 32,041, which is significantly lower than
the MAE we got with naive forecasting (42,143). So although the model is not perfect,
it still beats naive forecasting by a large margin, on average.

At this point, you may be wondering how to pick good hyperparameters for the
SARIMA model. There are several methods, but the simplest to understand and
to get started with is the brute-force approach: just run a grid search. For each
model you want to evaluate (i.e., each hyperparameter combination), you can run
the preceding code example, changing only the hyperparameter values. Good p, q, P,
and Q values are usually fairly small (typically 0 to 2, sometimes up to 5 or 6), and d
and D are typically 0 or 1, sometimes 2. As for s, it’s just the main seasonal pattern’s
period: in our case it’s 7 since there’s a strong weekly seasonality. The model with the
lowest MAE wins. Of course, you can replace the MAE with another metric if it better
matches your business objective. And that’s it!4

Forecasting a Time Series | 551

https://homl.info/arimatuning

Preparing the Data for Machine Learning Models
Now that we have two baselines, naive forecasting and SARIMA, let’s try to use the
machine learning models we’ve covered so far to forecast this time series, starting
with a basic linear model. Our goal will be to forecast tomorrow’s ridership based
on the ridership of the past 8 weeks of data (56 days). The inputs to our model
will therefore be sequences (usually a single sequence per day once the model is in
production), each containing 56 values from time steps t – 55 to t. For each input
sequence, the model will output a single value: the forecast for time step t + 1.

But what will we use as training data? Well, that’s the trick: we will use every 56-day
window from the past as training data, and the target for each window will be the
value immediately following it.

Keras actually has a nice utility function called tf.keras.utils.timeseries_
dataset_from_array() to help us prepare the training set. It takes a time series
as input, and it builds a tf.data.Dataset (introduced in Chapter 13) containing all
the windows of the desired length, as well as their corresponding targets. Here’s an
example that takes a time series containing the numbers 0 to 5 and creates a dataset
containing all the windows of length 3, with their corresponding targets, grouped
into batches of size 2:

import tensorflow as tf

my_series = [0, 1, 2, 3, 4, 5]
my_dataset = tf.keras.utils.timeseries_dataset_from_array(
 my_series,
 targets=my_series[3:], # the targets are 3 steps into the future
 sequence_length=3,
 batch_size=2
)

Let’s inspect the contents of this dataset:

>>> list(my_dataset)
[(<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
 array([[0, 1, 2],
 [1, 2, 3]], dtype=int32)>,
 <tf.Tensor: shape=(2,), dtype=int32, numpy=array([3, 4], dtype=int32)>),
 (<tf.Tensor: shape=(1, 3), dtype=int32, numpy=array([[2, 3, 4]], dtype=int32)>,
 <tf.Tensor: shape=(1,), dtype=int32, numpy=array([5], dtype=int32)>)]

Each sample in the dataset is a window of length 3, along with its corresponding
target (i.e., the value immediately after the window). The windows are [0, 1, 2], [1,
2, 3], and [2, 3, 4], and their respective targets are 3, 4, and 5. Since there are three
windows in total, which is not a multiple of the batch size, the last batch only contains
one window instead of two.

552 | Chapter 15: Processing Sequences Using RNNs and CNNs

Another way to get the same result is to use the window() method of tf.data’s Dataset
class. It’s more complex, but it gives you full control, which will come in handy later
in this chapter, so let’s see how it works. The window() method returns a dataset of
window datasets:

>>> for window_dataset in tf.data.Dataset.range(6).window(4, shift=1):
... for element in window_dataset:
... print(f"{element}", end=" ")
... print()
...
0 1 2 3
1 2 3 4
2 3 4 5
3 4 5
4 5
5

In this example, the dataset contains six windows, each shifted by one step compared
to the previous one, and the last three windows are smaller because they’ve reached
the end of the series. In general you’ll want to get rid of these smaller windows by
passing drop_remainder=True to the window() method.

The window() method returns a nested dataset, analogous to a list of lists. This is
useful when you want to transform each window by calling its dataset methods (e.g.,
to shuffle them or batch them). However, we cannot use a nested dataset directly for
training, as our model will expect tensors as input, not datasets.

Therefore, we must call the flat_map() method: it converts a nested dataset into a
flat dataset (one that contains tensors, not datasets). For example, suppose {1, 2, 3}
represents a dataset containing the sequence of tensors 1, 2, and 3. If you flatten the
nested dataset {{1, 2}, {3, 4, 5, 6}}, you get back the flat dataset {1, 2, 3, 4, 5, 6}.

Moreover, the flat_map() method takes a function as an argument, which allows you
to transform each dataset in the nested dataset before flattening. For example, if you
pass the function lambda ds: ds.batch(2) to flat_map(), then it will transform the
nested dataset {{1, 2}, {3, 4, 5, 6}} into the flat dataset {[1, 2], [3, 4], [5, 6]}: it’s a dataset
containing 3 tensors, each of size 2.

With that in mind, we are ready to flatten our dataset:

>>> dataset = tf.data.Dataset.range(6).window(4, shift=1, drop_remainder=True)
>>> dataset = dataset.flat_map(lambda window_dataset: window_dataset.batch(4))
>>> for window_tensor in dataset:
... print(f"{window_tensor}")
...
[0 1 2 3]
[1 2 3 4]
[2 3 4 5]

Forecasting a Time Series | 553

Since each window dataset contains exactly four items, calling batch(4) on a window
produces a single tensor of size 4. Great! We now have a dataset containing consecu‐
tive windows represented as tensors. Let’s create a little helper function to make it
easier to extract windows from a dataset:

def to_windows(dataset, length):
 dataset = dataset.window(length, shift=1, drop_remainder=True)
 return dataset.flat_map(lambda window_ds: window_ds.batch(length))

The last step is to split each window into inputs and targets, using the map() method.
We can also group the resulting windows into batches of size 2:

>>> dataset = to_windows(tf.data.Dataset.range(6), 4) # 3 inputs + 1 target = 4
>>> dataset = dataset.map(lambda window: (window[:-1], window[-1]))
>>> list(dataset.batch(2))
[(<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
 array([[0, 1, 2],
 [1, 2, 3]])>,
 <tf.Tensor: shape=(2,), dtype=int64, numpy=array([3, 4])>),
 (<tf.Tensor: shape=(1, 3), dtype=int64, numpy=array([[2, 3, 4]])>,
 <tf.Tensor: shape=(1,), dtype=int64, numpy=array([5])>)]

As you can see, we now have the same output as we got earlier with the
timeseries_dataset_from_array() function (with a bit more effort, but it will be
worthwhile soon).

Now, before we start training, we need to split our data into a training period, a
validation period, and a test period. We will focus on the rail ridership for now. We
will also scale it down by a factor of one million, to ensure the values are near the 0–1
range; this plays nicely with the default weight initialization and learning rate:

rail_train = df["rail"]["2016-01":"2018-12"] / 1e6
rail_valid = df["rail"]["2019-01":"2019-05"] / 1e6
rail_test = df["rail"]["2019-06":] / 1e6

When dealing with time series, you generally want to split across
time. However, in some cases you may be able to split along other
dimensions, which will give you a longer time period to train
on. For example, if you have data about the financial health of
10,000 companies from 2001 to 2019, you might be able to split
this data across the different companies. It’s very likely that many
of these companies will be strongly correlated, though (e.g., whole
economic sectors may go up or down jointly), and if you have
correlated companies across the training set and the test set, your
test set will not be as useful, as its measure of the generalization
error will be optimistically biased.

554 | Chapter 15: Processing Sequences Using RNNs and CNNs

5 Note that the validation period starts on the 1st of January 2019, so the first prediction is for the 26th of
February 2019, eight weeks later. When we evaluated the baseline models we used predictions starting on the
1st of March instead, but this should be close enough.

Next, let’s use timeseries_dataset_from_array() to create datasets for training and
validation. Since gradient descent expects the instances in the training set to be
independent and identically distributed (IID), as we saw in Chapter 4, we must set the
argument shuffle=True to shuffle the training windows (but not their contents):

seq_length = 56
train_ds = tf.keras.utils.timeseries_dataset_from_array(
 rail_train.to_numpy(),
 targets=rail_train[seq_length:],
 sequence_length=seq_length,
 batch_size=32,
 shuffle=True,
 seed=42
)
valid_ds = tf.keras.utils.timeseries_dataset_from_array(
 rail_valid.to_numpy(),
 targets=rail_valid[seq_length:],
 sequence_length=seq_length,
 batch_size=32
)

And now we’re ready to build and train any regression model we want!

Forecasting Using a Linear Model
Let’s try a basic linear model first. We will use the Huber loss, which usually works
better than minimizing the MAE directly, as discussed in Chapter 10. We’ll also use
early stopping:

tf.random.set_seed(42)
model = tf.keras.Sequential([
 tf.keras.layers.Dense(1, input_shape=[seq_length])
])
early_stopping_cb = tf.keras.callbacks.EarlyStopping(
 monitor="val_mae", patience=50, restore_best_weights=True)
opt = tf.keras.optimizers.SGD(learning_rate=0.02, momentum=0.9)
model.compile(loss=tf.keras.losses.Huber(), optimizer=opt, metrics=["mae"])
history = model.fit(train_ds, validation_data=valid_ds, epochs=500,
 callbacks=[early_stopping_cb])

This model reaches a validation MAE of about 37,866 (your mileage may vary). That’s
better than naive forecasting, but worse than the SARIMA model.5

Can we do better with an RNN? Let’s see!

Forecasting a Time Series | 555

Forecasting Using a Simple RNN
Let’s try the most basic RNN, containing a single recurrent layer with just one
recurrent neuron, as we saw in Figure 15-1:

model = tf.keras.Sequential([
 tf.keras.layers.SimpleRNN(1, input_shape=[None, 1])
])

All recurrent layers in Keras expect 3D inputs of shape [batch size, time steps, dimen‐
sionality], where dimensionality is 1 for univariate time series and more for multivari‐
ate time series. Recall that the input_shape argument ignores the first dimension
(i.e., the batch size), and since recurrent layers can accept input sequences of any
length, we can set the second dimension to None, which means “any size”. Lastly, since
we’re dealing with a univariate time series, we need the last dimension’s size to be 1.
This is why we specified the input shape [None, 1]: it means “univariate sequences
of any length”. Note that the datasets actually contain inputs of shape [batch size, time
steps], so we’re missing the last dimension, of size 1, but Keras is kind enough to add
it for us in this case.

This model works exactly as we saw earlier: the initial state h(init) is set to 0, and it
is passed to a single recurrent neuron, along with the value of the first time step,
x(0). The neuron computes a weighted sum of these values plus the bias term, and it
applies the activation function to the result, using the hyperbolic tangent function by
default. The result is the first output, y0. In a simple RNN, this output is also the new
state h0. This new state is passed to the same recurrent neuron along with the next
input value, x(1), and the process is repeated until the last time step. At the end, the
layer just outputs the last value: in our case the sequences are 56 steps long, so the last
value is y55. All of this is performed simultaneously for every sequence in the batch, of
which there are 32 in this case.

By default, recurrent layers in Keras only return the final output.
To make them return one output per time step, you must set
return_sequences=True, as you will see.

So that’s our first recurrent model! It’s a sequence-to-vector model. Since there’s a
single output neuron, the output vector has a size of 1.

Now if you compile, train, and evaluate this model just like the previous model, you
will find that it’s no good at all: its validation MAE is greater than 100,000! Ouch.
That was to be expected, for two reasons:

556 | Chapter 15: Processing Sequences Using RNNs and CNNs

1. The model only has a single recurrent neuron, so the only data it can use to1.
make a prediction at each time step is the input value at the current time step
and the output value from the previous time step. That’s not much to go on! In
other words, the RNN’s memory is extremely limited: it’s just a single number,
its previous output. And let’s count how many parameters this model has: since
there’s just one recurrent neuron with only two input values, the whole model
only has three parameters (two weights plus a bias term). That’s far from enough
for this time series. In contrast, our previous model could look at all 56 previous
values at once, and it had a total of 57 parameters.

2. The time series contains values from 0 to about 1.4, but since the default activa‐2.
tion function is tanh, the recurrent layer can only output values between –1 and
+1. There’s no way it can predict values between 1.0 and 1.4.

Let’s fix both of these issues: we will create a model with a larger recurrent layer,
containing 32 recurrent neurons, and we will add a dense output layer on top of it
with a single output neuron and no activation function. The recurrent layer will be
able to carry much more information from one time step to the next, and the dense
output layer will project the final output from 32 dimensions down to 1, without any
value range constraints:

univar_model = tf.keras.Sequential([
 tf.keras.layers.SimpleRNN(32, input_shape=[None, 1]),
 tf.keras.layers.Dense(1) # no activation function by default
])

Now if you compile, fit, and evaluate this model just like the previous one, you will
find that its validation MAE reaches 27,703. That’s the best model we’ve trained so far,
and it even beats the SARIMA model: we’re doing pretty well!

We’ve only normalized the time series, without removing trend
and seasonality, and yet the model still performs well. This is con‐
venient, as it makes it possible to quickly search for promising
models without worrying too much about preprocessing. However,
to get the best performance, you may want to try making the time
series more stationary; for example, using differencing.

Forecasting Using a Deep RNN
It is quite common to stack multiple layers of cells, as shown in Figure 15-10. This
gives you a deep RNN.

Forecasting a Time Series | 557

Figure 15-10. A deep RNN (left) unrolled through time (right)

Implementing a deep RNN with Keras is straightforward: just stack recurrent layers.
In the following example, we use three SimpleRNN layers (but we could use any other
type of recurrent layer instead, such as an LSTM layer or a GRU layer, which we will
discuss shortly). The first two are sequence-to-sequence layers, and the last one is
a sequence-to-vector layer. Finally, the Dense layer produces the model’s forecast
(you can think of it as a vector-to-vector layer). So this model is just like the model
represented in Figure 15-10, except the outputs Ŷ(0) to Ŷ(t–1_) are ignored, and there’s a
dense layer on top of Ŷ(t), which outputs the actual forecast:

deep_model = tf.keras.Sequential([
 tf.keras.layers.SimpleRNN(32, return_sequences=True, input_shape=[None, 1]),
 tf.keras.layers.SimpleRNN(32, return_sequences=True),
 tf.keras.layers.SimpleRNN(32),
 tf.keras.layers.Dense(1)
])

Make sure to set return_sequences=True for all recurrent layers
(except the last one, if you only care about the last output). If you
forget to set this parameter for one recurrent layer, it will output a
2D array containing only the output of the last time step, instead of
a 3D array containing outputs for all time steps. The next recurrent
layer will complain that you are not feeding it sequences in the
expected 3D format.

If you train and evaluate this model, you will find that it reaches an MAE of about
31,211. That’s better than both baselines, but it doesn’t beat our “shallower” RNN. It
looks like this RNN is a bit too large for our task.

558 | Chapter 15: Processing Sequences Using RNNs and CNNs

Forecasting Multivariate Time Series
A great quality of neural networks is their flexibility: in particular, they can deal with
multivariate time series with almost no change to their architecture. For example,
let’s try to forecast the rail time series using both the bus and rail data as input. In
fact, let’s also throw in the day type! Since we can always know in advance whether
tomorrow is going to be a weekday, a weekend, or a holiday, we can shift the day type
series one day into the future, so that the model is given tomorrow’s day type as input.
For simplicity, we’ll do this processing using Pandas:

df_mulvar = df[["bus", "rail"]] / 1e6 # use both bus & rail series as input
df_mulvar["next_day_type"] = df["day_type"].shift(-1) # we know tomorrow's type
df_mulvar = pd.get_dummies(df_mulvar) # one-hot encode the day type

Now df_mulvar is a DataFrame with five columns: the bus and rail data, plus three
columns containing the one-hot encoding of the next day’s type (recall that there are
three possible day types, W, A, and U). Next we can proceed much like we did earlier.
First we split the data into three periods, for training, validation, and testing:

mulvar_train = df_mulvar["2016-01":"2018-12"]
mulvar_valid = df_mulvar["2019-01":"2019-05"]
mulvar_test = df_mulvar["2019-06":]

Then we create the datasets:

train_mulvar_ds = tf.keras.utils.timeseries_dataset_from_array(
 mulvar_train.to_numpy(), # use all 5 columns as input
 targets=mulvar_train["rail"][seq_length:], # forecast only the rail series
 [...] # the other 4 arguments are the same as earlier
)
valid_mulvar_ds = tf.keras.utils.timeseries_dataset_from_array(
 mulvar_valid.to_numpy(),
 targets=mulvar_valid["rail"][seq_length:],
 [...] # the other 2 arguments are the same as earlier
)

And finally we create the RNN:

mulvar_model = tf.keras.Sequential([
 tf.keras.layers.SimpleRNN(32, input_shape=[None, 5]),
 tf.keras.layers.Dense(1)
])

Notice that the only difference from the univar_model RNN we built earlier is the
input shape: at each time step, the model now receives five inputs instead of one. This
model actually reaches a validation MAE of 22,062. Now we’re making big progress!

In fact, it’s not too hard to make the RNN forecast both the bus and rail rid‐
ership. You just need to change the targets when creating the datasets, setting
them to mulvar_train[["bus", "rail"]][seq_length:] for the training set, and
mulvar_valid[["bus", "rail"]][seq_length:] for the validation set. You must

Forecasting a Time Series | 559

also add an extra neuron in the output Dense layer, since it must now make two
forecasts: one for tomorrow’s bus ridership, and the other for rail. That’s all there is to
it!

As we discussed in Chapter 10, using a single model for multiple related tasks often
results in better performance than using a separate model for each task, since features
learned for one task may be useful for the other tasks, and also because having to
perform well across multiple tasks prevents the model from overfitting (it’s a form
of regularization). However, it depends on the task, and in this particular case the
multitask RNN that forecasts both the bus and the rail ridership doesn’t perform
quite as well as dedicated models that forecast one or the other (using all five columns
as input). Still, it reaches a validation MAE of 25,330 for rail and 26,369 for bus,
which is pretty good.

Forecasting Several Time Steps Ahead
So far we have only predicted the value at the next time step, but we could just as
easily have predicted the value several steps ahead by changing the targets appropri‐
ately (e.g., to predict the ridership 2 weeks from now, we could just change the targets
to be the value 14 days ahead instead of 1 day ahead). But what if we want to predict
the next 14 values?

The first option is to take the univar_model RNN we trained earlier for the rail time
series, make it predict the next value, and add that value to the inputs, acting as if the
predicted value had actually occurred; we would then use the model again to predict
the following value, and so on, as in the following code:

import numpy as np

X = rail_valid.to_numpy()[np.newaxis, :seq_length, np.newaxis]
for step_ahead in range(14):
 y_pred_one = univar_model.predict(X)
 X = np.concatenate([X, y_pred_one.reshape(1, 1, 1)], axis=1)

In this code, we take the rail ridership of the first 56 days of the validation period,
and we convert the data to a NumPy array of shape [1, 56, 1] (recall that recurrent
layers expect 3D inputs). Then we repeatedly use the model to forecast the next value,
and we append each forecast to the input series, along the time axis (axis=1). The
resulting forecasts are plotted in Figure 15-11.

If the model makes an error at one time step, then the forecasts
for the following time steps are impacted as well: the errors tend to
accumulate. So, it’s preferable to use this technique only for a small
number of steps.

560 | Chapter 15: Processing Sequences Using RNNs and CNNs

6 Feel free to play around with this model. For example, you can try forecasting both the bus and rail ridership
for the next 14 days. You’ll need to tweak the targets to include both, and make your model output 28
forecasts instead of 14.

Figure 15-11. Forecasting 14 steps ahead, 1 step at a time

The second option is to train an RNN to predict the next 14 values in one shot. We
can still use a sequence-to-vector model, but it will output 14 values instead of 1.
However, we first need to change the targets to be vectors containing the next 14
values. To do this, we can use timeseries_dataset_from_array() again, but this
time asking it to create datasets without targets (targets=None) and with longer
sequences, of length seq_length + 14. Then we can use the datasets’ map() method
to apply a custom function to each batch of sequences, splitting them into inputs and
targets. In this example, we use the multivariate time series as input (using all five
columns), and we forecast the rail ridership for the next 14 days:6

def split_inputs_and_targets(mulvar_series, ahead=14, target_col=1):
 return mulvar_series[:, :-ahead], mulvar_series[:, -ahead:, target_col]

ahead_train_ds = tf.keras.utils.timeseries_dataset_from_array(
 mulvar_train.to_numpy(),
 targets=None,
 sequence_length=seq_length + 14,
 [...] # the other 3 arguments are the same as earlier
).map(split_inputs_and_targets)
ahead_valid_ds = tf.keras.utils.timeseries_dataset_from_array(
 mulvar_valid.to_numpy(),
 targets=None,
 sequence_length=seq_length + 14,
 batch_size=32
).map(split_inputs_and_targets)

Now we just need the output layer to have 14 units instead of 1:

Forecasting a Time Series | 561

ahead_model = tf.keras.Sequential([
 tf.keras.layers.SimpleRNN(32, input_shape=[None, 5]),
 tf.keras.layers.Dense(14)
])

After training this model, you can predict the next 14 values at once like this:

X = mulvar_valid.to_numpy()[np.newaxis, :seq_length] # shape [1, 56, 5]
Y_pred = ahead_model.predict(X) # shape [1, 14]

This approach works quite well. Its forecasts for the next day are obviously better
than its forecasts for 14 days into the future, but it doesn’t accumulate errors like the
previous approach did. However, we can still do better, using a sequence-to-sequence
(or seq2seq) model.

Forecasting Using a Sequence-to-Sequence Model
Instead of training the model to forecast the next 14 values only at the very last time
step, we can train it to forecast the next 14 values at each and every time step. In other
words, we can turn this sequence-to-vector RNN into a sequence-to-sequence RNN.
The advantage of this technique is that the loss will contain a term for the output of
the RNN at each and every time step, not just for the output at the last time step.

This means there will be many more error gradients flowing through the model, and
they won’t have to flow through time as much since they will come from the output of
each time step, not just the last one. This will both stabilize and speed up training.

To be clear, at time step 0 the model will output a vector containing the forecasts for
time steps 1 to 14, then at time step 1 the model will forecast time steps 2 to 15, and
so on. In other words, the targets are sequences of consecutive windows, shifted by
one time step at each time step. The target is not a vector anymore, but a sequence of
the same length as the inputs, containing a 14-dimensional vector at each step.

Preparing the datasets is not trivial, since each instance has a window as input and
a sequence of windows as output. One way to do this is to use the to_windows()
utility function we created earlier, twice in a row, to get windows of consecutive
windows. For example, let’s turn the series of numbers 0 to 6 into a dataset containing
sequences of 4 consecutive windows, each of length 3:

>>> my_series = tf.data.Dataset.range(7)
>>> dataset = to_windows(to_windows(my_series, 3), 4)
>>> list(dataset)
[<tf.Tensor: shape=(4, 3), dtype=int64, numpy=
 array([[0, 1, 2],
 [1, 2, 3],
 [2, 3, 4],
 [3, 4, 5]])>,
 <tf.Tensor: shape=(4, 3), dtype=int64, numpy=
 array([[1, 2, 3],
 [2, 3, 4],

562 | Chapter 15: Processing Sequences Using RNNs and CNNs

 [3, 4, 5],
 [4, 5, 6]])>]

Now we can use the map() method to split these windows of windows into inputs and
targets:

>>> dataset = dataset.map(lambda S: (S[:, 0], S[:, 1:]))
>>> list(dataset)
[(<tf.Tensor: shape=(4,), dtype=int64, numpy=array([0, 1, 2, 3])>,
 <tf.Tensor: shape=(4, 2), dtype=int64, numpy=
 array([[1, 2],
 [2, 3],
 [3, 4],
 [4, 5]])>),
 (<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 2, 3, 4])>,
 <tf.Tensor: shape=(4, 2), dtype=int64, numpy=
 array([[2, 3],
 [3, 4],
 [4, 5],
 [5, 6]])>)]

Now the dataset contains sequences of length 4 as inputs, and the targets are sequen‐
ces containing the next two steps, for each time step. For example, the first input
sequence is [0, 1, 2, 3], and its corresponding targets are [[1, 2], [2, 3], [3, 4], [4, 5]],
which are the next two values for each time step. If you’re like me, you will probably
need a few minutes to wrap your head around this. Take your time!

It may be surprising that the targets contain values that appear in
the inputs. Isn’t that cheating? Fortunately, not at all: at each time
step, an RNN only knows about past time steps; it cannot look
ahead. It is said to be a causal model.

Let’s create another little utility function to prepare the datasets for our sequence-to-
sequence model. It will also take care of shuffling (optional) and batching:

def to_seq2seq_dataset(series, seq_length=56, ahead=14, target_col=1,
 batch_size=32, shuffle=False, seed=None):
 ds = to_windows(tf.data.Dataset.from_tensor_slices(series), ahead + 1)
 ds = to_windows(ds, seq_length).map(lambda S: (S[:, 0], S[:, 1:, 1]))
 if shuffle:
 ds = ds.shuffle(8 * batch_size, seed=seed)
 return ds.batch(batch_size)

Now we can use this function to create the datasets:

seq2seq_train = to_seq2seq_dataset(mulvar_train, shuffle=True, seed=42)
seq2seq_valid = to_seq2seq_dataset(mulvar_valid)

Forecasting a Time Series | 563

And lastly, we can build the sequence-to-sequence model:

seq2seq_model = tf.keras.Sequential([
 tf.keras.layers.SimpleRNN(32, return_sequences=True, input_shape=[None, 5]),
 tf.keras.layers.Dense(14)
])

It is almost identical to our previous model: the only difference is that we set
return_sequences=True in the SimpleRNN layer. This way, it will output a sequence of
vectors (each of size 32), instead of outputting a single vector at the last time step. The
Dense layer is smart enough to handle sequences as input: it will be applied at each
time step, taking a 32-dimensional vector as input and outputting a 14-dimensional
vector. In fact, another way to get the exact same result is to use a Conv1D layer with a
kernel size of 1: Conv1D(14, kernel_size=1).

Keras offers a TimeDistributed layer that lets you apply any
vector-to-vector layer to every vector in the input sequences, at
every time step. It does this efficiently, by reshaping the inputs so
that each time step is treated as a separate instance, then it reshapes
the layer’s outputs to recover the time dimension. In our case, we
don’t need it since the Dense layer already supports sequences as
inputs.

The training code is the same as usual. During training, all the model’s outputs are
used, but after training only the output of the very last time step matters, and the rest
can be ignored. For example, we can forecast the rail ridership for the next 14 days
like this:

X = mulvar_valid.to_numpy()[np.newaxis, :seq_length]
y_pred_14 = seq2seq_model.predict(X)[0, -1] # only the last time step's output

If you evaluate this model’s forecasts for t + 1, you will find a validation MAE of
25,519. For t + 2 it’s 26,274, and the performance continues to drop gradually as the
model tries to forecast further into the future. At t + 14, the MAE is 34,322.

You can combine both approaches to forecasting multiple steps
ahead: for example, you can train a model that forecasts 14 days
ahead, then take its output and append it to the inputs, then run
the model again to get forecasts for the following 14 days, and
possibly repeat the process.

Simple RNNs can be quite good at forecasting time series or handling other kinds
of sequences, but they do not perform as well on long time series or sequences. Let’s
discuss why and see what we can do about it.

564 | Chapter 15: Processing Sequences Using RNNs and CNNs

7 César Laurent et al., “Batch Normalized Recurrent Neural Networks”, Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (2016): 2657–2661.

Handling Long Sequences
To train an RNN on long sequences, we must run it over many time steps, making
the unrolled RNN a very deep network. Just like any deep neural network it may
suffer from the unstable gradients problem, discussed in Chapter 11: it may take
forever to train, or training may be unstable. Moreover, when an RNN processes a
long sequence, it will gradually forget the first inputs in the sequence. Let’s look at
both these problems, starting with the unstable gradients problem.

Fighting the Unstable Gradients Problem
Many of the tricks we used in deep nets to alleviate the unstable gradients problem
can also be used for RNNs: good parameter initialization, faster optimizers, dropout,
and so on. However, nonsaturating activation functions (e.g., ReLU) may not help as
much here. In fact, they may actually lead the RNN to be even more unstable during
training. Why? Well, suppose gradient descent updates the weights in a way that
increases the outputs slightly at the first time step. Because the same weights are used
at every time step, the outputs at the second time step may also be slightly increased,
and those at the third, and so on until the outputs explode—and a nonsaturating
activation function does not prevent that.

You can reduce this risk by using a smaller learning rate, or you can use a saturating
activation function like the hyperbolic tangent (this explains why it’s the default).

In much the same way, the gradients themselves can explode. If you notice that
training is unstable, you may want to monitor the size of the gradients (e.g., using
TensorBoard) and perhaps use gradient clipping.

Moreover, batch normalization cannot be used as efficiently with RNNs as with
deep feedforward nets. In fact, you cannot use it between time steps, only between
recurrent layers.

To be more precise, it is technically possible to add a BN layer to a memory cell (as
you will see shortly) so that it will be applied at each time step (both on the inputs
for that time step and on the hidden state from the previous step). However, the
same BN layer will be used at each time step, with the same parameters, regardless
of the actual scale and offset of the inputs and hidden state. In practice, this does not
yield good results, as was demonstrated by César Laurent et al. in a 2015 paper:7 the
authors found that BN was slightly beneficial only when it was applied to the layer’s
inputs, not to the hidden states. In other words, it was slightly better than nothing
when applied between recurrent layers (i.e., vertically in Figure 15-10), but not within

Handling Long Sequences | 565

https://homl.info/rnnbn

8 Jimmy Lei Ba et al., “Layer Normalization”, arXiv preprint arXiv:1607.06450 (2016).

recurrent layers (i.e., horizontally). In Keras, you can apply BN between layers simply
by adding a BatchNormalization layer before each recurrent layer, but it will slow
down training, and it may not help much.

Another form of normalization often works better with RNNs: layer normalization.
This idea was introduced by Jimmy Lei Ba et al. in a 2016 paper:8 it is very similar
to batch normalization, but instead of normalizing across the batch dimension, layer
normalization normalizes across the features dimension. One advantage is that it can
compute the required statistics on the fly, at each time step, independently for each
instance. This also means that it behaves the same way during training and testing (as
opposed to BN), and it does not need to use exponential moving averages to estimate
the feature statistics across all instances in the training set, like BN does. Like BN,
layer normalization learns a scale and an offset parameter for each input. In an RNN,
it is typically used right after the linear combination of the inputs and the hidden
states.

Let’s use Keras to implement layer normalization within a simple memory cell. To do
this, we need to define a custom memory cell, which is just like a regular layer, except
its call() method takes two arguments: the inputs at the current time step and the
hidden states from the previous time step.

Note that the states argument is a list containing one or more tensors. In the case
of a simple RNN cell it contains a single tensor equal to the outputs of the previous
time step, but other cells may have multiple state tensors (e.g., an LSTMCell has a
long-term state and a short-term state, as you will see shortly). A cell must also
have a state_size attribute and an output_size attribute. In a simple RNN, both
are simply equal to the number of units. The following code implements a custom
memory cell that will behave like a SimpleRNNCell, except it will also apply layer
normalization at each time step:

class LNSimpleRNNCell(tf.keras.layers.Layer):
 def __init__(self, units, activation="tanh", **kwargs):
 super().__init__(**kwargs)
 self.state_size = units
 self.output_size = units
 self.simple_rnn_cell = tf.keras.layers.SimpleRNNCell(units,
 activation=None)
 self.layer_norm = tf.keras.layers.LayerNormalization()
 self.activation = tf.keras.activations.get(activation)

 def call(self, inputs, states):
 outputs, new_states = self.simple_rnn_cell(inputs, states)
 norm_outputs = self.activation(self.layer_norm(outputs))
 return norm_outputs, [norm_outputs]

566 | Chapter 15: Processing Sequences Using RNNs and CNNs

https://homl.info/layernorm

9 It would have been simpler to inherit from SimpleRNNCell instead so that we wouldn’t have to create an
internal SimpleRNNCell or handle the state_size and output_size attributes, but the goal here was to show
how to create a custom cell from scratch.

Let’s walk through this code:

• Our LNSimpleRNNCell class inherits from the tf.keras.layers.Layer class, just•
like any custom layer.

• The constructor takes the number of units and the desired activation function•
and sets the state_size and output_size attributes, then creates a SimpleRNN
Cell with no activation function (because we want to perform layer normaliza‐
tion after the linear operation but before the activation function).9 Then the
constructor creates the LayerNormalization layer, and finally it fetches the
desired activation function.

• The call() method starts by applying the simpleRNNCell, which computes a•
linear combination of the current inputs and the previous hidden states, and it
returns the result twice (indeed, in a SimpleRNNCell, the outputs are just equal
to the hidden states: in other words, new_states[0] is equal to outputs, so we
can safely ignore new_states in the rest of the call() method). Next, the call()
method applies layer normalization, followed by the activation function. Finally,
it returns the outputs twice: once as the outputs, and once as the new hidden
states. To use this custom cell, all we need to do is create a tf.keras.layers.RNN
layer, passing it a cell instance:

custom_ln_model = tf.keras.Sequential([
 tf.keras.layers.RNN(LNSimpleRNNCell(32), return_sequences=True,
 input_shape=[None, 5]),
 tf.keras.layers.Dense(14)
])

Similarly, you could create a custom cell to apply dropout between each time step.
But there’s a simpler way: most recurrent layers and cells provided by Keras have
dropout and recurrent_dropout hyperparameters: the former defines the dropout
rate to apply to the inputs, and the latter defines the dropout rate for the hidden
states, between time steps. So, there’s no need to create a custom cell to apply dropout
at each time step in an RNN.

With these techniques, you can alleviate the unstable gradients problem and train
an RNN much more efficiently. Now let’s look at how to deal with the short-term
memory problem.

Handling Long Sequences | 567

10 A character from the animated movies Finding Nemo and Finding Dory who has short-term memory loss.
11 Sepp Hochreiter and Jürgen Schmidhuber, “Long Short-Term Memory”, Neural Computation 9, no. 8 (1997):

1735–1780.
12 Haşim Sak et al., “Long Short-Term Memory Based Recurrent Neural Network Architectures for Large

Vocabulary Speech Recognition”, arXiv preprint arXiv:1402.1128 (2014).
13 Wojciech Zaremba et al., “Recurrent Neural Network Regularization”, arXiv preprint arXiv:1409.2329 (2014).

When forecasting time series, it is often useful to have some error
bars along with your predictions. For this, one approach is to use
MC dropout, introduced in Chapter 11: use recurrent_dropout
during training, then keep dropout active at inference time by
calling the model using model(X, training=True). Repeat this
several times to get multiple slightly different forecasts, then com‐
pute the mean and standard deviation of these predictions for each
time step.

Tackling the Short-Term Memory Problem
Due to the transformations that the data goes through when traversing an RNN,
some information is lost at each time step. After a while, the RNN’s state contains
virtually no trace of the first inputs. This can be a showstopper. Imagine Dory the
fish10 trying to translate a long sentence; by the time she’s finished reading it, she has
no clue how it started. To tackle this problem, various types of cells with long-term
memory have been introduced. They have proven so successful that the basic cells
are not used much anymore. Let’s first look at the most popular of these long-term
memory cells: the LSTM cell.

LSTM cells
The long short-term memory (LSTM) cell was proposed in 199711 by Sepp Hochreiter
and Jürgen Schmidhuber and gradually improved over the years by several research‐
ers, such as Alex Graves, Haşim Sak,12 and Wojciech Zaremba.13 If you consider the
LSTM cell as a black box, it can be used very much like a basic cell, except it will
perform much better; training will converge faster, and it will detect longer-term
patterns in the data. In Keras, you can simply use the LSTM layer instead of the
SimpleRNN layer:

model = tf.keras.Sequential([
 tf.keras.layers.LSTM(32, return_sequences=True, input_shape=[None, 5]),
 tf.keras.layers.Dense(14)
])

Alternatively, you could use the general-purpose tf.keras.layers.RNN layer, giv‐
ing it an LSTMCell as an argument. However, the LSTM layer uses an optimized
implementation when running on a GPU (see Chapter 19), so in general it is prefera‐

568 | Chapter 15: Processing Sequences Using RNNs and CNNs

https://homl.info/93
https://homl.info/graves
https://homl.info/94
https://homl.info/95

ble to use it (the RNN layer is mostly useful when you define custom cells, as we did
earlier).

So how does an LSTM cell work? Its architecture is shown in Figure 15-12. If you
don’t look at what’s inside the box, the LSTM cell looks exactly like a regular cell,
except that its state is split into two vectors: h(t) and c(t) (“c” stands for “cell”). You can
think of h(t) as the short-term state and c(t) as the long-term state.

Figure 15-12. An LSTM cell

Now let’s open the box! The key idea is that the network can learn what to store in the
long-term state, what to throw away, and what to read from it. As the long-term state
c(t–1) traverses the network from left to right, you can see that it first goes through a
forget gate, dropping some memories, and then it adds some new memories via the
addition operation (which adds the memories that were selected by an input gate).
The result c(t) is sent straight out, without any further transformation. So, at each
time step, some memories are dropped and some memories are added. Moreover,
after the addition operation, the long-term state is copied and passed through the
tanh function, and then the result is filtered by the output gate. This produces the
short-term state h(t) (which is equal to the cell’s output for this time step, y(t)). Now
let’s look at where new memories come from and how the gates work.

First, the current input vector x(t) and the previous short-term state h(t–1) are fed to
four different fully connected layers. They all serve a different purpose:

Handling Long Sequences | 569

• The main layer is the one that outputs g(t). It has the usual role of analyzing the•
current inputs x(t) and the previous (short-term) state h(t–1). In a basic cell, there
is nothing other than this layer, and its output goes straight out to y(t) and h(t).
But in an LSTM cell, this layer’s output does not go straight out; instead its most
important parts are stored in the long-term state (and the rest is dropped).

• The three other layers are gate controllers. Since they use the logistic activation•
function, the outputs range from 0 to 1. As you can see, the gate controllers’
outputs are fed to element-wise multiplication operations: if they output 0s they
close the gate, and if they output 1s they open it. Specifically:
— The forget gate (controlled by f(t)) controls which parts of the long-term state—

should be erased.
— The input gate (controlled by i(t)) controls which parts of g(t) should be added—

to the long-term state.
— Finally, the output gate (controlled by o(t)) controls which parts of the long-—

term state should be read and output at this time step, both to h(t) and to y(t).

In short, an LSTM cell can learn to recognize an important input (that’s the role of the
input gate), store it in the long-term state, preserve it for as long as it is needed (that’s
the role of the forget gate), and extract it whenever it is needed. This explains why
these cells have been amazingly successful at capturing long-term patterns in time
series, long texts, audio recordings, and more.

Equation 15-4 summarizes how to compute the cell’s long-term state, its short-term
state, and its output at each time step for a single instance (the equations for a whole
mini-batch are very similar).

Equation 15-4. LSTM computations

i t = σ Wxi
⊺x t +Wℎi

⊺h t − 1 + bi

f t = σ Wxf
⊺x t +Wℎf

⊺h t − 1 + b f

o t = σ Wxo
⊺x t +Wℎo

⊺h t − 1 + bo

g t = tanh Wxg
⊺x t +Wℎg

⊺h t − 1 + bg
c t = f t ⊗ c t − 1 + i t ⊗ g t
y t = h t = o t ⊗ tanh c t

In this equation:

• Wxi, Wxf, Wxo, and Wxg are the weight matrices of each of the four layers for their•
connection to the input vector x(t).

570 | Chapter 15: Processing Sequences Using RNNs and CNNs

14 Kyunghyun Cho et al., “Learning Phrase Representations Using RNN Encoder–Decoder for Statistical
Machine Translation”, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(2014): 1724–1734.

• Whi, Whf, Who, and Whg are the weight matrices of each of the four layers for their•
connection to the previous short-term state h(t–1).

• bi, bf, bo, and bg are the bias terms for each of the four layers. Note that Tensor‐•
Flow initializes bf to a vector full of 1s instead of 0s. This prevents forgetting
everything at the beginning of training.

There are several variants of the LSTM cell. One particularly popular variant is the
GRU cell, which we will look at now.

GRU cells
The gated recurrent unit (GRU) cell (see Figure 15-13) was proposed by Kyunghyun
Cho et al. in a 2014 paper14 that also introduced the encoder–decoder network we
discussed earlier.

Figure 15-13. GRU cell

Handling Long Sequences | 571

https://homl.info/97

15 See Klaus Greff et al., “LSTM: A Search Space Odyssey”, IEEE Transactions on Neural Networks and Learning
Systems 28, no. 10 (2017): 2222–2232.This paper seems to show that all LSTM variants perform roughly the
same.

The GRU cell is a simplified version of the LSTM cell, and it seems to perform just as
well15 (which explains its growing popularity). These are the main simplifications:

• Both state vectors are merged into a single vector h(t).•
• A single gate controller z(t) controls both the forget gate and the input gate. If•

the gate controller outputs a 1, the forget gate is open (= 1) and the input gate
is closed (1 – 1 = 0). If it outputs a 0, the opposite happens. In other words,
whenever a memory must be stored, the location where it will be stored is erased
first. This is actually a frequent variant to the LSTM cell in and of itself.

• There is no output gate; the full state vector is output at every time step. How‐•
ever, there is a new gate controller r(t) that controls which part of the previous
state will be shown to the main layer (g(t)).

Equation 15-5 summarizes how to compute the cell’s state at each time step for a
single instance.

Equation 15-5. GRU computations

z t = σ Wxz
⊺x t +Wℎz

⊺h t − 1 + bz

r t = σ Wxr
⊺x t +Wℎr

⊺h t − 1 + br

g t = tanh Wxg
⊺x t +Wℎg

⊺ r t ⊗ h t − 1 + bg
h t = z t ⊗ h t − 1 + 1 − z t ⊗ g t

Keras provides a tf.keras.layers.GRU layer: using it is just a matter of replacing
SimpleRNN or LSTM with GRU. It also provides a tf.keras.layers.GRUCell, in case
you want to create a custom cell based on a GRU cell.

LSTM and GRU cells are one of the main reasons behind the success of RNNs.
Yet while they can tackle much longer sequences than simple RNNs, they still have
a fairly limited short-term memory, and they have a hard time learning long-term
patterns in sequences of 100 time steps or more, such as audio samples, long time
series, or long sentences. One way to solve this is to shorten the input sequences; for
example, using 1D convolutional layers.

572 | Chapter 15: Processing Sequences Using RNNs and CNNs

https://homl.info/98

Using 1D convolutional layers to process sequences
In Chapter 14, we saw that a 2D convolutional layer works by sliding several fairly
small kernels (or filters) across an image, producing multiple 2D feature maps
(one per kernel). Similarly, a 1D convolutional layer slides several kernels across a
sequence, producing a 1D feature map per kernel. Each kernel will learn to detect
a single very short sequential pattern (no longer than the kernel size). If you use
10 kernels, then the layer’s output will be composed of 10 1D sequences (all of the
same length), or equivalently you can view this output as a single 10D sequence. This
means that you can build a neural network composed of a mix of recurrent layers and
1D convolutional layers (or even 1D pooling layers). If you use a 1D convolutional
layer with a stride of 1 and "same" padding, then the output sequence will have the
same length as the input sequence. But if you use "valid" padding or a stride greater
than 1, then the output sequence will be shorter than the input sequence, so make
sure you adjust the targets accordingly.

For example, the following model is the same as earlier, except it starts with a 1D
convolutional layer that downsamples the input sequence by a factor of 2, using a
stride of 2. The kernel size is larger than the stride, so all inputs will be used to
compute the layer’s output, and therefore the model can learn to preserve the useful
information, dropping only the unimportant details. By shortening the sequences the
convolutional layer may help the GRU layers detect longer patterns, so we can afford
to double the input sequence length to 112 days. Note that we must also crop off the
first three time steps in the targets: indeed, the kernel’s size is 4, so the first output
of the convolutional layer will be based on the input time steps 0 to 3, and the first
forecasts will be for time steps 4 to 17 (instead of time steps 1 to 14). Moreover, we
must downsample the targets by a factor of 2, because of the stride:

conv_rnn_model = tf.keras.Sequential([
 tf.keras.layers.Conv1D(filters=32, kernel_size=4, strides=2,
 activation="relu", input_shape=[None, 5]),
 tf.keras.layers.GRU(32, return_sequences=True),
 tf.keras.layers.Dense(14)
])

longer_train = to_seq2seq_dataset(mulvar_train, seq_length=112,
 shuffle=True, seed=42)
longer_valid = to_seq2seq_dataset(mulvar_valid, seq_length=112)
downsampled_train = longer_train.map(lambda X, Y: (X, Y[:, 3::2]))
downsampled_valid = longer_valid.map(lambda X, Y: (X, Y[:, 3::2]))
[...] # compile and fit the model using the downsampled datasets

If you train and evaluate this model, you will find that it outperforms the previous
model (by a small margin). In fact, it is actually possible to use only 1D convolutional
layers and drop the recurrent layers entirely!

Handling Long Sequences | 573

16 Aaron van den Oord et al., “WaveNet: A Generative Model for Raw Audio”, arXiv preprint arXiv:1609.03499
(2016).

17 The complete WaveNet uses a few more tricks, such as skip connections like in a ResNet, and gated activation
units similar to those found in a GRU cell. See this chapter’s notebook for more details.

WaveNet
In a 2016 paper,16 Aaron van den Oord and other DeepMind researchers introduced
a novel architecture called WaveNet. They stacked 1D convolutional layers, doubling
the dilation rate (how spread apart each neuron’s inputs are) at every layer: the first
convolutional layer gets a glimpse of just two time steps at a time, while the next one
sees four time steps (its receptive field is four time steps long), the next one sees eight
time steps, and so on (see Figure 15-14). This way, the lower layers learn short-term
patterns, while the higher layers learn long-term patterns. Thanks to the doubling
dilation rate, the network can process extremely large sequences very efficiently.

Figure 15-14. WaveNet architecture

The authors of the paper actually stacked 10 convolutional layers with dilation rates
of 1, 2, 4, 8, …, 256, 512, then they stacked another group of 10 identical layers
(also with dilation rates 1, 2, 4, 8, …, 256, 512), then again another identical group
of 10 layers. They justified this architecture by pointing out that a single stack of
10 convolutional layers with these dilation rates will act like a super-efficient convolu‐
tional layer with a kernel of size 1,024 (except way faster, more powerful, and using
significantly fewer parameters). They also left-padded the input sequences with a
number of zeros equal to the dilation rate before every layer, to preserve the same
sequence length throughout the network.

Here is how to implement a simplified WaveNet to tackle the same sequences as
earlier:17

wavenet_model = tf.keras.Sequential()
wavenet_model.add(tf.keras.layers.Input(shape=[None, 5]))

574 | Chapter 15: Processing Sequences Using RNNs and CNNs

https://homl.info/wavenet

for rate in (1, 2, 4, 8) * 2:
 wavenet_model.add(tf.keras.layers.Conv1D(
 filters=32, kernel_size=2, padding="causal", activation="relu",
 dilation_rate=rate))
wavenet_model.add(tf.keras.layers.Conv1D(filters=14, kernel_size=1))

This Sequential model starts with an explicit input layer—this is simpler than trying
to set input_shape only on the first layer. Then it continues with a 1D convolutional
layer using "causal" padding, which is like "same" padding except that the zeros
are appended only at the start of the input sequence, instead of on both sides. This
ensures that the convolutional layer does not peek into the future when making
predictions. Then we add similar pairs of layers using growing dilation rates: 1, 2, 4,
8, and again 1, 2, 4, 8. Finally, we add the output layer: a convolutional layer with
14 filters of size 1 and without any activation function. As we saw earlier, such a
convolutional layer is equivalent to a Dense layer with 14 units. Thanks to the causal
padding, every convolutional layer outputs a sequence of the same length as its input
sequence, so the targets we use during training can be the full 112-day sequences: no
need to crop them or downsample them.

The models we’ve discussed in this section offer similar performance for the ridership
forecasting task, but they may vary significantly depending on the task and the
amount of available data. In the WaveNet paper, the authors achieved state-of-the-art
performance on various audio tasks (hence the name of the architecture), including
text-to-speech tasks, producing incredibly realistic voices across several languages.
They also used the model to generate music, one audio sample at a time. This feat is
all the more impressive when you realize that a single second of audio can contain
tens of thousands of time steps—even LSTMs and GRUs cannot handle such long
sequences.

If you evaluate our best Chicago ridership models on the test
period, starting in 2020, you will find that they perform much
worse than expected! Why is that? Well, that’s when the Covid-19
pandemic started, which greatly affected public transportation. As
mentioned earlier, these models will only work well if the patterns
they learned from the past continue in the future. In any case,
before deploying a model to production, verify that it works well
on recent data. And once it’s in production, make sure to monitor
its performance regularly.

With that, you can now tackle all sorts of time series! In Chapter 16, we will continue
to explore RNNs, and we will see how they can tackle various NLP tasks as well.

Handling Long Sequences | 575

Exercises
1. Can you think of a few applications for a sequence-to-sequence RNN? What1.

about a sequence-to-vector RNN, and a vector-to-sequence RNN?
2. How many dimensions must the inputs of an RNN layer have? What does each2.

dimension represent? What about its outputs?
3. If you want to build a deep sequence-to-sequence RNN, which RNN layers3.

should have return_sequences=True? What about a sequence-to-vector RNN?
4. Suppose you have a daily univariate time series, and you want to forecast the next4.

seven days. Which RNN architecture should you use?
5. What are the main difficulties when training RNNs? How can you handle them?5.
6. Can you sketch the LSTM cell’s architecture?6.
7. Why would you want to use 1D convolutional layers in an RNN?7.
8. Which neural network architecture could you use to classify videos?8.
9. Train a classification model for the SketchRNN dataset, available in TensorFlow9.

Datasets.
10. Download the Bach chorales dataset and unzip it. It is composed of 382 chorales10.

composed by Johann Sebastian Bach. Each chorale is 100 to 640 time steps long,
and each time step contains 4 integers, where each integer corresponds to a note’s
index on a piano (except for the value 0, which means that no note is played).
Train a model—recurrent, convolutional, or both—that can predict the next time
step (four notes), given a sequence of time steps from a chorale. Then use this
model to generate Bach-like music, one note at a time: you can do this by giving
the model the start of a chorale and asking it to predict the next time step, then
appending these time steps to the input sequence and asking the model for the
next note, and so on. Also make sure to check out Google’s Coconet model,
which was used for a nice Google doodle about Bach.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

576 | Chapter 15: Processing Sequences Using RNNs and CNNs

https://homl.info/bach
https://homl.info/coconet
https://homl.info/colab3

1 Alan Turing, “Computing Machinery and Intelligence”, Mind 49 (1950): 433–460.
2 Of course, the word chatbot came much later. Turing called his test the imitation game: machine A and human

B chat with human interrogator C via text messages; the interrogator asks questions to figure out which one is
the machine (A or B). The machine passes the test if it can fool the interrogator, while the human B must try
to help the interrogator.

CHAPTER 16

Natural Language Processing
with RNNs and Attention

When Alan Turing imagined his famous Turing test1 in 1950, he proposed a way to
evaluate a machine’s ability to match human intelligence. He could have tested for
many things, such as the ability to recognize cats in pictures, play chess, compose
music, or escape a maze, but, interestingly, he chose a linguistic task. More specifi‐
cally, he devised a chatbot capable of fooling its interlocutor into thinking it was
human.2 This test does have its weaknesses: a set of hardcoded rules can fool unsus‐
pecting or naive humans (e.g., the machine could give vague predefined answers in
response to some keywords, it could pretend that it is joking or drunk to get a pass on
its weirdest answers, or it could escape difficult questions by answering them with its
own questions), and many aspects of human intelligence are utterly ignored (e.g., the
ability to interpret nonverbal communication such as facial expressions, or to learn a
manual task). But the test does highlight the fact that mastering language is arguably
Homo sapiens’s greatest cognitive ability.

Can we build a machine that can master written and spoken language? This is the
ultimate goal of NLP research, but it’s a bit too broad, so in practice researchers
focus on more specific tasks, such as text classification, translation, summarization,
question answering, and many more.

577

https://homl.info/turingtest

A common approach for natural language tasks is to use recurrent neural networks.
We will therefore continue to explore RNNs (introduced in Chapter 15), starting with
a character RNN, or char-RNN, trained to predict the next character in a sentence.
This will allow us to generate some original text. We will first use a stateless RNN
(which learns on random portions of text at each iteration, without any information
on the rest of the text), then we will build a stateful RNN (which preserves the hidden
state between training iterations and continues reading where it left off, allowing it
to learn longer patterns). Next, we will build an RNN to perform sentiment analysis
(e.g., reading movie reviews and extracting the rater’s feeling about the movie), this
time treating sentences as sequences of words, rather than characters. Then we will
show how RNNs can be used to build an encoder–decoder architecture capable of
performing neural machine translation (NMT), translating English to Spanish.

In the second part of this chapter, we will explore attention mechanisms. As their
name suggests, these are neural network components that learn to select the part of
the inputs that the rest of the model should focus on at each time step. First, we will
boost the performance of an RNN-based encoder–decoder architecture using atten‐
tion. Next, we will drop RNNs altogether and use a very successful attention-only
architecture, called the transformer, to build a translation model. We will then discuss
some of the most important advances in NLP in the last few years, including incredi‐
bly powerful language models such as GPT and BERT, both based on transformers.
Lastly, I will show you how to get started with the excellent Transformers library by
Hugging Face.

Let’s start with a simple and fun model that can write like Shakespeare (sort of).

Generating Shakespearean Text Using a Character RNN
In a famous 2015 blog post titled “The Unreasonable Effectiveness of Recurrent
Neural Networks”, Andrej Karpathy showed how to train an RNN to predict the next
character in a sentence. This char-RNN can then be used to generate novel text, one
character at a time. Here is a small sample of the text generated by a char-RNN model
after it was trained on all of Shakespeare’s works:

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain’d into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Not exactly a masterpiece, but it is still impressive that the model was able to learn
words, grammar, proper punctuation, and more, just by learning to predict the next
character in a sentence. This is our first example of a language model; similar (but

578 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/charrnn

much more powerful) language models, discussed later in this chapter, are at the core
of modern NLP. In the remainder of this section we’ll build a char-RNN step by step,
starting with the creation of the dataset.

Creating the Training Dataset
First, using Keras’s handy tf.keras.utils.get_file() function, let’s download all of
Shakespeare’s works. The data is loaded from Andrej Karpathy’s char-rnn project:

import tensorflow as tf

shakespeare_url = "https://homl.info/shakespeare" # shortcut URL
filepath = tf.keras.utils.get_file("shakespeare.txt", shakespeare_url)
with open(filepath) as f:
 shakespeare_text = f.read()

Let’s print the first few lines:

>>> print(shakespeare_text[:80])
First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

Looks like Shakespeare all right!

Next, we’ll use a tf.keras.layers.TextVectorization layer (introduced in Chap‐
ter 13) to encode this text. We set split="character" to get character-level encoding
rather than the default word-level encoding, and we use standardize="lower" to
convert the text to lowercase (which will simplify the task):

text_vec_layer = tf.keras.layers.TextVectorization(split="character",
 standardize="lower")
text_vec_layer.adapt([shakespeare_text])
encoded = text_vec_layer([shakespeare_text])[0]

Each character is now mapped to an integer, starting at 2. The TextVectorization
layer reserved the value 0 for padding tokens, and it reserved 1 for unknown char‐
acters. We won’t need either of these tokens for now, so let’s subtract 2 from the
character IDs and compute the number of distinct characters and the total number of
characters:

encoded -= 2 # drop tokens 0 (pad) and 1 (unknown), which we will not use
n_tokens = text_vec_layer.vocabulary_size() - 2 # number of distinct chars = 39
dataset_size = len(encoded) # total number of chars = 1,115,394

Next, just like we did in Chapter 15, we can turn this very long sequence into a
dataset of windows that we can then use to train a sequence-to-sequence RNN. The
targets will be similar to the inputs, but shifted by one time step into the “future”. For
example, one sample in the dataset may be a sequence of character IDs representing

Generating Shakespearean Text Using a Character RNN | 579

https://github.com/karpathy/char-rnn

the text “to be or not to b” (without the final “e”), and the corresponding target—a
sequence of character IDs representing the text “o be or not to be” (with the final
“e”, but without the leading “t”). Let’s write a small utility function to convert a long
sequence of character IDs into a dataset of input/target window pairs:

def to_dataset(sequence, length, shuffle=False, seed=None, batch_size=32):
 ds = tf.data.Dataset.from_tensor_slices(sequence)
 ds = ds.window(length + 1, shift=1, drop_remainder=True)
 ds = ds.flat_map(lambda window_ds: window_ds.batch(length + 1))
 if shuffle:
 ds = ds.shuffle(buffer_size=100_000, seed=seed)
 ds = ds.batch(batch_size)
 return ds.map(lambda window: (window[:, :-1], window[:, 1:])).prefetch(1)

This function starts much like the to_windows() custom utility function we created
in Chapter 15:

• It takes a sequence as input (i.e., the encoded text), and creates a dataset contain‐•
ing all the windows of the desired length.

• It increases the length by one, since we need the next character for the target.•
• Then, it shuffles the windows (optionally), batches them, splits them into input/•

output pairs, and activates prefetching.

Figure 16-1 summarizes the dataset preparation steps: it shows windows of length 11,
and a batch size of 3. The start index of each window is indicated next to it.

Figure 16-1. Preparing a dataset of shuffled windows

580 | Chapter 16: Natural Language Processing with RNNs and Attention

Now we’re ready to create the training set, the validation set, and the test set. We will
use roughly 90% of the text for training, 5% for validation, and 5% for testing:

length = 100
tf.random.set_seed(42)
train_set = to_dataset(encoded[:1_000_000], length=length, shuffle=True,
 seed=42)
valid_set = to_dataset(encoded[1_000_000:1_060_000], length=length)
test_set = to_dataset(encoded[1_060_000:], length=length)

We set the window length to 100, but you can try tuning it: it’s
easier and faster to train RNNs on shorter input sequences, but the
RNN will not be able to learn any pattern longer than length, so
don’t make it too small.

That’s it! Preparing the dataset was the hardest part. Now let’s create the model.

Building and Training the Char-RNN Model
Since our dataset is reasonably large, and modeling language is quite a difficult task,
we need more than a simple RNN with a few recurrent neurons. Let’s build and train
a model with one GRU layer composed of 128 units (you can try tweaking the number
of layers and units later, if needed):

model = tf.keras.Sequential([
 tf.keras.layers.Embedding(input_dim=n_tokens, output_dim=16),
 tf.keras.layers.GRU(128, return_sequences=True),
 tf.keras.layers.Dense(n_tokens, activation="softmax")
])
model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam",
 metrics=["accuracy"])
model_ckpt = tf.keras.callbacks.ModelCheckpoint(
 "my_shakespeare_model", monitor="val_accuracy", save_best_only=True)
history = model.fit(train_set, validation_data=valid_set, epochs=10,
 callbacks=[model_ckpt])

Let’s go over this code:

• We use an Embedding layer as the first layer, to encode the character IDs (embed‐•
dings were introduced in Chapter 13). The Embedding layer’s number of input
dimensions is the number of distinct character IDs, and the number of output
dimensions is a hyperparameter you can tune—we’ll set it to 16 for now. Whereas
the inputs of the Embedding layer will be 2D tensors of shape [batch size, window
length], the output of the Embedding layer will be a 3D tensor of shape [batch size,
window length, embedding size].

• We use a Dense layer for the output layer: it must have 39 units (n_tokens)•
because there are 39 distinct characters in the text, and we want to output a

Generating Shakespearean Text Using a Character RNN | 581

3 Since the input windows overlap, the concept of epoch is not so clear in this case: during each epoch (as
implemented by Keras), the model will actually see the same character multiple times.

probability for each possible character (at each time step). The 39 output proba‐
bilities should sum up to 1 at each time step, so we apply the softmax activation
function to the outputs of the Dense layer.

• Lastly, we compile this model, using the "sparse_categorical_crossentropy"•
loss and a Nadam optimizer, and we train the model for several epochs,3 using
a ModelCheckpoint callback to save the best model (in terms of validation accu‐
racy) as training progresses.

If you are running this code on Colab with a GPU activated, then
training should take roughly one to two hours. You can reduce
the number of epochs if you don’t want to wait that long, but of
course the model’s accuracy will probably be lower. If the Colab
session times out, make sure to reconnect quickly, or else the Colab
runtime will be destroyed.

This model does not handle text preprocessing, so let’s wrap it in a final model
containing the tf.keras.layers.TextVectorization layer as the first layer, plus a
tf.keras.layers.Lambda layer to subtract 2 from the character IDs since we’re not
using the padding and unknown tokens for now:

shakespeare_model = tf.keras.Sequential([
 text_vec_layer,
 tf.keras.layers.Lambda(lambda X: X - 2), # no <PAD> or <UNK> tokens
 model
])

And now let’s use it to predict the next character in a sentence:

>>> y_proba = shakespeare_model.predict(["To be or not to b"])[0, -1]
>>> y_pred = tf.argmax(y_proba) # choose the most probable character ID
>>> text_vec_layer.get_vocabulary()[y_pred + 2]
'e'

Great, the model correctly predicted the next character. Now let’s use this model to
pretend we’re Shakespeare!

Generating Fake Shakespearean Text
To generate new text using the char-RNN model, we could feed it some text, make
the model predict the most likely next letter, add it to the end of the text, then give
the extended text to the model to guess the next letter, and so on. This is called greedy
decoding. But in practice this often leads to the same words being repeated over and

582 | Chapter 16: Natural Language Processing with RNNs and Attention

over again. Instead, we can sample the next character randomly, with a probability
equal to the estimated probability, using TensorFlow’s tf.random.categorical()
function. This will generate more diverse and interesting text. The categorical()
function samples random class indices, given the class log probabilities (logits). For
example:

>>> log_probas = tf.math.log([[0.5, 0.4, 0.1]]) # probas = 50%, 40%, and 10%
>>> tf.random.set_seed(42)
>>> tf.random.categorical(log_probas, num_samples=8) # draw 8 samples
<tf.Tensor: shape=(1, 8), dtype=int64, numpy=array([[0, 1, 0, 2, 1, 0, 0, 1]])>

To have more control over the diversity of the generated text, we can divide the logits
by a number called the temperature, which we can tweak as we wish. A temperature
close to zero favors high-probability characters, while a high temperature gives all
characters an equal probability. Lower temperatures are typically preferred when
generating fairly rigid and precise text, such as mathematical equations, while higher
temperatures are preferred when generating more diverse and creative text. The
following next_char() custom helper function uses this approach to pick the next
character to add to the input text:

def next_char(text, temperature=1):
 y_proba = shakespeare_model.predict([text])[0, -1:]
 rescaled_logits = tf.math.log(y_proba) / temperature
 char_id = tf.random.categorical(rescaled_logits, num_samples=1)[0, 0]
 return text_vec_layer.get_vocabulary()[char_id + 2]

Next, we can write another small helper function that will repeatedly call
next_char() to get the next character and append it to the given text:

def extend_text(text, n_chars=50, temperature=1):
 for _ in range(n_chars):
 text += next_char(text, temperature)
 return text

We are now ready to generate some text! Let’s try with different temperature values:

>>> tf.random.set_seed(42)
>>> print(extend_text("To be or not to be", temperature=0.01))
To be or not to be the duke
as it is a proper strange death,
and the
>>> print(extend_text("To be or not to be", temperature=1))
To be or not to behold?

second push:
gremio, lord all, a sistermen,
>>> print(extend_text("To be or not to be", temperature=100))
To be or not to bef ,mt'&o3fpadm!$
wh!nse?bws3est--vgerdjw?c-y-ewznq

Generating Shakespearean Text Using a Character RNN | 583

Shakespeare seems to be suffering from a heatwave. To generate more convincing
text, a common technique is to sample only from the top k characters, or only from
the smallest set of top characters whose total probability exceeds some threshold (this
is called nucleus sampling). Alternatively, you could try using beam search, which we
will discuss later in this chapter, or using more GRU layers and more neurons per
layer, training for longer, and adding some regularization if needed. Also note that
the model is currently incapable of learning patterns longer than length, which is
just 100 characters. You could try making this window larger, but it will also make
training harder, and even LSTM and GRU cells cannot handle very long sequences.
An alternative approach is to use a stateful RNN.

Stateful RNN
Until now, we have only used stateless RNNs: at each training iteration the model
starts with a hidden state full of zeros, then it updates this state at each time step,
and after the last time step, it throws it away as it is not needed anymore. What if
we instructed the RNN to preserve this final state after processing a training batch
and use it as the initial state for the next training batch? This way the model could
learn long-term patterns despite only backpropagating through short sequences. This
is called a stateful RNN. Let’s go over how to build one.

First, note that a stateful RNN only makes sense if each input sequence in a batch
starts exactly where the corresponding sequence in the previous batch left off. So the
first thing we need to do to build a stateful RNN is to use sequential and nonoverlap‐
ping input sequences (rather than the shuffled and overlapping sequences we used
to train stateless RNNs). When creating the tf.data.Dataset, we must therefore use
shift=length (instead of shift=1) when calling the window() method. Moreover, we
must not call the shuffle() method.

Unfortunately, batching is much harder when preparing a dataset for a stateful
RNN than it is for a stateless RNN. Indeed, if we were to call batch(32), then 32
consecutive windows would be put in the same batch, and the following batch would
not continue each of these windows where it left off. The first batch would contain
windows 1 to 32 and the second batch would contain windows 33 to 64, so if you
consider, say, the first window of each batch (i.e., windows 1 and 33), you can see that
they are not consecutive. The simplest solution to this problem is to just use a batch
size of 1. The following to_dataset_for_stateful_rnn() custom utility function
uses this strategy to prepare a dataset for a stateful RNN:

584 | Chapter 16: Natural Language Processing with RNNs and Attention

def to_dataset_for_stateful_rnn(sequence, length):
 ds = tf.data.Dataset.from_tensor_slices(sequence)
 ds = ds.window(length + 1, shift=length, drop_remainder=True)
 ds = ds.flat_map(lambda window: window.batch(length + 1)).batch(1)
 return ds.map(lambda window: (window[:, :-1], window[:, 1:])).prefetch(1)

stateful_train_set = to_dataset_for_stateful_rnn(encoded[:1_000_000], length)
stateful_valid_set = to_dataset_for_stateful_rnn(encoded[1_000_000:1_060_000],
 length)
stateful_test_set = to_dataset_for_stateful_rnn(encoded[1_060_000:], length)

Figure 16-2 summarizes the main steps of this function.

Figure 16-2. Preparing a dataset of consecutive sequence fragments for a stateful RNN

Batching is harder, but it is not impossible. For example, we could chop Shakespeare’s
text into 32 texts of equal length, create one dataset of consecutive input sequen‐
ces for each of them, and finally use tf.data.Dataset.zip(datasets).map(lambda
*windows: tf.stack(windows)) to create proper consecutive batches, where the nth

input sequence in a batch starts off exactly where the nth input sequence ended in the
previous batch (see the notebook for the full code).

Now, let’s create the stateful RNN. We need to set the stateful argument to True
when creating each recurrent layer, and because the stateful RNN needs to know
the batch size (since it will preserve a state for each input sequence in the batch).
Therefore we must set the batch_input_shape argument in the first layer. Note that
we can leave the second dimension unspecified, since the input sequences could have
any length:

Generating Shakespearean Text Using a Character RNN | 585

4 Alec Radford et al., “Learning to Generate Reviews and Discovering Sentiment”, arXiv preprint
arXiv:1704.01444 (2017).

model = tf.keras.Sequential([
 tf.keras.layers.Embedding(input_dim=n_tokens, output_dim=16,
 batch_input_shape=[1, None]),
 tf.keras.layers.GRU(128, return_sequences=True, stateful=True),
 tf.keras.layers.Dense(n_tokens, activation="softmax")
])

At the end of each epoch, we need to reset the states before we go back to the
beginning of the text. For this, we can use a small custom Keras callback:

class ResetStatesCallback(tf.keras.callbacks.Callback):
 def on_epoch_begin(self, epoch, logs):
 self.model.reset_states()

And now we can compile the model and train it using our callback:

model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam",
 metrics=["accuracy"])
history = model.fit(stateful_train_set, validation_data=stateful_valid_set,
 epochs=10, callbacks=[ResetStatesCallback(), model_ckpt])

After this model is trained, it will only be possible to use it to make
predictions for batches of the same size as were used during train‐
ing. To avoid this restriction, create an identical stateless model, and
copy the stateful model’s weights to this model.

Interestingly, although a char-RNN model is just trained to predict the next character,
this seemingly simple task actually requires it to learn some higher-level tasks as
well. For example, to find the next character after “Great movie, I really”, it’s helpful
to understand that the sentence is positive, so what follows is more likely to be
the letter “l” (for “loved”) rather than “h” (for “hated”). In fact, a 2017 paper4 by
Alec Radford and other OpenAI researchers describes how the authors trained a big
char-RNN-like model on a large dataset, and found that one of the neurons acted as
an excellent sentiment analysis classifier: although the model was trained without any
labels, the sentiment neuron—as they called it—reached state-of-the-art performance
on sentiment analysis benchmarks. This foreshadowed and motivated unsupervised
pretraining in NLP.

But before we explore unsupervised pretraining, let’s turn our attention to word-level
models and how to use them in a supervised fashion for sentiment analysis. In the
process, you will learn how to handle sequences of variable lengths using masking.

586 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/sentimentneuron

Sentiment Analysis
Generating text can be fun and instructive, but in real-life projects, one of the most
common applications of NLP is text classification—especially sentiment analysis. If
image classification on the MNIST dataset is the “Hello world!” of computer vision,
then sentiment analysis on the IMDb reviews dataset is the “Hello world!” of natural
language processing. The IMDb dataset consists of 50,000 movie reviews in English
(25,000 for training, 25,000 for testing) extracted from the famous Internet Movie
Database, along with a simple binary target for each review indicating whether it is
negative (0) or positive (1). Just like MNIST, the IMDb reviews dataset is popular for
good reasons: it is simple enough to be tackled on a laptop in a reasonable amount of
time, but challenging enough to be fun and rewarding.

Let’s load the IMDb dataset using the TensorFlow Datasets library (introduced in
Chapter 13). We’ll use the first 90% of the training set for training, and the remaining
10% for validation:

import tensorflow_datasets as tfds

raw_train_set, raw_valid_set, raw_test_set = tfds.load(
 name="imdb_reviews",
 split=["train[:90%]", "train[90%:]", "test"],
 as_supervised=True
)
tf.random.set_seed(42)
train_set = raw_train_set.shuffle(5000, seed=42).batch(32).prefetch(1)
valid_set = raw_valid_set.batch(32).prefetch(1)
test_set = raw_test_set.batch(32).prefetch(1)

Keras also includes a function for loading the IMDb dataset, if
you prefer: tf.keras.datasets.imdb.load_data(). The reviews
are already preprocessed as sequences of word IDs.

Let’s inspect a few reviews:

>>> for review, label in raw_train_set.take(4):
... print(review.numpy().decode("utf-8"))
... print("Label:", label.numpy())
...
This was an absolutely terrible movie. Don't be lured in by Christopher [...]
Label: 0
I have been known to fall asleep during films, but this is usually due to [...]
Label: 0
Mann photographs the Alberta Rocky Mountains in a superb fashion, and [...]
Label: 0
This is the kind of film for a snowy Sunday afternoon when the rest of the [...]
Label: 1

Sentiment Analysis | 587

https://imdb.com
https://imdb.com

5 Rico Sennrich et al., “Neural Machine Translation of Rare Words with Subword Units”, Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics 1 (2016): 1715–1725.

6 Taku Kudo, “Subword Regularization: Improving Neural Network Translation Models with Multiple Subword
Candidates”, arXiv preprint arXiv:1804.10959 (2018).

7 Taku Kudo and John Richardson, “SentencePiece: A Simple and Language Independent Subword Tokenizer
and Detokenizer for Neural Text Processing”, arXiv preprint arXiv:1808.06226 (2018).

Some reviews are easy to classify. For example, the first review includes the words
“terrible movie” in the very first sentence. But in many cases things are not that
simple. For example, the third review starts off positively, even though it’s ultimately a
negative review (label 0).

To build a model for this task, we need to preprocess the text, but this time we
will chop it into words instead of characters. For this, we can use the tf.keras.
layers.TextVectorization layer again. Note that it uses spaces to identify word
boundaries, which will not work well in some languages. For example, Chinese
writing does not use spaces between words, Vietnamese uses spaces even within
words, and German often attaches multiple words together, without spaces. Even in
English, spaces are not always the best way to tokenize text: think of “San Francisco”
or “#ILoveDeepLearning”.

Fortunately, there are solutions to address these issues. In a 2016 paper,5 Rico Senn‐
rich et al. from the University of Edinburgh explored several methods to tokenize
and detokenize text at the subword level. This way, even if your model encounters
a rare word it has never seen before, it can still reasonably guess what it means.
For example, even if the model never saw the word “smartest” during training, if it
learned the word “smart” and it also learned that the suffix “est” means “the most”,
it can infer the meaning of “smartest”. One of the techniques the authors evaluated
is byte pair encoding (BPE). BPE works by splitting the whole training set into
individual characters (including spaces), then repeatedly merging the most frequent
adjacent pairs until the vocabulary reaches the desired size.

A 2018 paper6 by Taku Kudo at Google further improved subword tokenization,
often removing the need for language-specific preprocessing prior to tokenization.
Moreover, the paper proposed a novel regularization technique called subword regula‐
rization, which improves accuracy and robustness by introducing some randomness
in tokenization during training: for example, “New England” may be tokenized as
“New” + “England”, or “New” + “Eng” + “land”, or simply “New England” (just
one token). Google’s SentencePiece project provides an open source implementation,
which is described in a paper7 by Taku Kudo and John Richardson.

588 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/rarewords
https://homl.info/subword
https://github.com/google/sentencepiece
https://homl.info/sentencepiece

8 Yonghui Wu et al., “Google’s Neural Machine Translation System: Bridging the Gap Between Human and
Machine Translation”, arXiv preprint arXiv:1609.08144 (2016).

The TensorFlow Text library also implements various tokenization strategies, includ‐
ing WordPiece8 (a variant of BPE), and last but not least, the Tokenizers library by
Hugging Face implements a wide range of extremely fast tokenizers.

However, for the IMDb task in English, using spaces for token boundaries should be
good enough. So let’s go ahead with creating a TextVectorization layer and adapting
it to the training set. We will limit the vocabulary to 1,000 tokens, including the most
frequent 998 words plus a padding token and a token for unknown words, since
it’s unlikely that very rare words will be important for this task, and limiting the
vocabulary size will reduce the number of parameters the model needs to learn:

vocab_size = 1000
text_vec_layer = tf.keras.layers.TextVectorization(max_tokens=vocab_size)
text_vec_layer.adapt(train_set.map(lambda reviews, labels: reviews))

Finally, we can create the model and train it:

embed_size = 128
tf.random.set_seed(42)
model = tf.keras.Sequential([
 text_vec_layer,
 tf.keras.layers.Embedding(vocab_size, embed_size),
 tf.keras.layers.GRU(128),
 tf.keras.layers.Dense(1, activation="sigmoid")
])
model.compile(loss="binary_crossentropy", optimizer="nadam",
 metrics=["accuracy"])
history = model.fit(train_set, validation_data=valid_set, epochs=2)

The first layer is the TextVectorization layer we just prepared, followed by an
Embedding layer that will convert word IDs into embeddings. The embedding matrix
needs to have one row per token in the vocabulary (vocab_size) and one column per
embedding dimension (this example uses 128 dimensions, but this is a hyperparame‐
ter you could tune). Next we use a GRU layer and a Dense layer with a single neuron
and the sigmoid activation function, since this is a binary classification task: the
model’s output will be the estimated probability that the review expresses a positive
sentiment regarding the movie. We then compile the model, and we fit it on the
dataset we prepared earlier for a couple of epochs (or you can train for longer to get
better results).

Sentiment Analysis | 589

https://homl.info/tftext
https://homl.info/wordpiece
https://homl.info/tokenizers
https://homl.info/tokenizers

Sadly, if you run this code, you will generally find that the model fails to learn
anything at all: the accuracy remains close to 50%, no better than random chance.
Why is that? The reviews have different lengths, so when the TextVectorization
layer converts them to sequences of token IDs, it pads the shorter sequences using the
padding token (with ID 0) to make them as long as the longest sequence in the batch.
As a result, most sequences end with many padding tokens—often dozens or even
hundreds of them. Even though we’re using a GRU layer, which is much better than
a SimpleRNN layer, its short-term memory is still not great, so when it goes through
many padding tokens, it ends up forgetting what the review was about! One solution
is to feed the model with batches of equal-length sentences (which also speeds up
training). Another solution is to make the RNN ignore the padding tokens. This can
be done using masking.

Masking
Making the model ignore padding tokens is trivial using Keras: simply add
mask_zero=True when creating the Embedding layer. This means that padding tokens
(whose ID is 0) will be ignored by all downstream layers. That’s all! If you retrain the
previous model for a few epochs, you will find that the validation accuracy quickly
reaches over 80%.

The way this works is that the Embedding layer creates a mask tensor equal to
tf.math.not_equal(inputs, 0): it is a Boolean tensor with the same shape as the
inputs, and it is equal to False anywhere the token IDs are 0, or True otherwise. This
mask tensor is then automatically propagated by the model to the next layer. If that
layer’s call() method has a mask argument, then it automatically receives the mask.
This allows the layer to ignore the appropriate time steps. Each layer may handle
the mask differently, but in general they simply ignore masked time steps (i.e., time
steps for which the mask is False). For example, when a recurrent layer encounters a
masked time step, it simply copies the output from the previous time step.

Next, if the layer’s supports_masking attribute is True, then the mask is automati‐
cally propagated to the next layer. It keeps propagating this way for as long as the
layers have supports_masking=True. As an example, a recurrent layer’s supports_
masking attribute is True when return_sequences=True, but it’s False when return_
sequences=False since there’s no need for a mask anymore in this case. So if you
have a model with several recurrent layers with return_sequences=True, followed
by a recurrent layer with return_sequences=False, then the mask will automatically
propagate up to the last recurrent layer: that layer will use the mask to ignore
masked steps, but it will not propagate the mask any further. Similarly, if you set
mask_zero=True when creating the Embedding layer in the sentiment analysis model
we just built, then the GRU layer will receive and use the mask automatically, but it will
not propagate it any further, since return_sequences is not set to True.

590 | Chapter 16: Natural Language Processing with RNNs and Attention

Some layers need to update the mask before propagating it to
the next layer: they do so by implementing the compute_mask()
method, which takes two arguments: the inputs and the previous
mask. It then computes the updated mask and returns it. The
default implementation of compute_mask() just returns the previ‐
ous mask unchanged.

Many Keras layers support masking: SimpleRNN, GRU, LSTM, Bidirectional, Dense,
TimeDistributed, Add, and a few others (all in the tf.keras.layers package).
However, convolutional layers (including Conv1D) do not support masking—it’s not
obvious how they would do so anyway.

If the mask propagates all the way to the output, then it gets applied to the losses as
well, so the masked time steps will not contribute to the loss (their loss will be 0). This
assumes that the model outputs sequences, which is not the case in our sentiment
analysis model.

The LSTM and GRU layers have an optimized implementation for
GPUs, based on Nvidia’s cuDNN library. However, this implemen‐
tation only supports masking if all the padding tokens are at the
end of the sequences. It also requires you to use the default values
for several hyperparameters: activation, recurrent_activation,
recurrent_dropout, unroll, use_bias, and reset_after. If that’s
not the case, then these layers will fall back to the (much slower)
default GPU implementation.

If you want to implement your own custom layer with masking support, you should
add a mask argument to the call() method, and obviously make the method use
the mask. Additionally, if the mask must be propagated to the next layers, then
you should set self.supports_masking=True in the constructor. If the mask must
be updated before it is propagated, then you must implement the compute_mask()
method.

If your model does not start with an Embedding layer, you may use the tf.
keras.layers.Masking layer instead: by default, it sets the mask to tf.math.
reduce_any(tf.math.not_equal(X, 0), axis=-1), meaning that time steps where
the last dimension is full of zeros will be masked out in subsequent layers.

Sentiment Analysis | 591

9 Ragged tensors were introduced in Chapter 12, and they are detailed in Appendix C.

Using masking layers and automatic mask propagation works best for simple models.
It will not always work for more complex models, such as when you need to mix
Conv1D layers with recurrent layers. In such cases, you will need to explicitly compute
the mask and pass it to the appropriate layers, using either the functional API or
the subclassing API. For example, the following model is equivalent to the previous
model, except it is built using the functional API and handles masking manually. It
also adds a bit of dropout since the previous model was overfitting slightly:

inputs = tf.keras.layers.Input(shape=[], dtype=tf.string)
token_ids = text_vec_layer(inputs)
mask = tf.math.not_equal(token_ids, 0)
Z = tf.keras.layers.Embedding(vocab_size, embed_size)(token_ids)
Z = tf.keras.layers.GRU(128, dropout=0.2)(Z, mask=mask)
outputs = tf.keras.layers.Dense(1, activation="sigmoid")(Z)
model = tf.keras.Model(inputs=[inputs], outputs=[outputs])

One last approach to masking is to feed the model with ragged tensors.9 In practice,
all you need to do is to set ragged=True when creating the TextVectorization layer,
so that the input sequences are represented as ragged tensors:

>>> text_vec_layer_ragged = tf.keras.layers.TextVectorization(
... max_tokens=vocab_size, ragged=True)
...
>>> text_vec_layer_ragged.adapt(train_set.map(lambda reviews, labels: reviews))
>>> text_vec_layer_ragged(["Great movie!", "This is DiCaprio's best role."])
<tf.RaggedTensor [[86, 18], [11, 7, 1, 116, 217]]>

Compare this ragged tensor representation with the regular tensor representation,
which uses padding tokens:

>>> text_vec_layer(["Great movie!", "This is DiCaprio's best role."])
<tf.Tensor: shape=(2, 5), dtype=int64, numpy=
array([[86, 18, 0, 0, 0],
 [11, 7, 1, 116, 217]])>

Keras’s recurrent layers have built-in support for ragged tensors, so there’s nothing
else you need to do: just use this TextVectorization layer in your model. There’s
no need to pass mask_zero=True or handle masks explicitly—it’s all implemented for
you. That’s convenient! However, as of early 2022, the support for ragged tensors in
Keras is still fairly recent, so there are a few rough edges. For example, it is currently
not possible to use ragged tensors as targets when running on the GPU (but this may
be resolved by the time you read these lines).

Whichever masking approach you prefer, after training this model for a few epochs,
it will become quite good at judging whether a review is positive or not. If you use
the tf.keras.callbacks.TensorBoard() callback, you can visualize the embeddings

592 | Chapter 16: Natural Language Processing with RNNs and Attention

10 Matthew Peters et al., “Deep Contextualized Word Representations”, Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 1
(2018): 2227–2237.

11 Jeremy Howard and Sebastian Ruder, “Universal Language Model Fine-Tuning for Text Classification”, Pro‐
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics 1 (2018): 328–339.

in TensorBoard as they are being learned: it is fascinating to see words like “awesome”
and “amazing” gradually cluster on one side of the embedding space, while words like
“awful” and “terrible” cluster on the other side. Some words are not as positive as you
might expect (at least with this model), such as the word “good”, presumably because
many negative reviews contain the phrase “not good”.

Reusing Pretrained Embeddings and Language Models
It’s impressive that the model is able to learn useful word embeddings based on just
25,000 movie reviews. Imagine how good the embeddings would be if we had billions
of reviews to train on! Unfortunately, we don’t, but perhaps we can reuse word
embeddings trained on some other (very) large text corpus (e.g., Amazon reviews,
available on TensorFlow Datasets), even if it is not composed of movie reviews?
After all, the word “amazing” generally has the same meaning whether you use it to
talk about movies or anything else. Moreover, perhaps embeddings would be useful
for sentiment analysis even if they were trained on another task: since words like
“awesome” and “amazing” have a similar meaning, they will likely cluster in the
embedding space even for tasks such as predicting the next word in a sentence. If
all positive words and all negative words form clusters, then this will be helpful for
sentiment analysis. So, instead of training word embeddings, we could just download
and use pretrained embeddings, such as Google’s Word2vec embeddings, Stanford’s
GloVe embeddings, or Facebook’s FastText embeddings.

Using pretrained word embeddings was popular for several years, but this approach
has its limits. In particular, a word has a single representation, no matter the context.
For example, the word “right” is encoded the same way in “left and right” and “right
and wrong”, even though it means two very different things. To address this limita‐
tion, a 2018 paper10 by Matthew Peters introduced Embeddings from Language Models
(ELMo): these are contextualized word embeddings learned from the internal states
of a deep bidirectional language model. Instead of just using pretrained embeddings
in your model, you reuse part of a pretrained language model.

At roughly the same time, the Universal Language Model Fine-Tuning (ULMFiT)
paper11 by Jeremy Howard and Sebastian Ruder demonstrated the effectiveness of
unsupervised pretraining for NLP tasks: the authors trained an LSTM language
model on a huge text corpus using self-supervised learning (i.e., generating the
labels automatically from the data), then they fine-tuned it on various tasks. Their
model outperformed the state of the art on six text classification tasks by a large

Sentiment Analysis | 593

https://homl.info/word2vec
https://homl.info/glove
https://fasttext.cc
https://homl.info/elmo
https://homl.info/ulmfit
https://homl.info/ulmfit

12 Daniel Cer et al., “Universal Sentence Encoder”, arXiv preprint arXiv:1803.11175 (2018).

margin (reducing the error rate by 18–24% in most cases). Moreover, the authors
showed a pretrained model fine-tuned on just 100 labeled examples could achieve
the same performance as one trained from scratch on 10,000 examples. Before the
ULMFiT paper, using pretrained models was only the norm in computer vision; in
the context of NLP, pretraining was limited to word embeddings. This paper marked
the beginning of a new era in NLP: today, reusing pretrained language models is the
norm.

For example, let’s build a classifier based on the Universal Sentence Encoder, a model
architecture introduced in a 2018 paper12 by a team of Google researchers. This
model is based on the transformer architecture, which we will look at later in this
chapter. Conveniently, the model is available on TensorFlow Hub:

import os
import tensorflow_hub as hub

os.environ["TFHUB_CACHE_DIR"] = "my_tfhub_cache"
model = tf.keras.Sequential([
 hub.KerasLayer("https://tfhub.dev/google/universal-sentence-encoder/4",
 trainable=True, dtype=tf.string, input_shape=[]),
 tf.keras.layers.Dense(64, activation="relu"),
 tf.keras.layers.Dense(1, activation="sigmoid")
])
model.compile(loss="binary_crossentropy", optimizer="nadam",
 metrics=["accuracy"])
model.fit(train_set, validation_data=valid_set, epochs=10)

This model is quite large—close to 1 GB in size—so it may take a
while to download. By default, TensorFlow Hub modules are saved
to a temporary directory, and they get downloaded again and again
every time you run your program. To avoid that, you must set
the TFHUB_CACHE_DIR environment variable to a directory of your
choice: the modules will then be saved there, and only downloaded
once.

Note that the last part of the TensorFlow Hub module URL specifies that we want
version 4 of the model. This versioning ensures that if a new module version is
released on TF Hub, it will not break our model. Conveniently, if you just enter this
URL in a web browser, you will get the documentation for this module.

594 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/139

13 Ilya Sutskever et al., “Sequence to Sequence Learning with Neural Networks”, arXiv preprint (2014).

Also note that we set trainable=True when creating the hub.KerasLayer. This way,
the pretrained Universal Sentence Encoder is fine-tuned during training: some of its
weights are tweaked via backprop. Not all TensorFlow Hub modules are fine-tunable,
so make sure to check the documentation for each pretrained module you’re interes‐
ted in.

After training, this model should reach a validation accuracy of over 90%. That’s
actually really good: if you try to perform the task yourself, you will probably do only
marginally better since many reviews contain both positive and negative comments.
Classifying these ambiguous reviews is like flipping a coin.

So far we have looked at text generation using a char-RNN, and sentiment analysis
with word-level RNN models (based on trainable embeddings) and using a powerful
pretrained language model from TensorFlow Hub. In the next section, we will explore
another important NLP task: neural machine translation (NMT).

An Encoder–Decoder Network for Neural Machine
Translation
Let’s begin with a simple NMT model13 that will translate English sentences to Span‐
ish (see Figure 16-3).

In short, the architecture is as follows: English sentences are fed as inputs to the
encoder, and the decoder outputs the Spanish translations. Note that the Spanish
translations are also used as inputs to the decoder during training, but shifted back
by one step. In other words, during training the decoder is given as input the word
that it should have output at the previous step, regardless of what it actually output.
This is called teacher forcing—a technique that significantly speeds up training and
improves the model’s performance. For the very first word, the decoder is given the
start-of-sequence (SOS) token, and the decoder is expected to end the sentence with
an end-of-sequence (EOS) token.

Each word is initially represented by its ID (e.g., 854 for the word “soccer”). Next, an
Embedding layer returns the word embedding. These word embeddings are then fed
to the encoder and the decoder.

At each step, the decoder outputs a score for each word in the output vocabulary (i.e.,
Spanish), then the softmax activation function turns these scores into probabilities.
For example, at the first step the word “Me” may have a probability of 7%, “Yo” may
have a probability of 1%, and so on. The word with the highest probability is output.
This is very much like a regular classification task, and indeed you can train the

An Encoder–Decoder Network for Neural Machine Translation | 595

https://homl.info/103

14 Samy Bengio et al., “Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks”, arXiv
preprint arXiv:1506.03099 (2015).

model using the "sparse_categorical_crossentropy" loss, much like we did in the
char-RNN model.

Figure 16-3. A simple machine translation model

Note that at inference time (after training), you will not have the target sentence to
feed to the decoder. Instead, you need to feed it the word that it has just output at the
previous step, as shown in Figure 16-4 (this will require an embedding lookup that is
not shown in the diagram).

In a 2015 paper,14 Samy Bengio et al. proposed gradually switching
from feeding the decoder the previous target token to feeding it the
previous output token during training.

596 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/scheduledsampling

15 This dataset is composed of sentence pairs created by contributors of the Tatoeba project. About 120,000
sentence pairs were selected by the authors of the website https://manythings.org/anki. This dataset is released
under the Creative Commons Attribution 2.0 France license. Other language pairs are available.

Figure 16-4. At inference time, the decoder is fed as input the word it just output at the
previous time step

Let’s build and train this model! First, we need to download a dataset of English/
Spanish sentence pairs:15

url = "https://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip"
path = tf.keras.utils.get_file("spa-eng.zip", origin=url, cache_dir="datasets",
 extract=True)
text = (Path(path).with_name("spa-eng") / "spa.txt").read_text()

Each line contains an English sentence and the corresponding Spanish translation,
separated by a tab. We’ll start by removing the Spanish characters “¡” and “¿”, which
the TextVectorization layer doesn’t handle, then we will parse the sentence pairs
and shuffle them. Finally, we will split them into two separate lists, one per language:

import numpy as np

text = text.replace("¡", "").replace("¿", "")
pairs = [line.split("\t") for line in text.splitlines()]
np.random.shuffle(pairs)
sentences_en, sentences_es = zip(*pairs) # separates the pairs into 2 lists

Let’s take a look at the first three sentence pairs:

>>> for i in range(3):
... print(sentences_en[i], "=>", sentences_es[i])
...
How boring! => Qué aburrimiento!
I love sports. => Adoro el deporte.
Would you like to swap jobs? => Te gustaría que intercambiemos los trabajos?

An Encoder–Decoder Network for Neural Machine Translation | 597

https://tatoeba.org
https://manythings.org/anki

Next, let’s create two TextVectorization layers—one per language—and adapt them
to the text:

vocab_size = 1000
max_length = 50
text_vec_layer_en = tf.keras.layers.TextVectorization(
 vocab_size, output_sequence_length=max_length)
text_vec_layer_es = tf.keras.layers.TextVectorization(
 vocab_size, output_sequence_length=max_length)
text_vec_layer_en.adapt(sentences_en)
text_vec_layer_es.adapt([f"startofseq {s} endofseq" for s in sentences_es])

There are a few things to note here:

• We limit the vocabulary size to 1,000, which is quite small. That’s because the•
training set is not very large, and because using a small value will speed up
training. State-of-the-art translation models typically use a much larger vocabu‐
lary (e.g., 30,000), a much larger training set (gigabytes), and a much larger
model (hundreds or even thousands of megabytes). For example, check out the
Opus-MT models by the University of Helsinki, or the M2M-100 model by
Facebook.

• Since all sentences in the dataset have a maximum of 50 words, we set•
output_sequence_length to 50: this way the input sequences will automatically
be padded with zeros until they are all 50 tokens long. If there was any sentence
longer than 50 tokens in the training set, it would be cropped to 50 tokens.

• For the Spanish text, we add “startofseq” and “endofseq” to each sentence when•
adapting the TextVectorization layer: we will use these words as SOS and EOS
tokens. You could use any other words, as long as they are not actual Spanish
words.

Let’s inspect the first 10 tokens in both vocabularies. They start with the padding
token, the unknown token, the SOS and EOS tokens (only in the Spanish vocabu‐
lary), then the actual words, sorted by decreasing frequency:

>>> text_vec_layer_en.get_vocabulary()[:10]
['', '[UNK]', 'the', 'i', 'to', 'you', 'tom', 'a', 'is', 'he']
>>> text_vec_layer_es.get_vocabulary()[:10]
['', '[UNK]', 'startofseq', 'endofseq', 'de', 'que', 'a', 'no', 'tom', 'la']

Next, let’s create the training set and the validation set (you could also create a test
set if you needed it). We will use the first 100,000 sentence pairs for training, and the
rest for validation. The decoder’s inputs are the Spanish sentences plus an SOS token
prefix. The targets are the Spanish sentences plus an EOS suffix:

X_train = tf.constant(sentences_en[:100_000])
X_valid = tf.constant(sentences_en[100_000:])
X_train_dec = tf.constant([f"startofseq {s}" for s in sentences_es[:100_000]])
X_valid_dec = tf.constant([f"startofseq {s}" for s in sentences_es[100_000:]])

598 | Chapter 16: Natural Language Processing with RNNs and Attention

16 In Python, if you run a, *b = [1, 2, 3, 4], then a equals 1 and b equals [2, 3, 4].

Y_train = text_vec_layer_es([f"{s} endofseq" for s in sentences_es[:100_000]])
Y_valid = text_vec_layer_es([f"{s} endofseq" for s in sentences_es[100_000:]])

OK, we’re now ready to build our translation model. We will use the functional API
for that since the model is not sequential. It requires two text inputs—one for the
encoder and one for the decoder—so let’s start with that:

encoder_inputs = tf.keras.layers.Input(shape=[], dtype=tf.string)
decoder_inputs = tf.keras.layers.Input(shape=[], dtype=tf.string)

Next, we need to encode these sentences using the TextVectorization layers
we prepared earlier, followed by an Embedding layer for each language, with
mask_zero=True to ensure masking is handled automatically. The embedding size
is a hyperparameter you can tune, as always:

embed_size = 128
encoder_input_ids = text_vec_layer_en(encoder_inputs)
decoder_input_ids = text_vec_layer_es(decoder_inputs)
encoder_embedding_layer = tf.keras.layers.Embedding(vocab_size, embed_size,
 mask_zero=True)
decoder_embedding_layer = tf.keras.layers.Embedding(vocab_size, embed_size,
 mask_zero=True)
encoder_embeddings = encoder_embedding_layer(encoder_input_ids)
decoder_embeddings = decoder_embedding_layer(decoder_input_ids)

When the languages share many words, you may get better perfor‐
mance using the same embedding layer for both the encoder and
the decoder.

Now let’s create the encoder and pass it the embedded inputs:

encoder = tf.keras.layers.LSTM(512, return_state=True)
encoder_outputs, *encoder_state = encoder(encoder_embeddings)

To keep things simple, we just used a single LSTM layer, but you could stack several
of them. We also set return_state=True to get a reference to the layer’s final state.
Since we’re using an LSTM layer, there are actually two states: the short-term state and
the long-term state. The layer returns these states separately, which is why we had to
write *encoder_state to group both states in a list.16 Now we can use this (double)
state as the initial state of the decoder:

decoder = tf.keras.layers.LSTM(512, return_sequences=True)
decoder_outputs = decoder(decoder_embeddings, initial_state=encoder_state)

An Encoder–Decoder Network for Neural Machine Translation | 599

17 Sébastien Jean et al., “On Using Very Large Target Vocabulary for Neural Machine Translation”, Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing of the Asian Federation of Natural Language Processing 1 (2015):
1–10.

Next, we can pass the decoder’s outputs through a Dense layer with the softmax
activation function to get the word probabilities for each step:

output_layer = tf.keras.layers.Dense(vocab_size, activation="softmax")
Y_proba = output_layer(decoder_outputs)

Optimizing the Output Layer
When the output vocabulary is large, outputting a probability for each and every
possible word can be quite slow. If the target vocabulary contained, say, 50,000
Spanish words instead of 1,000, then the decoder would output 50,000-dimensional
vectors, and computing the softmax function over such a large vector would be very
computationally intensive. To avoid this, one solution is to look only at the logits out‐
put by the model for the correct word and for a random sample of incorrect words,
then compute an approximation of the loss based only on these logits. This sampled
softmax technique was introduced in 2015 by Sébastien Jean et al.17 In TensorFlow
you can use the tf.nn.sampled_softmax_loss() function for this during training
and use the normal softmax function at inference time (sampled softmax cannot be
used at inference time because it requires knowing the target).

Another thing you can do to speed up training—which is compatible with sampled
softmax—is to tie the weights of the output layer to the transpose of the decoder’s
embedding matrix (you will see how to tie weights in Chapter 17). This significantly
reduces the number of model parameters, which speeds up training and may some‐
times improve the model’s accuracy as well, especially if you don’t have a lot of
training data. The embedding matrix is equivalent to one-hot encoding followed by
a linear layer with no bias term and no activation function that maps the one-hot
vectors to the embedding space. The output layer does the reverse. So, if the model
can find an embedding matrix whose transpose is close to its inverse (such a matrix is
called an orthogonal matrix), then there’s no need to learn a separate set of weights for
the output layer.

And that’s it! We just need to create the Keras Model, compile it, and train it:

model = tf.keras.Model(inputs=[encoder_inputs, decoder_inputs],
 outputs=[Y_proba])
model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam",
 metrics=["accuracy"])
model.fit((X_train, X_train_dec), Y_train, epochs=10,
 validation_data=((X_valid, X_valid_dec), Y_valid))

600 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/104

After training, we can use the model to translate new English sentences to Spanish.
But it’s not as simple as calling model.predict(), because the decoder expects as
input the word that was predicted at the previous time step. One way to do this is
to write a custom memory cell that keeps track of the previous output and feeds it
to the encoder at the next time step. However, to keep things simple, we can just call
the model multiple times, predicting one extra word at each round. Let’s write a little
utility function for that:

def translate(sentence_en):
 translation = ""
 for word_idx in range(max_length):
 X = np.array([sentence_en]) # encoder input
 X_dec = np.array(["startofseq " + translation]) # decoder input
 y_proba = model.predict((X, X_dec))[0, word_idx] # last token's probas
 predicted_word_id = np.argmax(y_proba)
 predicted_word = text_vec_layer_es.get_vocabulary()[predicted_word_id]
 if predicted_word == "endofseq":
 break
 translation += " " + predicted_word
 return translation.strip()

The function simply keeps predicting one word at a time, gradually completing the
translation, and it stops once it reaches the EOS token. Let’s give it a try!

>>> translate("I like soccer")
'me gusta el fútbol'

Hurray, it works! Well, at least it does with very short sentences. If you try playing
with this model for a while, you will find that it’s not bilingual yet, and in particular it
really struggles with longer sentences. For example:

>>> translate("I like soccer and also going to the beach")
'me gusta el fútbol y a veces mismo al bus'

The translation says “I like soccer and sometimes even the bus”. So how can you
improve it? One way is to increase the training set size and add more LSTM layers in
both the encoder and the decoder. But this will only get you so far, so let’s look at
more sophisticated techniques, starting with bidirectional recurrent layers.

Bidirectional RNNs
At each time step, a regular recurrent layer only looks at past and present inputs
before generating its output. In other words, it is causal, meaning it cannot look
into the future. This type of RNN makes sense when forecasting time series, or
in the decoder of a sequence-to-sequence (seq2seq) model. But for tasks like text
classification, or in the encoder of a seq2seq model, it is often preferable to look
ahead at the next words before encoding a given word.

An Encoder–Decoder Network for Neural Machine Translation | 601

For example, consider the phrases “the right arm”, “the right person”, and “the right to
criticize”: to properly encode the word “right”, you need to look ahead. One solution
is to run two recurrent layers on the same inputs, one reading the words from left
to right and the other reading them from right to left, then combine their outputs at
each time step, typically by concatenating them. This is what a bidirectional recurrent
layer does (see Figure 16-5).

Figure 16-5. A bidirectional recurrent layer

To implement a bidirectional recurrent layer in Keras, just wrap a recurrent layer in
a tf.keras.layers.Bidirectional layer. For example, the following Bidirectional
layer could be used as the encoder in our translation model:

encoder = tf.keras.layers.Bidirectional(
 tf.keras.layers.LSTM(256, return_state=True))

The Bidirectional layer will create a clone of the GRU layer (but
in the reverse direction), and it will run both and concatenate their
outputs. So although the GRU layer has 10 units, the Bidirectional
layer will output 20 values per time step.

There’s just one problem. This layer will now return four states instead of two: the
final short-term and long-term states of the forward LSTM layer, and the final short-
term and long-term states of the backward LSTM layer. We cannot use this quadruple
state directly as the initial state of the decoder’s LSTM layer, since it expects just two
states (short-term and long-term). We cannot make the decoder bidirectional, since it
must remain causal: otherwise it would cheat during training and it would not work.
Instead, we can concatenate the two short-term states, and also concatenate the two
long-term states:

602 | Chapter 16: Natural Language Processing with RNNs and Attention

encoder_outputs, *encoder_state = encoder(encoder_embeddings)
encoder_state = [tf.concat(encoder_state[::2], axis=-1), # short-term (0 & 2)
 tf.concat(encoder_state[1::2], axis=-1)] # long-term (1 & 3)

Now let’s look at another popular technique that can greatly improve the performance
of a translation model at inference time: beam search.

Beam Search
Suppose you have trained an encoder–decoder model, and you use it to translate the
sentence “I like soccer” to Spanish. You are hoping that it will output the proper
translation “me gusta el fútbol”, but unfortunately it outputs “me gustan los juga‐
dores”, which means “I like the players”. Looking at the training set, you notice many
sentences such as “I like cars”, which translates to “me gustan los autos”, so it wasn’t
absurd for the model to output “me gustan los” after seeing “I like”. Unfortunately, in
this case it was a mistake since “soccer” is singular. The model could not go back and
fix it, so it tried to complete the sentence as best it could, in this case using the word
“jugadores”. How can we give the model a chance to go back and fix mistakes it made
earlier? One of the most common solutions is beam search: it keeps track of a short
list of the k most promising sentences (say, the top three), and at each decoder step
it tries to extend them by one word, keeping only the k most likely sentences. The
parameter k is called the beam width.

For example, suppose you use the model to translate the sentence “I like soccer”
using beam search with a beam width of 3 (see Figure 16-6). At the first decoder
step, the model will output an estimated probability for each possible first word
in the translated sentence. Suppose the top three words are “me” (75% estimated
probability), “a” (3%), and “como” (1%). That’s our short list so far. Next, we use the
model to find the next word for each sentence. For the first sentence (“me”), perhaps
the model outputs a probability of 36% for the word “gustan”, 32% for the word
“gusta”, 16% for the word “encanta”, and so on. Note that these are actually conditional
probabilities, given that the sentence starts with “me”. For the second sentence (“a”),
the model might output a conditional probability of 50% for the word “mi”, and so
on. Assuming the vocabulary has 1,000 words, we will end up with 1,000 probabilities
per sentence.

Next, we compute the probabilities of each of the 3,000 two-word sentences we
considered (3 × 1,000). We do this by multiplying the estimated conditional proba‐
bility of each word by the estimated probability of the sentence it completes. For
example, the estimated probability of the sentence “me” was 75%, while the estimated
conditional probability of the word “gustan” (given that the first word is “me”) was
36%, so the estimated probability of the sentence “me gustan” is 75% × 36% = 27%.
After computing the probabilities of all 3,000 two-word sentences, we keep only
the top 3. In this example they all start with the word “me”: “me gustan” (27%),

An Encoder–Decoder Network for Neural Machine Translation | 603

“me gusta” (24%), and “me encanta” (12%). Right now, the sentence “me gustan” is
winning, but “me gusta” has not been eliminated.

Figure 16-6. Beam search, with a beam width of 3

Then we repeat the same process: we use the model to predict the next word in each
of these three sentences, and we compute the probabilities of all 3,000 three-word
sentences we considered. Perhaps the top three are now “me gustan los” (10%), “me
gusta el” (8%), and “me gusta mucho” (2%). At the next step we may get “me gusta el
fútbol” (6%), “me gusta mucho el” (1%), and “me gusta el deporte” (0.2%). Notice that
“me gustan” was eliminated, and the correct translation is now ahead. We boosted our
encoder–decoder model’s performance without any extra training, simply by using it
more wisely.

The TensorFlow Addons library includes a full seq2seq API that
lets you build encoder–decoder models with attention, including
beam search, and more. However, its documentation is currently
very limited. Implementing beam search is a good exercise, so give
it a try! Check out this chapter’s notebook for a possible solution.

With all this, you can get reasonably good translations for fairly short sentences.
Unfortunately, this model will be really bad at translating long sentences. Once
again, the problem comes from the limited short-term memory of RNNs. Attention
mechanisms are the game-changing innovation that addressed this problem.

Attention Mechanisms
Consider the path from the word “soccer” to its translation “fútbol” back in Fig‐
ure 16-3: it is quite long! This means that a representation of this word (along with all

604 | Chapter 16: Natural Language Processing with RNNs and Attention

18 Dzmitry Bahdanau et al., “Neural Machine Translation by Jointly Learning to Align and Translate”, arXiv
preprint arXiv:1409.0473 (2014).

the other words) needs to be carried over many steps before it is actually used. Can’t
we make this path shorter?

This was the core idea in a landmark 2014 paper18 by Dzmitry Bahdanau et al.,
where the authors introduced a technique that allowed the decoder to focus on the
appropriate words (as encoded by the encoder) at each time step. For example, at
the time step where the decoder needs to output the word “fútbol”, it will focus its
attention on the word “soccer”. This means that the path from an input word to its
translation is now much shorter, so the short-term memory limitations of RNNs have
much less impact. Attention mechanisms revolutionized neural machine translation
(and deep learning in general), allowing a significant improvement in the state of the
art, especially for long sentences (e.g., over 30 words).

The most common metric used in NMT is the bilingual evalua‐
tion understudy (BLEU) score, which compares each translation
produced by the model with several good translations produced by
humans: it counts the number of n-grams (sequences of n words)
that appear in any of the target translations and adjusts the score
to take into account the frequency of the produced n-grams in the
target translations.

Figure 16-7 shows our encoder–decoder model with an added attention mechanism.
On the left, you have the encoder and the decoder. Instead of just sending the
encoder’s final hidden state to the decoder, as well as the previous target word at each
step (which is still done, although it is not shown in the figure), we now send all
of the encoder’s outputs to the decoder as well. Since the decoder cannot deal with
all these encoder outputs at once, they need to be aggregated: at each time step, the
decoder’s memory cell computes a weighted sum of all the encoder outputs. This
determines which words it will focus on at this step. The weight α(t,i) is the weight
of the ith encoder output at the tth decoder time step. For example, if the weight
α(3,2) is much larger than the weights α(3,0) and α(3,1), then the decoder will pay much
more attention to the encoder’s output for word #2 (“soccer”) than to the other two
outputs, at least at this time step. The rest of the decoder works just like earlier: at
each time step the memory cell receives the inputs we just discussed, plus the hidden
state from the previous time step, and finally (although it is not represented in the
diagram) it receives the target word from the previous time step (or at inference time,
the output from the previous time step).

Attention Mechanisms | 605

https://homl.info/attention

Figure 16-7. Neural machine translation using an encoder–decoder network with an
attention model

But where do these α(t,i) weights come from? Well, they are generated by a small
neural network called an alignment model (or an attention layer), which is trained
jointly with the rest of the encoder–decoder model. This alignment model is illustra‐
ted on the righthand side of Figure 16-7. It starts with a Dense layer composed of a
single neuron that processes each of the encoder’s outputs, along with the decoder’s
previous hidden state (e.g., h(2)). This layer outputs a score (or energy) for each
encoder output (e.g., e(3, 2)): this score measures how well each output is aligned
with the decoder’s previous hidden state. For example, in Figure 16-7, the model
has already output “me gusta el” (meaning “I like”), so it’s now expecting a noun:
the word “soccer” is the one that best aligns with the current state, so it gets a high
score. Finally, all the scores go through a softmax layer to get a final weight for
each encoder output (e.g., α(3,2)). All the weights for a given decoder time step add
up to 1. This particular attention mechanism is called Bahdanau attention (named
after the 2014 paper’s first author). Since it concatenates the encoder output with
the decoder’s previous hidden state, it is sometimes called concatenative attention (or
additive attention).

606 | Chapter 16: Natural Language Processing with RNNs and Attention

19 Minh-Thang Luong et al., “Effective Approaches to Attention-Based Neural Machine Translation”, Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing (2015): 1412–1421.

If the input sentence is n words long, and assuming the output sen‐
tence is about as long, then this model will need to compute about
n2 weights. Fortunately, this quadratic computational complexity is
still tractable because even long sentences don’t have thousands of
words.

Another common attention mechanism, known as Luong attention or multiplicative
attention, was proposed shortly after, in 2015,19 by Minh-Thang Luong et al. Because
the goal of the alignment model is to measure the similarity between one of the
encoder’s outputs and the decoder’s previous hidden state, the authors proposed to
simply compute the dot product (see Chapter 4) of these two vectors, as this is often a
fairly good similarity measure, and modern hardware can compute it very efficiently.
For this to be possible, both vectors must have the same dimensionality. The dot
product gives a score, and all the scores (at a given decoder time step) go through a
softmax layer to give the final weights, just like in Bahdanau attention. Another sim‐
plification Luong et al. proposed was to use the decoder’s hidden state at the current
time step rather than at the previous time step (i.e., h(t) rather than h(t–1)), then to use
the output of the attention mechanism (noted h t) directly to compute the decoder’s
predictions, rather than using it to compute the decoder’s current hidden state. The
researchers also proposed a variant of the dot product mechanism where the encoder
outputs first go through a fully connected layer (without a bias term) before the
dot products are computed. This is called the “general” dot product approach. The
researchers compared both dot product approaches with the concatenative attention
mechanism (adding a rescaling parameter vector v), and they observed that the
dot product variants performed better than concatenative attention. For this reason,
concatenative attention is much less used now. The equations for these three attention
mechanisms are summarized in Equation 16-1.

Equation 16-1. Attention mechanisms

h t = ∑
i
α t, i y i

 with α t, i =
exp e t, i

∑
i′

exp e t, i′

 and e t, i =

h t
⊺y i dot

h t
⊺Wy i general

v⊺tanh W h t ; y i concat

Attention Mechanisms | 607

https://homl.info/luongattention

Keras provides a tf.keras.layers.Attention layer for Luong attention, and an
AdditiveAttention layer for Bahdanau attention. Let’s add Luong attention to our
encoder–decoder model. Since we will need to pass all the encoder’s outputs to the
Attention layer, we first need to set return_sequences=True when creating the
encoder:

encoder = tf.keras.layers.Bidirectional(
 tf.keras.layers.LSTM(256, return_sequences=True, return_state=True))

Next, we need to create the attention layer and pass it the decoder’s states and the
encoder’s outputs. However, to access the decoder’s states at each step we would need
to write a custom memory cell. For simplicity, let’s use the decoder’s outputs instead
of its states: in practice this works well too, and it’s much easier to code. Then we
just pass the attention layer’s outputs directly to the output layer, as suggested in the
Luong attention paper:

attention_layer = tf.keras.layers.Attention()
attention_outputs = attention_layer([decoder_outputs, encoder_outputs])
output_layer = tf.keras.layers.Dense(vocab_size, activation="softmax")
Y_proba = output_layer(attention_outputs)

And that’s it! If you train this model, you will find that it now handles much longer
sentences. For example:

>>> translate("I like soccer and also going to the beach")
'me gusta el fútbol y también ir a la playa'

In short, the attention layer provides a way to focus the attention of the model on part
of the inputs. But there’s another way to think of this layer: it acts as a differentiable
memory retrieval mechanism.

For example, let’s suppose the encoder analyzed the input sentence “I like soccer”,
and it managed to understand that the word “I” is the subject and the word “like” is
the verb, so it encoded this information in its outputs for these words. Now suppose
the decoder has already translated the subject, and it thinks that it should translate
the verb next. For this, it needs to fetch the verb from the input sentence. This
is analogous to a dictionary lookup: it’s as if the encoder had created a dictionary
{"subject”: “They”, “verb”: “played”, …} and the decoder wanted to look up the value
that corresponds to the key “verb”.

However, the model does not have discrete tokens to represent the keys (like “subject”
or “verb”); instead, it has vectorized representations of these concepts that it learned
during training, so the query it will use for the lookup will not perfectly match any
key in the dictionary. The solution is to compute a similarity measure between the
query and each key in the dictionary, and then use the softmax function to convert
these similarity scores to weights that add up to 1. As we saw earlier, that’s exactly
what the attention layer does. If the key that represents the verb is by far the most
similar to the query, then that key’s weight will be close to 1.

608 | Chapter 16: Natural Language Processing with RNNs and Attention

20 Ashish Vaswani et al., “Attention Is All You Need”, Proceedings of the 31st International Conference on Neural
Information Processing Systems (2017): 6000–6010.

21 Since the transformer uses time-distributed dense layers, you could argue that it uses 1D convolutional layers
with a kernel size of 1.

Next, the attention layer computes a weighted sum of the corresponding values: if the
weight of the “verb” key is close to 1, then the weighted sum will be very close to the
representation of the word “played”.

This is why the Keras Attention and AdditiveAttention layers both expect a list as
input, containing two or three items: the queries, the keys, and optionally the values. If
you do not pass any values, then they are automatically equal to the keys. So, looking
at the previous code example again, the decoder outputs are the queries, and the
encoder outputs are both the keys and the values. For each decoder output (i.e., each
query), the attention layer returns a weighted sum of the encoder outputs (i.e., the
keys/values) that are most similar to the decoder output.

The bottom line is that an attention mechanism is a trainable memory retrieval
system. It is so powerful that you can actually build state-of-the-art models using only
attention mechanisms. Enter the transformer architecture.

Attention Is All You Need: The Original Transformer Architecture
In a groundbreaking 2017 paper,20 a team of Google researchers suggested that
“Attention Is All You Need”. They created an architecture called the transformer,
which significantly improved the state-of-the-art in NMT without using any recur‐
rent or convolutional layers,21 just attention mechanisms (plus embedding layers,
dense layers, normalization layers, and a few other bits and pieces). Because the
model is not recurrent, it doesn’t suffer as much from the vanishing or exploding
gradients problems as RNNs, it can be trained in fewer steps, it’s easier to parallelize
across multiple GPUs, and it can better capture long-range patterns than RNNs. The
original 2017 transformer architecture is represented in Figure 16-8.

In short, the left part of Figure 16-8 is the encoder, and the right part is the
decoder. Each embedding layer outputs a 3D tensor of shape [batch size, sequence
length, embedding size]. After that, the tensors are gradually transformed as they flow
through the transformer, but their shape remains the same.

Attention Mechanisms | 609

https://homl.info/transformer

22 This is figure 1 from the “Attention Is All You Need” paper, reproduced with the kind permission of the
authors.

Figure 16-8. The original 2017 transformer architecture22

If you use the transformer for NMT, then during training you must feed the English
sentences to the encoder and the corresponding Spanish translations to the decoder,
with an extra SOS token inserted at the start of each sentence. At inference time, you
must call the transformer multiple times, producing the translations one word at a
time and feeding the partial translations to the decoder at each round, just like we did
earlier in the translate() function.

610 | Chapter 16: Natural Language Processing with RNNs and Attention

The encoder’s role is to gradually transform the inputs—word representations of the
English sentence—until each word’s representation perfectly captures the meaning of
the word, in the context of the sentence. For example, if you feed the encoder with
the sentence “I like soccer”, then the word “like” will start off with a rather vague
representation, since this word could mean different things in different contexts:
think of “I like soccer” versus “It’s like that”. But after going through the encoder,
the word’s representation should capture the correct meaning of “like” in the given
sentence (i.e., to be fond of), as well as any other information that may be required
for translation (e.g., it’s a verb).

The decoder’s role is to gradually transform each word representation in the trans‐
lated sentence into a word representation of the next word in the translation. For
example, if the sentence to translate is “I like soccer”, and the decoder’s input sentence
is “<SOS> me gusta el fútbol”, then after going through the decoder, the word
representation of the word “el” will end up transformed into a representation of the
word “fútbol”. Similarly, the representation of the word “fútbol” will be transformed
into a representation of the EOS token.

After going through the decoder, each word representation goes through a final
Dense layer with a softmax activation function, which will hopefully output a high
probability for the correct next word and a low probability for all other words. The
predicted sentence should be “me gusta el fútbol <EOS>”.

That was the big picture; now let’s walk through Figure 16-8 in more detail:

• First, notice that both the encoder and the decoder contain modules that are•
stacked N times. In the paper, N = 6. The final outputs of the whole encoder stack
are fed to the decoder at each of these N levels.

• Zooming in, you can see that you are already familiar with most components:•
there are two embedding layers; several skip connections, each of them followed
by a layer normalization layer; several feedforward modules that are composed
of two dense layers each (the first one using the ReLU activation function, the
second with no activation function); and finally the output layer is a dense layer
using the softmax activation function. You can also sprinkle a bit of dropout
after the attention layers and the feedforward modules, if needed. Since all of
these layers are time-distributed, each word is treated independently from all the
others. But how can we translate a sentence by looking at the words completely
separately? Well, we can’t, so that’s where the new components come in:
— The encoder’s multi-head attention layer updates each word representation by—

attending to (i.e., paying attention to) all other words in the same sentence.
That’s where the vague representation of the word “like” becomes a richer
and more accurate representation, capturing its precise meaning in the given
sentence. We will discuss exactly how this works shortly.

Attention Mechanisms | 611

— The decoder’s masked multi-head attention layer does the same thing, but—
when it processes a word, it doesn’t attend to words located after it: it’s a causal
layer. For example, when it processes the word “gusta”, it only attends to the
words “<SOS> me gusta”, and it ignores the words “el fútbol” (or else that
would be cheating).

— The decoder’s upper multi-head attention layer is where the decoder pays—
attention to the words in the English sentence. This is called cross-attention,
not self-attention in this case. For example, the decoder will probably pay close
attention to the word “soccer” when it processes the word “el” and transforms
its representation into a representation of the word “fútbol”.

— The positional encodings are dense vectors (much like word embeddings)—
that represent the position of each word in the sentence. The nth positional
encoding is added to the word embedding of the nth word in each sentence.
This is needed because all layers in the transformer architecture ignore word
positions: without positional encodings, you could shuffle the input sequen‐
ces, and it would just shuffle the output sequences in the same way. Obviously,
the order of words matters, which is why we need to give positional informa‐
tion to the transformer somehow: adding positional encodings to the word
representations is a good way to achieve this.

The first two arrows going into each multi-head attention layer
in Figure 16-8 represent the keys and values, and the third arrow
represents the queries. In the self-attention layers, all three are
equal to the word representations output by the previous layer,
while in the decoder’s upper attention layer, the keys and values are
equal to the encoder’s final word representations, and the queries
are equal to the word representations output by the previous layer.

Let’s go through the novel components of the transformer architecture in more detail,
starting with the positional encodings.

Positional encodings
A positional encoding is a dense vector that encodes the position of a word within a
sentence: the ith positional encoding is added to the word embedding of the ith word
in the sentence. The easiest way to implement this is to use an Embedding layer and
make it encode all the positions from 0 to the maximum sequence length in the batch,
then add the result to the word embeddings. The rules of broadcasting will ensure
that the positional encodings get applied to every input sequence. For example, here
is how to add positional encodings to the encoder and decoder inputs:

612 | Chapter 16: Natural Language Processing with RNNs and Attention

23 It’s possible to use ragged tensors instead, if you are using the latest version of TensorFlow.

max_length = 50 # max length in the whole training set
embed_size = 128
pos_embed_layer = tf.keras.layers.Embedding(max_length, embed_size)
batch_max_len_enc = tf.shape(encoder_embeddings)[1]
encoder_in = encoder_embeddings + pos_embed_layer(tf.range(batch_max_len_enc))
batch_max_len_dec = tf.shape(decoder_embeddings)[1]
decoder_in = decoder_embeddings + pos_embed_layer(tf.range(batch_max_len_dec))

Note that this implementation assumes that the embeddings are represented as reg‐
ular tensors, not ragged tensors.23 The encoder and the decoder share the same
Embedding layer for the positional encodings, since they have the same embedding
size (this is often the case).

Instead of using trainable positional encodings, the authors of the transformer paper
chose to use fixed positional encodings, based on the sine and cosine functions at
different frequencies. The positional encoding matrix P is defined in Equation 16-2
and represented at the top of Figure 16-9 (transposed), where Pp,i is the ith component
of the encoding for the word located at the pth position in the sentence.

Equation 16-2. Sine/cosine positional encodings

Pp, i =
sin p/10000i/d if i is even

cos p/10000 i − 1 /d if i is odd

Figure 16-9. Sine/cosine positional encoding matrix (transposed, top) with a focus on
two values of i (bottom)

Attention Mechanisms | 613

This solution can give the same performance as trainable positional encodings, and it
can extend to arbitrarily long sentences without adding any parameters to the model
(however, when there is a large amount of pretraining data, trainable positional
encodings are usually favored). After these positional encodings are added to the
word embeddings, the rest of the model has access to the absolute position of each
word in the sentence because there is a unique positional encoding for each position
(e.g., the positional encoding for the word located at the 22nd position in a sentence
is represented by the vertical dashed line at the top left of Figure 16-9, and you can
see that it is unique to that position). Moreover, the choice of oscillating functions
(sine and cosine) makes it possible for the model to learn relative positions as well.
For example, words located 38 words apart (e.g., at positions p = 22 and p = 60)
always have the same positional encoding values in the encoding dimensions i = 100
and i = 101, as you can see in Figure 16-9. This explains why we need both the sine
and the cosine for each frequency: if we only used the sine (the blue wave at i = 100),
the model would not be able to distinguish positions p = 22 and p = 35 (marked by a
cross).

There is no PositionalEncoding layer in TensorFlow, but it is not too hard to
create one. For efficiency reasons, we precompute the positional encoding matrix
in the constructor. The call() method just truncates this encoding matrix to the
max length of the input sequences, and it adds them to the inputs. We also set
supports_masking=True to propagate the input’s automatic mask to the next layer:

class PositionalEncoding(tf.keras.layers.Layer):
 def __init__(self, max_length, embed_size, dtype=tf.float32, **kwargs):
 super().__init__(dtype=dtype, **kwargs)
 assert embed_size % 2 == 0, "embed_size must be even"
 p, i = np.meshgrid(np.arange(max_length),
 2 * np.arange(embed_size // 2))
 pos_emb = np.empty((1, max_length, embed_size))
 pos_emb[0, :, ::2] = np.sin(p / 10_000 ** (i / embed_size)).T
 pos_emb[0, :, 1::2] = np.cos(p / 10_000 ** (i / embed_size)).T
 self.pos_encodings = tf.constant(pos_emb.astype(self.dtype))
 self.supports_masking = True

 def call(self, inputs):
 batch_max_length = tf.shape(inputs)[1]
 return inputs + self.pos_encodings[:, :batch_max_length]

Let’s use this layer to add the positional encoding to the encoder’s inputs:

pos_embed_layer = PositionalEncoding(max_length, embed_size)
encoder_in = pos_embed_layer(encoder_embeddings)
decoder_in = pos_embed_layer(decoder_embeddings)

Now let’s look deeper into the heart of the transformer model, at the multi-head
attention layer.

614 | Chapter 16: Natural Language Processing with RNNs and Attention

Multi-head attention
To understand how a multi-head attention layer works, we must first understand
the scaled dot-product attention layer, which it is based on. Its equation is shown in
Equation 16-3, in a vectorized form. It’s the same as Luong attention, except for a
scaling factor.

Equation 16-3. Scaled dot-product attention

Attention Q,K,V = softmax QK⊺

dkeys
V

In this equation:

• Q is a matrix containing one row per query. Its shape is [nqueries, dkeys], where•
nqueries is the number of queries and dkeys is the number of dimensions of each
query and each key.

• K is a matrix containing one row per key. Its shape is [nkeys, dkeys], where nkeys is•
the number of keys and values.

• V is a matrix containing one row per value. Its shape is [nkeys, dvalues], where dvalues•
is the number of dimensions of each value.

• The shape of Q K⊺ is [nqueries, nkeys]: it contains one similarity score for each•
query/key pair. To prevent this matrix from being huge, the input sequences must
not be too long (we will discuss how to overcome this limitation later in this
chapter). The output of the softmax function has the same shape, but all rows
sum up to 1. The final output has a shape of [nqueries, dvalues]: there is one row per
query, where each row represents the query result (a weighted sum of the values).

• The scaling factor 1 / (dkeys) scales down the similarity scores to avoid saturat‐•
ing the softmax function, which would lead to tiny gradients.

• It is possible to mask out some key/value pairs by adding a very large negative•
value to the corresponding similarity scores, just before computing the softmax.
This is useful in the masked multi-head attention layer.

If you set use_scale=True when creating a tf.keras.layers.Attention layer, then
it will create an additional parameter that lets the layer learn how to properly down‐
scale the similarity scores. The scaled dot-product attention used in the transformer
model is almost the same, except it always scales the similarity scores by the same
factor, 1 / (dkeys).

Note that the Attention layer’s inputs are just like Q, K, and V, except with an extra
batch dimension (the first dimension). Internally, the layer computes all the attention
scores for all sentences in the batch with just one call to tf.matmul(queries, keys):

Attention Mechanisms | 615

24 This is the righthand part of figure 2 from “Attention Is All You Need”, reproduced with the kind authoriza‐
tion of the authors.

this makes it extremely efficient. Indeed, in TensorFlow, if A and B are tensors with
more than two dimensions—say, of shape [2, 3, 4, 5] and [2, 3, 5, 6], respectively—
then tf.matmul(A, B) will treat these tensors as 2 × 3 arrays where each cell contains
a matrix, and it will multiply the corresponding matrices: the matrix at the ith row and
jth column in A will be multiplied by the matrix at the ith row and jth column in B. Since
the product of a 4 × 5 matrix with a 5 × 6 matrix is a 4 × 6 matrix, tf.matmul(A, B)
will return an array of shape [2, 3, 4, 6].

Now we’re ready to look at the multi-head attention layer. Its architecture is shown in
Figure 16-10.

Figure 16-10. Multi-head attention layer architecture24

As you can see, it is just a bunch of scaled dot-product attention layers, each preceded
by a linear transformation of the values, keys, and queries (i.e., a time-distributed
dense layer with no activation function). All the outputs are simply concatenated, and
they go through a final linear transformation (again, time-distributed).

But why? What is the intuition behind this architecture? Well, consider once again
the word “like” in the sentence “I like soccer”. The encoder was smart enough to

616 | Chapter 16: Natural Language Processing with RNNs and Attention

25 This will most likely change by the time you read this; check out Keras issue #16248 for more details. When
this happens, there will be no need to set the attention_mask argument, and therefore no need to create
encoder_pad_mask.

encode the fact that it is a verb. But the word representation also includes its position
in the text, thanks to the positional encodings, and it probably includes many other
features that are useful for its translation, such as the fact that it is in the present
tense. In short, the word representation encodes many different characteristics of the
word. If we just used a single scaled dot-product attention layer, we would only be
able to query all of these characteristics in one shot.

This is why the multi-head attention layer applies multiple different linear transfor‐
mations of the values, keys, and queries: this allows the model to apply many different
projections of the word representation into different subspaces, each focusing on a
subset of the word’s characteristics. Perhaps one of the linear layers will project the
word representation into a subspace where all that remains is the information that the
word is a verb, another linear layer will extract just the fact that it is present tense, and
so on. Then the scaled dot-product attention layers implement the lookup phase, and
finally we concatenate all the results and project them back to the original space.

Keras includes a tf.keras.layers.MultiHeadAttention layer, so we now have
everything we need to build the rest of the transformer. Let’s start with the full
encoder, which is exactly like in Figure 16-8, except we use a stack of two blocks (N =
2) instead of six, since we don’t have a huge training set, and we add a bit of dropout
as well:

N = 2 # instead of 6
num_heads = 8
dropout_rate = 0.1
n_units = 128 # for the first dense layer in each feedforward block
encoder_pad_mask = tf.math.not_equal(encoder_input_ids, 0)[:, tf.newaxis]
Z = encoder_in
for _ in range(N):
 skip = Z
 attn_layer = tf.keras.layers.MultiHeadAttention(
 num_heads=num_heads, key_dim=embed_size, dropout=dropout_rate)
 Z = attn_layer(Z, value=Z, attention_mask=encoder_pad_mask)
 Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))
 skip = Z
 Z = tf.keras.layers.Dense(n_units, activation="relu")(Z)
 Z = tf.keras.layers.Dense(embed_size)(Z)
 Z = tf.keras.layers.Dropout(dropout_rate)(Z)
 Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))

This code should be mostly straightforward, except for one thing: masking. As of the
time of writing, the MultiHeadAttention layer does not support automatic masking,25

so we must handle it manually. How can we do that?

Attention Mechanisms | 617

https://github.com/keras-team/keras/issues/16248

26 Currently Z + skip does not support automatic masking, which is why we had to write tf.keras.
layers.Add()([Z, skip]) instead. Again, this may change by the time you read this.

The MultiHeadAttention layer accepts an attention_mask argument, which is a
Boolean tensor of shape [batch size, max query length, max value length]: for every
token in every query sequence, this mask indicates which tokens in the correspond‐
ing value sequence should be attended to. We want to tell the MultiHeadAttention
layer to ignore all the padding tokens in the values. So, we first compute the padding
mask using tf.math.not_equal(encoder_input_ids, 0). This returns a Boolean
tensor of shape [batch size, max sequence length]. We then insert a second axis
using [:, tf.newaxis], to get a mask of shape [batch size, 1, max sequence length].
This allows us to use this mask as the attention_mask when calling the MultiHead
Attention layer: thanks to broadcasting, the same mask will be used for all tokens in
each query. This way, the padding tokens in the values will be ignored correctly.

However, the layer will compute outputs for every single query token, including
the padding tokens. We need to mask the outputs that correspond to these pad‐
ding tokens. Recall that we used mask_zero in the Embedding layers, and we set
supports_masking to True in the PositionalEncoding layer, so the automatic mask
was propagated all the way to the MultiHeadAttention layer’s inputs (encoder_in).
We can use this to our advantage in the skip connection: indeed, the Add layer
supports automatic masking, so when we add Z and skip (which is initially equal
to encoder_in), the outputs get automatically masked correctly.26 Yikes! Masking
required much more explanation than code.

Now on to the decoder! Once again, masking is going to be the only tricky part, so
let’s start with that. The first multi-head attention layer is a self-attention layer, like
in the encoder, but it is a masked multi-head attention layer, meaning it is causal: it
should ignore all tokens in the future. So, we need two masks: a padding mask and a
causal mask. Let’s create them:

decoder_pad_mask = tf.math.not_equal(decoder_input_ids, 0)[:, tf.newaxis]
causal_mask = tf.linalg.band_part(# creates a lower triangular matrix
 tf.ones((batch_max_len_dec, batch_max_len_dec), tf.bool), -1, 0)

The padding mask is exactly like the one we created for the encoder, except it’s based
on the decoder’s inputs rather than the encoder’s. The causal mask is created using
the tf.linalg.band_part() function, which takes a tensor and returns a copy with
all the values outside a diagonal band set to zero. With these arguments, we get a
square matrix of size batch_max_len_dec (the max length of the input sequences in
the batch), with 1s in the lower-left triangle and 0s in the upper right. If we use this
mask as the attention mask, we will get exactly what we want: the first query token
will only attend to the first value token, the second will only attend to the first two,

618 | Chapter 16: Natural Language Processing with RNNs and Attention

the third will only attend to the first three, and so on. In other words, query tokens
cannot attend to any value token in the future.

Let’s now build the decoder:

encoder_outputs = Z # let's save the encoder's final outputs
Z = decoder_in # the decoder starts with its own inputs
for _ in range(N):
 skip = Z
 attn_layer = tf.keras.layers.MultiHeadAttention(
 num_heads=num_heads, key_dim=embed_size, dropout=dropout_rate)
 Z = attn_layer(Z, value=Z, attention_mask=causal_mask & decoder_pad_mask)
 Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))
 skip = Z
 attn_layer = tf.keras.layers.MultiHeadAttention(
 num_heads=num_heads, key_dim=embed_size, dropout=dropout_rate)
 Z = attn_layer(Z, value=encoder_outputs, attention_mask=encoder_pad_mask)
 Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))
 skip = Z
 Z = tf.keras.layers.Dense(n_units, activation="relu")(Z)
 Z = tf.keras.layers.Dense(embed_size)(Z)
 Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))

For the first attention layer, we use causal_mask & decoder_pad_mask to mask both
the padding tokens and future tokens. The causal mask only has two dimensions: it’s
missing the batch dimension, but that’s okay since broadcasting ensures that it gets
copied across all the instances in the batch.

For the second attention layer, there’s nothing special. The only thing to note is that
we are using encoder_pad_mask, not decoder_pad_mask, because this attention layer
uses the encoder’s final outputs as its values.

We’re almost done. We just need to add the final output layer, create the model,
compile it, and train it:

Y_proba = tf.keras.layers.Dense(vocab_size, activation="softmax")(Z)
model = tf.keras.Model(inputs=[encoder_inputs, decoder_inputs],
 outputs=[Y_proba])
model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam",
 metrics=["accuracy"])
model.fit((X_train, X_train_dec), Y_train, epochs=10,
 validation_data=((X_valid, X_valid_dec), Y_valid))

Congratulations! You’ve built a full transformer from scratch, and trained it for
automatic translation. This is getting quite advanced!

The Keras team has created a new Keras NLP project, including an
API to build a transformer more easily. You may also be interested
in the new Keras CV project for computer vision.

Attention Mechanisms | 619

https://github.com/keras-team/keras-nlp
https://github.com/keras-team/keras-cv

27 Alec Radford et al., “Improving Language Understanding by Generative Pre-Training” (2018).
28 For example, the sentence “Jane had a lot of fun at her friend’s birthday party” entails “Jane enjoyed the party”,

but it is contradicted by “Everyone hated the party” and it is unrelated to “The Earth is flat”.
29 Jacob Devlin et al., “BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding”,

Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies 1 (2019).

But the field didn’t stop there. Let’s now explore some of the recent advances.

An Avalanche of Transformer Models
The year 2018 has been called the “ImageNet moment for NLP”. Since then, progress
has been astounding, with larger and larger transformer-based architectures trained
on immense datasets.

First, the GPT paper27 by Alec Radford and other OpenAI researchers once again
demonstrated the effectiveness of unsupervised pretraining, like the ELMo and
ULMFiT papers before it, but this time using a transformer-like architecture. The
authors pretrained a large but fairly simple architecture composed of a stack of
12 transformer modules using only masked multi-head attention layers, like in the
original transformer’s decoder. They trained it on a very large dataset, using the
same autoregressive technique we used for our Shakespearean char-RNN: just predict
the next token. This is a form of self-supervised learning. Then they fine-tuned it
on various language tasks, using only minor adaptations for each task. The tasks
were quite diverse: they included text classification, entailment (whether sentence A
imposes, involves, or implies sentence B as a necessary consequence),28 similarity
(e.g., “Nice weather today” is very similar to “It is sunny”), and question answering
(given a few paragraphs of text giving some context, the model must answer some
multiple-choice questions).

Then Google’s BERT paper29 came out: it also demonstrated the effectiveness of
self-supervised pretraining on a large corpus, using a similar architecture to GPT
but with nonmasked multi-head attention layers only, like in the original transform‐
er’s encoder. This means that the model is naturally bidirectional; hence the B in
BERT (Bidirectional Encoder Representations from Transformers). Most importantly,
the authors proposed two pretraining tasks that explain most of the model’s strength:

Masked language model (MLM)
Each word in a sentence has a 15% probability of being masked, and the model
is trained to predict the masked words. For example, if the original sentence is
“She had fun at the birthday party”, then the model may be given the sentence
“She <mask> fun at the <mask> party” and it must predict the words “had” and
“birthday” (the other outputs will be ignored). To be more precise, each selected
word has an 80% chance of being masked, a 10% chance of being replaced by a

620 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/gpt
https://homl.info/bert

30 This is figure 1 from the paper, reproduced with the kind authorization of the authors.

random word (to reduce the discrepancy between pretraining and fine-tuning,
since the model will not see <mask> tokens during fine-tuning), and a 10%
chance of being left alone (to bias the model toward the correct answer).

Next sentence prediction (NSP)
The model is trained to predict whether two sentences are consecutive or not.
For example, it should predict that “The dog sleeps” and “It snores loudly” are
consecutive sentences, while “The dog sleeps” and “The Earth orbits the Sun” are
not consecutive. Later research showed that NSP was not as important as was
initially thought, so it was dropped in most later architectures.

The model is trained on these two tasks simultaneously (see Figure 16-11). For the
NSP task, the authors inserted a class token (<CLS>) at the start of every input, and
the corresponding output token represents the model’s prediction: sentence B follows
sentence A, or it does not. The two input sentences are concatenated, separated only
by a special separation token (<SEP>), and they are fed as input to the model. To help
the model know which sentence each input token belongs to, a segment embedding
is added on top of each token’s positional embeddings: there are just two possible
segment embeddings, one for sentence A and one for sentence B. For the MLM task,
some input words are masked (as we just saw) and the model tries to predict what
those words were. The loss is only computed on the NSP prediction and the masked
tokens, not on the unmasked ones.

Figure 16-11. BERT training and fine-tuning process30

After this unsupervised pretraining phase on a very large corpus of text, the model
is then fine-tuned on many different tasks, changing very little for each task. For
example, for text classification such as sentiment analysis, all output tokens are

An Avalanche of Transformer Models | 621

31 Alec Radford et al., “Language Models Are Unsupervised Multitask Learners” (2019).
32 William Fedus et al., “Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient

Sparsity” (2021).
33 Victor Sanh et al., “DistilBERT, A Distilled Version of Bert: Smaller, Faster, Cheaper and Lighter”, arXiv

preprint arXiv:1910.01108 (2019).

ignored except for the first one, corresponding to the class token, and a new output
layer replaces the previous one, which was just a binary classification layer for NSP.

In February 2019, just a few months after BERT was published, Alec Radford, Jeffrey
Wu, and other OpenAI researchers published the GPT-2 paper,31 which proposed a
very similar architecture to GPT, but larger still (with over 1.5 billion parameters!).
The researchers showed that the new and improved GPT model could perform
zero-shot learning (ZSL), meaning it could achieve good performance on many tasks
without any fine-tuning. This was just the start of a race toward larger and larger
models: Google’s Switch Transformers32 (introduced in January 2021) used 1 trillion
parameters, and soon much larger models came out, such as the Wu Dao 2.0 model
by the Beijing Academy of Artificial Intelligence (BAII), announced in June 2021.

An unfortunate consequence of this trend toward gigantic models is that only well-
funded organizations can afford to train such models: it can easily cost hundreds
of thousands of dollars or more. And the energy required to train a single model
corresponds to an American household’s electricity consumption for several years;
it’s not eco-friendly at all. Many of these models are just too big to even be used on
regular hardware: they wouldn’t fit in RAM, and they would be horribly slow. Lastly,
some are so costly that they are not released publicly.

Luckily, ingenious researchers are finding new ways to downsize transformers and
make them more data-efficient. For example, the DistilBERT model,33 introduced in
October 2019 by Victor Sanh et al. from Hugging Face, is a small and fast transformer
model based on BERT. It is available on Hugging Face’s excellent model hub, along
with thousands of others—you’ll see an example later in this chapter.

DistilBERT was trained using distillation (hence the name): this means transferring
knowledge from a teacher model to a student one, which is usually much smaller
than the teacher model. This is typically done by using the teacher’s predicted proba‐
bilities for each training instance as targets for the student. Surprisingly, distillation
often works better than training the student from scratch on the same dataset as the
teacher! Indeed, the student benefits from the teacher’s more nuanced labels.

Many more transformer architectures came out after BERT, almost on a monthly
basis, often improving on the state of the art across all NLP tasks: XLNet (June 2019),
RoBERTa (July 2019), StructBERT (August 2019), ALBERT (September 2019), T5
(October 2019), ELECTRA (March 2020), GPT3 (May 2020), DeBERTa (June 2020),

622 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/gpt2
https://homl.info/switch
https://homl.info/distilbert

34 Mariya Yao summarized many of these models in this post: https://homl.info/yaopost.
35 Colin Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”, arXiv

preprint arXiv:1910.10683 (2019).
36 Aakanksha Chowdhery et al., “PaLM: Scaling Language Modeling with Pathways”, arXiv preprint

arXiv:2204.02311 (2022).
37 Jason Wei et al., “Chain of Thought Prompting Elicits Reasoning in Large Language Models”, arXiv preprint

arXiv:2201.11903 (2022).

Switch Transformers (January 2021), Wu Dao 2.0 (June 2021), Gopher (December
2021), GPT-NeoX-20B (February 2022), Chinchilla (March 2022), OPT (May 2022),
and the list goes on and on. Each of these models brought new ideas and techniques,34

but I particularly like the T5 paper35 by Google researchers: it frames all NLP tasks
as text-to-text, using an encoder–decoder transformer. For example, to translate “I
like soccer” to Spanish, you can just call the model with the input sentence “translate
English to Spanish: I like soccer” and it outputs “me gusta el fútbol”. To summarize
a paragraph, you just enter “summarize:” followed by the paragraph, and it outputs
the summary. For classification, you only need to change the prefix to “classify:” and
the model outputs the class name, as text. This simplifies using the model, and it also
makes it possible to pretrain it on even more tasks.

Last but not least, in April 2022, Google researchers used a new large-scale training
platform named Pathways (which we will briefly discuss in Chapter 19) to train a
humongous language model named the Pathways Language Model (PaLM),36 with a
whopping 540 billion parameters, using over 6,000 TPUs. Other than its incredible
size, this model is a standard transformer, using decoders only (i.e., with masked
multi-head attention layers), with just a few tweaks (see the paper for details).
This model achieved incredible performance on all sorts of NLP tasks, particularly
in natural language understanding (NLU). It’s capable of impressive feats, such as
explaining jokes, giving detailed step-by-step answers to questions, and even coding.
This is in part due to the model’s size, but also thanks to a technique called Chain of
thought prompting,37 which was introduced a couple months earlier by another team
of Google researchers.

In question answering tasks, regular prompting typically includes a few examples of
questions and answers, such as: “Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? A:
11.” The prompt then continues with the actual question, such as “Q: John takes care
of 10 dogs. Each dog takes .5 hours a day to walk and take care of their business. How
many hours a week does he spend taking care of dogs? A:”, and the model’s job is to
append the answer: in this case, “35.”

An Avalanche of Transformer Models | 623

https://homl.info/yaopost
https://homl.info/t5
https://homl.info/palm
https://homl.info/ctp
https://homl.info/ctp

38 Kelvin Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, Proceedings
of the 32nd International Conference on Machine Learning (2015): 2048–2057.

But with chain of thought prompting, the example answers include all the reasoning
steps that lead to the conclusion. For example, instead of “A: 11”, the prompt contains
“A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 =
11.” This encourages the model to give a detailed answer to the actual question, such
as “John takes care of 10 dogs. Each dog takes .5 hours a day to walk and take care
of their business. So that is 10 × .5 = 5 hours a day. 5 hours a day × 7 days a week =
35 hours a week. The answer is 35 hours a week.” This is an actual example from the
paper!

Not only does the model give the right answer much more frequently than using
regular prompting—we’re encouraging the model to think things through—but it
also provides all the reasoning steps, which can be useful to better understand the
rationale behind a model’s answer.

Transformers have taken over NLP, but they didn’t stop there: they soon expanded to
computer vision as well.

Vision Transformers
One of the first applications of attention mechanisms beyond NMT was in generating
image captions using visual attention:38 a convolutional neural network first processes
the image and outputs some feature maps, then a decoder RNN equipped with an
attention mechanism generates the caption, one word at a time.

At each decoder time step (i.e., each word), the decoder uses the attention model to
focus on just the right part of the image. For example, in Figure 16-12, the model
generated the caption “A woman is throwing a frisbee in a park”, and you can see what
part of the input image the decoder focused its attention on when it was about to
output the word “frisbee”: clearly, most of its attention was focused on the frisbee.

624 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/visualattention

39 This is a part of figure 3 from the paper. It is reproduced with the kind authorization of the authors.
40 Marco Tulio Ribeiro et al., “‘Why Should I Trust You?’: Explaining the Predictions of Any Classifier”, Proceed‐

ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016):
1135–1144.

Figure 16-12. Visual attention: an input image (left) and the model’s focus before
producing the word “frisbee” (right)39

Explainability
One extra benefit of attention mechanisms is that they make it easier to understand
what led the model to produce its output. This is called explainability. It can be
especially useful when the model makes a mistake: for example, if an image of a dog
walking in the snow is labeled as “a wolf walking in the snow”, then you can go back
and check what the model focused on when it output the word “wolf ”. You may find
that it was paying attention not only to the dog, but also to the snow, hinting at a
possible explanation: perhaps the way the model learned to distinguish dogs from
wolves is by checking whether or not there’s a lot of snow around. You can then
fix this by training the model with more images of wolves without snow, and dogs
with snow. This example comes from a great 2016 paper40 by Marco Tulio Ribeiro et
al. that uses a different approach to explainability: learning an interpretable model
locally around a classifier’s prediction.

In some applications, explainability is not just a tool to debug a model; it can be a
legal requirement—think of a system deciding whether or not it should grant you a
loan.

Vision Transformers | 625

https://homl.info/explainclass

41 Nicolas Carion et al., “End-to-End Object Detection with Transformers”, arXiv preprint arxiv:2005.12872
(2020).

42 Alexey Dosovitskiy et al., “An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale”,
arXiv preprint arxiv:2010.11929 (2020).

When transformers came out in 2017 and people started to experiment with them
beyond NLP, they were first used alongside CNNs, without replacing them. Instead,
transformers were generally used to replace RNNs, for example, in image captioning
models. Transformers became slightly more visual in a 2020 paper41 by Facebook
researchers, which proposed a hybrid CNN–transformer architecture for object
detection. Once again, the CNN first processes the input images and outputs a set
of feature maps, then these feature maps are converted to sequences and fed to a
transformer, which outputs bounding box predictions. But again, most of the visual
work is still done by the CNN.

Then, in October 2020, a team of Google researchers released a paper42 that intro‐
duced a fully transformer-based vision model, called a vision transformer (ViT). The
idea is surprisingly simple: just chop the image into little 16 × 16 squares, and treat
the sequence of squares as if it were a sequence of word representations. To be
more precise, the squares are first flattened into 16 × 16 × 3 = 768-dimensional
vectors—the 3 is for the RGB color channels—then these vectors go through a linear
layer that transforms them but retains their dimensionality. The resulting sequence
of vectors can then be treated just like a sequence of word embeddings: this means
adding positional embeddings, and passing the result to the transformer. That’s it!
This model beat the state of the art on ImageNet image classification, but to be fair
the authors had to use over 300 million additional images for training. This makes
sense since transformers don’t have as many inductive biases as convolution neural
nets, so they need extra data just to learn things that CNNs implicitly assume.

An inductive bias is an implicit assumption made by the model,
due to its architecture. For example, linear models implicitly
assume that the data is, well, linear. CNNs implicitly assume that
patterns learned in one location will likely be useful in other loca‐
tions as well. RNNs implicitly assume that the inputs are ordered,
and that recent tokens are more important than older ones. The
more inductive biases a model has, assuming they are correct,
the less training data the model will require. But if the implicit
assumptions are wrong, then the model may perform poorly even
if it is trained on a large dataset.

626 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/detr
https://homl.info/vit

43 Hugo Touvron et al., “Training Data-Efficient Image Transformers & Distillation Through Attention”, arXiv
preprint arxiv:2012.12877 (2020).

44 Andrew Jaegle et al., “Perceiver: General Perception with Iterative Attention”, arXiv preprint arxiv:2103.03206
(2021).

45 Mathilde Caron et al., “Emerging Properties in Self-Supervised Vision Transformers”, arXiv preprint
arxiv:2104.14294 (2021).

Just two months later, a team of Facebook researchers released a paper43 that intro‐
duced data-efficient image transformers (DeiTs). Their model achieved competitive
results on ImageNet without requiring any additional data for training. The model’s
architecture is virtually the same as the original ViT, but the authors used a distil‐
lation technique to transfer knowledge from state-of-the-art CNN models to their
model.

Then, in March 2021, DeepMind released an important paper44 that introduced the
Perceiver architecture. It is a multimodal transformer, meaning you can feed it text,
images, audio, or virtually any other modality. Until then, transformers had been
restricted to fairly short sequences because of the performance and RAM bottleneck
in the attention layers. This excluded modalities such as audio or video, and it forced
researchers to treat images as sequences of patches, rather than sequences of pixels.
The bottleneck is due to self-attention, where every token must attend to every other
token: if the input sequence has M tokens, then the attention layer must compute
an M × M matrix, which can be huge if M is very large. The Perceiver solves this
problem by gradually improving a fairly short latent representation of the inputs,
composed of N tokens—typically just a few hundred. (The word latent means hidden,
or internal.) The model uses cross-attention layers only, feeding them the latent
representation as the queries, and the (possibly large) inputs as the values. This only
requires computing an M × N matrix, so the computational complexity is linear with
regard to M, instead of quadratic. After going through several cross-attention layers,
if everything goes well, the latent representation ends up capturing everything that
matters in the inputs. The authors also suggested sharing the weights between con‐
secutive cross-attention layers: if you do that, then the Perceiver effectively becomes
an RNN. Indeed, the shared cross-attention layers can be seen as the same memory
cell at different time steps, and the latent representation corresponds to the cell’s
context vector. The same inputs are repeatedly fed to the memory cell at every time
step. It looks like RNNs are not dead after all!

Just a month later, Mathilde Caron et al. introduced DINO,45 an impressive vision
transformer trained entirely without labels, using self-supervision, and capable of
high-accuracy semantic segmentation. The model is duplicated during training, with
one network acting as a teacher and the other acting as a student. Gradient descent
only affects the student, while the teacher’s weights are just an exponential moving
average of the student’s weights. The student is trained to match the teacher’s predic‐

Vision Transformers | 627

https://homl.info/deit
https://homl.info/perceiver
https://homl.info/dino

46 Xiaohua Zhai et al., “Scaling Vision Transformers”, arXiv preprint arxiv:2106.04560v1 (2021).
47 Mitchell Wortsman et al., “Model Soups: Averaging Weights of Multiple Fine-tuned Models Improves Accu‐

racy Without Increasing Inference Time”, arXiv preprint arxiv:2203.05482v1 (2022).
48 Alec Radford et al., “Learning Transferable Visual Models From Natural Language Supervision”, arXiv pre‐

print arxiv:2103.00020 (2021).
49 Aditya Ramesh et al., “Zero-Shot Text-to-Image Generation”, arXiv preprint arxiv:2102.12092 (2021).
50 Aditya Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv preprint

arxiv:2204.06125 (2022).

tions: since they’re almost the same model, this is called self-distillation. At each
training step, the input images are augmented in different ways for the teacher and
the student, so they don’t see the exact same image, but their predictions must
match. This forces them to come up with high-level representations. To prevent
mode collapse, where both the student and the teacher would always output the same
thing, completely ignoring the inputs, DINO keeps track of a moving average of the
teacher’s outputs, and it tweaks the teacher’s predictions to ensure that they remain
centered on zero, on average. DINO also forces the teacher to have high confidence in
its predictions: this is called sharpening. Together, these techniques preserve diversity
in the teacher’s outputs.

In a 2021 paper,46 Google researchers showed how to scale ViTs up or down, depend‐
ing on the amount of data. They managed to create a huge 2 billion parameter model
that reached over 90.4% top-1 accuracy on ImageNet. Conversely, they also trained a
scaled-down model that reached over 84.8% top-1 accuracy on ImageNet, using only
10,000 images: that’s just 10 images per class!

And progress in visual transformers has continued steadily to this day. For example,
in March 2022, a paper47 by Mitchell Wortsman et al. demonstrated that it’s possible
to first train multiple transformers, then average their weights to create a new and
improved model. This is similar to an ensemble (see Chapter 7), except there’s just
one model in the end, which means there’s no inference time penalty.

The latest trend in transformers consists in building large multimodal models, often
capable of zero-shot or few-shot learning. For example, OpenAI’s 2021 CLIP paper48

proposed a large transformer model pretrained to match captions with images: this
task allows it to learn excellent image representations, and the model can then be
used directly for tasks such as image classification using simple text prompts such as
“a photo of a cat”. Soon after, OpenAI announced DALL·E,49 capable of generating
amazing images based on text prompts. The DALL·E 2,50 which generates even higher
quality images using a diffusion model (see Chapter 17).

In April 2022, DeepMind released the Flamingo paper,51 which introduced a family
of models pretrained on a wide variety of tasks across multiple modalities, including
text, images, and videos. A single model can be used across very different tasks,

628 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/scalingvits
https://homl.info/modelsoups
https://homl.info/clip
https://homl.info/dalle
https://homl.info/dalle2
https://homl.info/flamingo

51 Jean-Baptiste Alayrac et al., “Flamingo: a Visual Language Model for Few-Shot Learning”, arXiv preprint
arxiv:2204.14198 (2022).

52 Scott Reed et al., “A Generalist Agent”, arXiv preprint arxiv:2205.06175 (2022).

such as question answering, image captioning, and more. Soon after, in May 2022,
DeepMind introduced GATO,52 a multimodal model that can be used as a policy
for a reinforcement learning agent (RL will be introduced in Chapter 18). The same
transformer can chat with you, caption images, play Atari games, control (simulated)
robotic arms, and more, all with “only” 1.2 billion parameters. And the adventure
continues!

These astounding advances have led some researchers to claim that
human-level AI is near, that “scale is all you need”, and that some
of these models may be “slightly conscious”. Others point out that
despite the amazing progress, these models still lack the reliability
and adaptability of human intelligence, our ability to reason sym‐
bolically, to generalize based on a single example, and more.

As you can see, transformers are everywhere! And the good news is that you gener‐
ally won’t have to implement transformers yourself since many excellent pretrained
models are readily available for download via TensorFlow Hub or Hugging Face’s
model hub. You’ve already seen how to use a model from TF Hub, so let’s close this
chapter by taking a quick look at Hugging Face’s ecosystem.

Hugging Face’s Transformers Library
It’s impossible to talk about transformers today without mentioning Hugging Face,
an AI company that has built a whole ecosystem of easy-to-use open source tools for
NLP, vision, and beyond. The central component of their ecosystem is the Transform‐
ers library, which allows you to easily download a pretrained model, including its
corresponding tokenizer, and then fine-tune it on your own dataset, if needed. Plus,
the library supports TensorFlow, PyTorch, and JAX (with the Flax library).

The simplest way to use the Transformers library is to use the transformers.
pipeline() function: you just specify which task you want, such as sentiment analy‐
sis, and it downloads a default pretrained model, ready to be used—it really couldn’t
be any simpler:

Hugging Face’s Transformers Library | 629

https://homl.info/gato

from transformers import pipeline

classifier = pipeline("sentiment-analysis") # many other tasks are available
result = classifier("The actors were very convincing".)

The result is a Python list containing one dictionary per input text:

>>> result
[{'label': 'POSITIVE', 'score': 0.9998071789741516}]

In this example, the model correctly found that the sentence is positive, with around
99.98% confidence. Of course, you can also pass a batch of sentences to the model:

>>> classifier(["I am from India.", "I am from Iraq."])
[{'label': 'POSITIVE', 'score': 0.9896161556243896},
 {'label': 'NEGATIVE', 'score': 0.9811071157455444}]

Bias and Fairness
As the output suggests, this specific classifier loves Indians, but is severely biased
against Iraqis. You can try this code with your own country or city. Such an undesira‐
ble bias generally comes in large part from the training data itself: in this case, there
were plenty of negative sentences related to the wars in Iraq in the training data. This
bias was then amplified during the fine-tuning process since the model was forced to
choose between just two classes: positive or negative. If you add a neutral class when
fine-tuning, then the country bias mostly disappears. But the training data is not the
only source of bias: the model’s architecture, the type of loss or regularization used for
training, the optimizer; all of these can affect what the model ends up learning. Even
a mostly unbiased model can be used in a biased way, much like survey questions can
be biased.

Understanding bias in AI and mitigating its negative effects is still an area of active
research, but one thing is certain: you should pause and think before you rush to
deploy a model to production. Ask yourself how the model could do harm, even
indirectly. For example, if the model’s predictions are used to decide whether or not
to give someone a loan, the process should be fair. So, make sure you evaluate the
model’s performance not just on average over the whole test set, but across various
subsets as well: for example, you may find that although the model works very well
on average, its performance is abysmal for some categories of people. You may also
want to run counterfactual tests: for example, you may want to check that the model’s
predictions do not change when you simply switch someone’s gender.

If the model works well on average, it’s tempting to push it to production and
move on to something else, especially if it’s just one component of a much larger
system. But in general, if you don’t fix such issues, no one else will, and your model
may end up doing more harm than good. The solution depends on the problem: it
may require rebalancing the dataset, fine-tuning on a different dataset, switching to
another pretrained model, tweaking the model’s architecture or hyperparameters, etc.

630 | Chapter 16: Natural Language Processing with RNNs and Attention

The pipeline() function uses the default model for the given task. For example, for
text classification tasks such as sentiment analysis, at the time of writing, it defaults to
distilbert-base-uncased-finetuned-sst-2-english—a DistilBERT model with
an uncased tokenizer, trained on English Wikipedia and a corpus of English books,
and fine-tuned on the Stanford Sentiment Treebank v2 (SST 2) task. It’s also possible
to manually specify a different model. For example, you could use a DistilBERT
model fine-tuned on the Multi-Genre Natural Language Inference (MultiNLI) task,
which classifies two sentences into three classes: contradiction, neutral, or entailment.
Here is how:

>>> model_name = "huggingface/distilbert-base-uncased-finetuned-mnli"
>>> classifier_mnli = pipeline("text-classification", model=model_name)
>>> classifier_mnli("She loves me. [SEP] She loves me not.")
[{'label': 'contradiction', 'score': 0.9790192246437073}]

You can find the available models at https://huggingface.co/models,
and the list of tasks at https://huggingface.co/tasks.

The pipeline API is very simple and convenient, but sometimes you will need more
control. For such cases, the Transformers library provides many classes, including all
sorts of tokenizers, models, configurations, callbacks, and much more. For example,
let’s load the same DistilBERT model, along with its corresponding tokenizer, using
the TFAutoModelForSequenceClassification and AutoTokenizer classes:

from transformers import AutoTokenizer, TFAutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = TFAutoModelForSequenceClassification.from_pretrained(model_name)

Next, let’s tokenize a couple of pairs of sentences. In this code, we activate padding
and specify that we want TensorFlow tensors instead of Python lists:

token_ids = tokenizer(["I like soccer. [SEP] We all love soccer!",
 "Joe lived for a very long time. [SEP] Joe is old."],
 padding=True, return_tensors="tf")

Instead of passing "Sentence 1 [SEP] Sentence 2" to the
tokenizer, you can equivalently pass it a tuple: ("Sentence 1",
"Sentence 2").

Hugging Face’s Transformers Library | 631

https://huggingface.co/models
https://huggingface.co/tasks

The output is a dictionary-like instance of the BatchEncoding class, which contains
the sequences of token IDs, as well as a mask containing 0s for the padding tokens:

>>> token_ids
{'input_ids': <tf.Tensor: shape=(2, 15), dtype=int32, numpy=
array([[101, 1045, 2066, 4715, 1012, 102, 2057, 2035, 2293, 4715, 999,
 102, 0, 0, 0],
 [101, 3533, 2973, 2005, 1037, 2200, 2146, 2051, 1012, 102, 3533,
 2003, 2214, 1012, 102]], dtype=int32)>,
 'attention_mask': <tf.Tensor: shape=(2, 15), dtype=int32, numpy=
array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=int32)>}

If you set return_token_type_ids=True when calling the tokenizer, you will also get
an extra tensor that indicates which sentence each token belongs to. This is needed by
some models, but not DistilBERT.

Next, we can directly pass this BatchEncoding object to the model; it returns a
TFSequenceClassifierOutput object containing its predicted class logits:

>>> outputs = model(token_ids)
>>> outputs
TFSequenceClassifierOutput(loss=None, logits=[<tf.Tensor: [...] numpy=
array([[-2.1123817 , 1.1786783 , 1.4101017],
 [-0.01478387, 1.0962474 , -0.9919954]], dtype=float32)>], [...])

Lastly, we can apply the softmax activation function to convert these logits to class
probabilities, and use the argmax() function to predict the class with the highest
probability for each input sentence pair:

>>> Y_probas = tf.keras.activations.softmax(outputs.logits)
>>> Y_probas
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[0.01619702, 0.43523544, 0.5485676],
 [0.08672056, 0.85204804, 0.06123142]], dtype=float32)>
>>> Y_pred = tf.argmax(Y_probas, axis=1)
>>> Y_pred # 0 = contradiction, 1 = entailment, 2 = neutral
<tf.Tensor: shape=(2,), dtype=int64, numpy=array([2, 1])>

In this example, the model correctly classifies the first sentence pair as neutral (the
fact that I like soccer does not imply that everyone else does) and the second pair as
an entailment (Joe must indeed be quite old).

If you wish to fine-tune this model on your own dataset, you can train the model
as usual with Keras since it’s just a regular Keras model with a few extra methods.
However, because the model outputs logits instead of probabilities, you must use
the tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss
instead of the usual "sparse_categorical_crossentropy" loss. Moreover, the model
does not support BatchEncoding inputs during training, so you must use its data
attribute to get a regular dictionary instead:

632 | Chapter 16: Natural Language Processing with RNNs and Attention

sentences = [("Sky is blue", "Sky is red"), ("I love her", "She loves me")]
X_train = tokenizer(sentences, padding=True, return_tensors="tf").data
y_train = tf.constant([0, 2]) # contradiction, neutral
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(loss=loss, optimizer="nadam", metrics=["accuracy"])
history = model.fit(X_train, y_train, epochs=2)

Hugging Face has also built a Datasets library that you can use to easily download a
standard dataset (such as IMDb) or a custom one, and use it to fine-tune your model.
It’s similar to TensorFlow Datasets, but it also provides tools to perform common
preprocessing tasks on the fly, such as masking. The list of datasets is available at
https://huggingface.co/datasets.

This should get you started with Hugging Face’s ecosystem. To learn more, you can
head over to https://huggingface.co/docs for the documentation, which includes many
tutorial notebooks, videos, the full API, and more. I also recommend you check out
the O’Reilly book Natural Language Processing with Transformers: Building Language
Applications with Hugging Face by Lewis Tunstall, Leandro von Werra, and Thomas
Wolf—all from the Hugging Face team.

In the next chapter we will discuss how to learn deep representations in an unsuper‐
vised way using autoencoders, and we will use generative adversarial networks to
produce images and more!

Exercises
1. What are the pros and cons of using a stateful RNN versus a stateless RNN?1.
2. Why do people use encoder–decoder RNNs rather than plain sequence-to-2.

sequence RNNs for automatic translation?
3. How can you deal with variable-length input sequences? What about variable-3.

length output sequences?
4. What is beam search, and why would you use it? What tool can you use to4.

implement it?
5. What is an attention mechanism? How does it help?5.
6. What is the most important layer in the transformer architecture? What is its6.

purpose?
7. When would you need to use sampled softmax?7.
8. Embedded Reber grammars were used by Hochreiter and Schmidhuber in their8.

paper about LSTMs. They are artificial grammars that produce strings such as
“BPBTSXXVPSEPE”. Check out Jenny Orr’s nice introduction to this topic, then
choose a particular embedded Reber grammar (such as the one represented
on Orr’s page), then train an RNN to identify whether a string respects that

Exercises | 633

https://huggingface.co/datasets
https://huggingface.co/docs
https://homl.info/hfbook
https://homl.info/hfbook
https://homl.info/93
https://homl.info/93
https://homl.info/108

grammar or not. You will first need to write a function capable of generating a
training batch containing about 50% strings that respect the grammar, and 50%
that don’t.

9. Train an encoder–decoder model that can convert a date string from one format9.
to another (e.g., from “April 22, 2019” to “2019-04-22”).

10. Go through the example on the Keras website for “Natural language image10.
search with a Dual Encoder”. You will learn how to build a model capable of
representing both images and text within the same embedding space. This makes
it possible to search for images using a text prompt, like in the CLIP model by
OpenAI.

11. Use the Hugging Face Transformers library to download a pretrained language11.
model capable of generating text (e.g., GPT), and try generating more convincing
Shakespearean text. You will need to use the model’s generate() method—see
Hugging Face’s documentation for more details.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

634 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/dualtuto
https://homl.info/dualtuto
https://homl.info/colab3

CHAPTER 17

Autoencoders, GANs, and Diffusion Models

Autoencoders are artificial neural networks capable of learning dense representations
of the input data, called latent representations or codings, without any supervision (i.e.,
the training set is unlabeled). These codings typically have a much lower dimension‐
ality than the input data, making autoencoders useful for dimensionality reduction
(see Chapter 8), especially for visualization purposes. Autoencoders also act as feature
detectors, and they can be used for unsupervised pretraining of deep neural networks
(as we discussed in Chapter 11). Lastly, some autoencoders are generative models: they
are capable of randomly generating new data that looks very similar to the training
data. For example, you could train an autoencoder on pictures of faces, and it would
then be able to generate new faces.

Generative adversarial networks (GANs) are also neural nets capable of generating
data. In fact, they can generate pictures of faces so convincing that it is hard to
believe the people they represent do not exist. You can judge so for yourself by
visiting https://thispersondoesnotexist.com, a website that shows faces generated by
a GAN architecture called StyleGAN. You can also check out https://thisrentaldoesno
texist.com to see some generated Airbnb listings. GANs are now widely used for
super resolution (increasing the resolution of an image), colorization, powerful image
editing (e.g., replacing photo bombers with realistic background), turning simple
sketches into photorealistic images, predicting the next frames in a video, augmenting
a dataset (to train other models), generating other types of data (such as text, audio,
and time series), identifying the weaknesses in other models to strengthen them, and
more.

A more recent addition to the generative learning party is diffusion models. In 2021,
they managed to generate more diverse and higher-quality images than GANs, while
also being much easier to train. However, diffusion models are much slower to run.

635

https://thispersondoesnotexist.com
https://thisrentaldoesnotexist.com
https://thisrentaldoesnotexist.com
https://github.com/jantic/DeOldify

Autoencoders, GANs, and diffusion models are all unsupervised, they all learn latent
representations, they can all be used as generative models, and they have many
similar applications. However, they work very differently:

• Autoencoders simply learn to copy their inputs to their outputs. This may sound•
like a trivial task, but as you will see, constraining the network in various ways
can make it rather difficult. For example, you can limit the size of the latent rep‐
resentations, or you can add noise to the inputs and train the network to recover
the original inputs. These constraints prevent the autoencoder from trivially
copying the inputs directly to the outputs, which forces it to learn efficient ways
of representing the data. In short, the codings are byproducts of the autoencoder
learning the identity function under some constraints.

• GANs are composed of two neural networks: a generator that tries to generate•
data that looks similar to the training data, and a discriminator that tries to tell
real data from fake data. This architecture is very original in deep learning in that
the generator and the discriminator compete against each other during training:
the generator is often compared to a criminal trying to make realistic counterfeit
money, while the discriminator is like the police investigator trying to tell real
money from fake. Adversarial training (training competing neural networks) is
widely considered one of the most important innovations of the 2010s. In 2016,
Yann LeCun even said that it was “the most interesting idea in the last 10 years in
machine learning”.

• A denoising diffusion probabilistic model (DDPM) is trained to remove a tiny bit•
of noise from an image. If you then take an image entirely full of Gaussian noise
and repeatedly run the diffusion model on that image, a high-quality image will
gradually emerge, similar to the training images (but not identical).

In this chapter we will start by exploring in more depth how autoencoders work and
how to use them for dimensionality reduction, feature extraction, unsupervised pre‐
training, or as generative models. This will naturally lead us to GANs. We will build
a simple GAN to generate fake images, but we will see that training is often quite
difficult. We will discuss the main difficulties you will encounter with adversarial
training, as well as some of the main techniques to work around these difficulties.
And lastly, we will build and train a DDPM and use it to generate images. Let’s start
with autoencoders!

636 | Chapter 17: Autoencoders, GANs, and Diffusion Models

1 William G. Chase and Herbert A. Simon, “Perception in Chess”, Cognitive Psychology 4, no. 1 (1973): 55–81.

Efficient Data Representations
Which of the following number sequences do you find the easiest to memorize?

• 40, 27, 25, 36, 81, 57, 10, 73, 19, 68•
• 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14•

At first glance, it would seem that the first sequence should be easier, since it is much
shorter. However, if you look carefully at the second sequence, you will notice that it
is just the list of even numbers from 50 down to 14. Once you notice this pattern, the
second sequence becomes much easier to memorize than the first because you only
need to remember the pattern (i.e., decreasing even numbers) and the starting and
ending numbers (i.e., 50 and 14). Note that if you could quickly and easily memorize
very long sequences, you would not care much about the existence of a pattern in
the second sequence. You would just learn every number by heart, and that would
be that. The fact that it is hard to memorize long sequences is what makes it useful
to recognize patterns, and hopefully this clarifies why constraining an autoencoder
during training pushes it to discover and exploit patterns in the data.

The relationship between memory, perception, and pattern matching was famously
studied by William Chase and Herbert Simon1 in the early 1970s. They observed that
expert chess players were able to memorize the positions of all the pieces in a game
by looking at the board for just five seconds, a task that most people would find
impossible. However, this was only the case when the pieces were placed in realistic
positions (from actual games), not when the pieces were placed randomly. Chess
experts don’t have a much better memory than you and I; they just see chess patterns
more easily, thanks to their experience with the game. Noticing patterns helps them
store information efficiently.

Just like the chess players in this memory experiment, an autoencoder looks at
the inputs, converts them to an efficient latent representation, and then spits out
something that (hopefully) looks very close to the inputs. An autoencoder is always
composed of two parts: an encoder (or recognition network) that converts the inputs to
a latent representation, followed by a decoder (or generative network) that converts the
internal representation to the outputs (see Figure 17-1).

Efficient Data Representations | 637

https://homl.info/111

Figure 17-1. The chess memory experiment (left) and a simple autoencoder (right)

As you can see, an autoencoder typically has the same architecture as a multilayer
perceptron (MLP; see Chapter 10), except that the number of neurons in the output
layer must be equal to the number of inputs. In this example, there is just one hidden
layer composed of two neurons (the encoder), and one output layer composed of
three neurons (the decoder). The outputs are often called the reconstructions because
the autoencoder tries to reconstruct the inputs. The cost function contains a recon‐
struction loss that penalizes the model when the reconstructions are different from the
inputs.

Because the internal representation has a lower dimensionality than the input data (it
is 2D instead of 3D), the autoencoder is said to be undercomplete. An undercomplete
autoencoder cannot trivially copy its inputs to the codings, yet it must find a way to
output a copy of its inputs. It is forced to learn the most important features in the
input data (and drop the unimportant ones).

Let’s see how to implement a very simple undercomplete autoencoder for dimension‐
ality reduction.

638 | Chapter 17: Autoencoders, GANs, and Diffusion Models

Performing PCA with an Undercomplete Linear
Autoencoder
If the autoencoder uses only linear activations and the cost function is the mean
squared error (MSE), then it ends up performing principal component analysis
(PCA; see Chapter 8).

The following code builds a simple linear autoencoder to perform PCA on a 3D
dataset, projecting it to 2D:

import tensorflow as tf

encoder = tf.keras.Sequential([tf.keras.layers.Dense(2)])
decoder = tf.keras.Sequential([tf.keras.layers.Dense(3)])
autoencoder = tf.keras.Sequential([encoder, decoder])

optimizer = tf.keras.optimizers.SGD(learning_rate=0.5)
autoencoder.compile(loss="mse", optimizer=optimizer)

This code is really not very different from all the MLPs we built in past chapters, but
there are a few things to note:

• We organized the autoencoder into two subcomponents: the encoder and the•
decoder. Both are regular Sequential models with a single Dense layer each, and
the autoencoder is a Sequential model containing the encoder followed by the
decoder (remember that a model can be used as a layer in another model).

• The autoencoder’s number of outputs is equal to the number of inputs (i.e., 3).•
• To perform PCA, we do not use any activation function (i.e., all neurons are•

linear), and the cost function is the MSE. That’s because PCA is a linear transfor‐
mation. We will see more complex and nonlinear autoencoders shortly.

Now let’s train the model on the same simple generated 3D dataset we used in
Chapter 8 and use it to encode that dataset (i.e., project it to 2D):

X_train = [...] # generate a 3D dataset, like in Chapter 8
history = autoencoder.fit(X_train, X_train, epochs=500, verbose=False)
codings = encoder.predict(X_train)

Note that X_train is used as both the inputs and the targets. Figure 17-2 shows the
original 3D dataset (on the left) and the output of the autoencoder’s hidden layer (i.e.,
the coding layer, on the right). As you can see, the autoencoder found the best 2D
plane to project the data onto, preserving as much variance in the data as it could
(just like PCA).

Performing PCA with an Undercomplete Linear Autoencoder | 639

Figure 17-2. Approximate PCA performed by an undercomplete linear autoencoder

You can think of an autoencoder as performing a form of self-
supervised learning, since it is based on a supervised learning tech‐
nique with automatically generated labels (in this case simply equal
to the inputs).

Stacked Autoencoders
Just like other neural networks we have discussed, autoencoders can have multiple
hidden layers. In this case they are called stacked autoencoders (or deep autoencoders).
Adding more layers helps the autoencoder learn more complex codings. That said,
one must be careful not to make the autoencoder too powerful. Imagine an encoder
so powerful that it just learns to map each input to a single arbitrary number (and the
decoder learns the reverse mapping). Obviously such an autoencoder will reconstruct
the training data perfectly, but it will not have learned any useful data representation
in the process, and it is unlikely to generalize well to new instances.

The architecture of a stacked autoencoder is typically symmetrical with regard to the
central hidden layer (the coding layer). To put it simply, it looks like a sandwich. For
example, an autoencoder for Fashion MNIST (introduced in Chapter 10) may have
784 inputs, followed by a hidden layer with 100 neurons, then a central hidden layer
of 30 neurons, then another hidden layer with 100 neurons, and an output layer with
784 neurons. This stacked autoencoder is represented in Figure 17-3.

640 | Chapter 17: Autoencoders, GANs, and Diffusion Models

Figure 17-3. Stacked autoencoder

Implementing a Stacked Autoencoder Using Keras
You can implement a stacked autoencoder very much like a regular deep MLP:

stacked_encoder = tf.keras.Sequential([
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(100, activation="relu"),
 tf.keras.layers.Dense(30, activation="relu"),
])
stacked_decoder = tf.keras.Sequential([
 tf.keras.layers.Dense(100, activation="relu"),
 tf.keras.layers.Dense(28 * 28),
 tf.keras.layers.Reshape([28, 28])
])
stacked_ae = tf.keras.Sequential([stacked_encoder, stacked_decoder])

stacked_ae.compile(loss="mse", optimizer="nadam")
history = stacked_ae.fit(X_train, X_train, epochs=20,
 validation_data=(X_valid, X_valid))

Stacked Autoencoders | 641

Let’s go through this code:

• Just like earlier, we split the autoencoder model into two submodels: the encoder•
and the decoder.

• The encoder takes 28 × 28–pixel grayscale images, flattens them so that each•
image is represented as a vector of size 784, then processes these vectors through
two Dense layers of diminishing sizes (100 units then 30 units), both using the
ReLU activation function. For each input image, the encoder outputs a vector of
size 30.

• The decoder takes codings of size 30 (output by the encoder) and processes them•
through two Dense layers of increasing sizes (100 units then 784 units), and it
reshapes the final vectors into 28 × 28 arrays so the decoder’s outputs have the
same shape as the encoder’s inputs.

• When compiling the stacked autoencoder, we use the MSE loss and Nadam•
optimization.

• Finally, we train the model using X_train as both the inputs and the targets.•
Similarly, we use X_valid as both the validation inputs and targets.

Visualizing the Reconstructions
One way to ensure that an autoencoder is properly trained is to compare the inputs
and the outputs: the differences should not be too significant. Let’s plot a few images
from the validation set, as well as their reconstructions:

import numpy as np

def plot_reconstructions(model, images=X_valid, n_images=5):
 reconstructions = np.clip(model.predict(images[:n_images]), 0, 1)
 fig = plt.figure(figsize=(n_images * 1.5, 3))
 for image_index in range(n_images):
 plt.subplot(2, n_images, 1 + image_index)
 plt.imshow(images[image_index], cmap="binary")
 plt.axis("off")
 plt.subplot(2, n_images, 1 + n_images + image_index)
 plt.imshow(reconstructions[image_index], cmap="binary")
 plt.axis("off")

plot_reconstructions(stacked_ae)
plt.show()

Figure 17-4 shows the resulting images.

642 | Chapter 17: Autoencoders, GANs, and Diffusion Models

Figure 17-4. Original images (top) and their reconstructions (bottom)

The reconstructions are recognizable, but a bit too lossy. We may need to train the
model for longer, or make the encoder and decoder deeper, or make the codings
larger. But if we make the network too powerful, it will manage to make perfect
reconstructions without having learned any useful patterns in the data. For now, let’s
go with this model.

Visualizing the Fashion MNIST Dataset
Now that we have trained a stacked autoencoder, we can use it to reduce the dataset’s
dimensionality. For visualization, this does not give great results compared to other
dimensionality reduction algorithms (such as those we discussed in Chapter 8), but
one big advantage of autoencoders is that they can handle large datasets with many
instances and many features. So, one strategy is to use an autoencoder to reduce
the dimensionality down to a reasonable level, then use another dimensionality
reduction algorithm for visualization. Let’s use this strategy to visualize Fashion
MNIST. First we’ll use the encoder from our stacked autoencoder to reduce the
dimensionality down to 30, then we’ll use Scikit-Learn’s implementation of the t-SNE
algorithm to reduce the dimensionality down to 2 for visualization:

from sklearn.manifold import TSNE

X_valid_compressed = stacked_encoder.predict(X_valid)
tsne = TSNE(init="pca", learning_rate="auto", random_state=42)
X_valid_2D = tsne.fit_transform(X_valid_compressed)

Now we can plot the dataset:

plt.scatter(X_valid_2D[:, 0], X_valid_2D[:, 1], c=y_valid, s=10, cmap="tab10")
plt.show()

Figure 17-5 shows the resulting scatterplot, beautified a bit by displaying some of
the images. The t-SNE algorithm identified several clusters that match the classes
reasonably well (each class is represented by a different color).

Stacked Autoencoders | 643

Figure 17-5. Fashion MNIST visualization using an autoencoder followed by t-SNE

So, autoencoders can be used for dimensionality reduction. Another application is for
unsupervised pretraining.

Unsupervised Pretraining Using Stacked Autoencoders
As we discussed in Chapter 11, if you are tackling a complex supervised task but you
do not have a lot of labeled training data, one solution is to find a neural network that
performs a similar task and reuse its lower layers. This makes it possible to train a
high-performance model using little training data because your neural network won’t
have to learn all the low-level features; it will just reuse the feature detectors learned
by the existing network.

Similarly, if you have a large dataset but most of it is unlabeled, you can first train
a stacked autoencoder using all the data, then reuse the lower layers to create a
neural network for your actual task and train it using the labeled data. For example,
Figure 17-6 shows how to use a stacked autoencoder to perform unsupervised pre‐
training for a classification neural network. When training the classifier, if you really

644 | Chapter 17: Autoencoders, GANs, and Diffusion Models

don’t have much labeled training data, you may want to freeze the pretrained layers
(at least the lower ones).

Figure 17-6. Unsupervised pretraining using autoencoders

Having plenty of unlabeled data and little labeled data is com‐
mon. Building a large unlabeled dataset is often cheap (e.g., a
simple script can download millions of images off the internet),
but labeling those images (e.g., classifying them as cute or not)
can usually be done reliably only by humans. Labeling instances
is time-consuming and costly, so it’s normal to have only a few
thousand human-labeled instances, or even less.

There is nothing special about the implementation: just train an autoencoder using
all the training data (labeled plus unlabeled), then reuse its encoder layers to create a
new neural network (see the exercises at the end of this chapter for an example).

Next, let’s look at a few techniques for training stacked autoencoders.

Tying Weights
When an autoencoder is neatly symmetrical, like the one we just built, a common
technique is to tie the weights of the decoder layers to the weights of the encoder
layers. This halves the number of weights in the model, speeding up training and
limiting the risk of overfitting. Specifically, if the autoencoder has a total of N layers
(not counting the input layer), and WL represents the connection weights of the Lth

layer (e.g., layer 1 is the first hidden layer, layer N/2 is the coding layer, and layer N
is the output layer), then the decoder layer weights can be defined as WL = WN–L+1

⊺

(with L = N / 2 + 1, …, N).

Stacked Autoencoders | 645

To tie weights between layers using Keras, let’s define a custom layer:

class DenseTranspose(tf.keras.layers.Layer):
 def __init__(self, dense, activation=None, **kwargs):
 super().__init__(**kwargs)
 self.dense = dense
 self.activation = tf.keras.activations.get(activation)

 def build(self, batch_input_shape):
 self.biases = self.add_weight(name="bias",
 shape=self.dense.input_shape[-1],
 initializer="zeros")
 super().build(batch_input_shape)

 def call(self, inputs):
 Z = tf.matmul(inputs, self.dense.weights[0], transpose_b=True)
 return self.activation(Z + self.biases)

This custom layer acts like a regular Dense layer, but it uses another Dense layer’s
weights, transposed (setting transpose_b=True is equivalent to transposing the sec‐
ond argument, but it’s more efficient as it performs the transposition on the fly within
the matmul() operation). However, it uses its own bias vector. Now we can build a
new stacked autoencoder, much like the previous one but with the decoder’s Dense
layers tied to the encoder’s Dense layers:

dense_1 = tf.keras.layers.Dense(100, activation="relu")
dense_2 = tf.keras.layers.Dense(30, activation="relu")

tied_encoder = tf.keras.Sequential([
 tf.keras.layers.Flatten(),
 dense_1,
 dense_2
])

tied_decoder = tf.keras.Sequential([
 DenseTranspose(dense_2, activation="relu"),
 DenseTranspose(dense_1),
 tf.keras.layers.Reshape([28, 28])
])

tied_ae = tf.keras.Sequential([tied_encoder, tied_decoder])

This model achieves roughly the same reconstruction error as the previous model,
using almost half the number of parameters.

Training One Autoencoder at a Time
Rather than training the whole stacked autoencoder in one go like we just did,
it is possible to train one shallow autoencoder at a time, then stack all of them
into a single stacked autoencoder (hence the name), as shown in Figure 17-7. This

646 | Chapter 17: Autoencoders, GANs, and Diffusion Models

2 Yoshua Bengio et al., “Greedy Layer-Wise Training of Deep Networks”, Proceedings of the 19th International
Conference on Neural Information Processing Systems (2006): 153–160.

technique is not used so much these days, but you may still run into papers that talk
about “greedy layerwise training”, so it’s good to know what it means.

Figure 17-7. Training one autoencoder at a time

During the first phase of training, the first autoencoder learns to reconstruct the
inputs. Then we encode the whole training set using this first autoencoder, and
this gives us a new (compressed) training set. We then train a second autoencoder
on this new dataset. This is the second phase of training. Finally, we build a big
sandwich using all these autoencoders, as shown in Figure 17-7 (i.e., we first stack
the hidden layers of each autoencoder, then the output layers in reverse order). This
gives us the final stacked autoencoder (see the “Training One Autoencoder at a Time”
section in the chapter’s notebook for an implementation). We could easily train more
autoencoders this way, building a very deep stacked autoencoder.

As I mentioned earlier, one of the triggers of the deep learning tsunami was the
discovery in 2006 by Geoffrey Hinton et al. that deep neural networks can be
pretrained in an unsupervised fashion, using this greedy layerwise approach. They
used restricted Boltzmann machines (RBMs; see https://homl.info/extra-anns) for this
purpose, but in 2007 Yoshua Bengio et al.2 showed that autoencoders worked just as
well. For several years this was the only efficient way to train deep nets, until many of
the techniques introduced in Chapter 11 made it possible to just train a deep net in
one shot.

Stacked Autoencoders | 647

https://homl.info/136
https://homl.info/extra-anns
https://homl.info/112

3 Jonathan Masci et al., “Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction”, Proceedings
of the 21st International Conference on Artificial Neural Networks 1 (2011): 52–59.

Autoencoders are not limited to dense networks: you can also build convolutional
autoencoders. Let’s look at these now.

Convolutional Autoencoders
If you are dealing with images, then the autoencoders we have seen so far will not
work well (unless the images are very small): as you saw in Chapter 14, convolutional
neural networks are far better suited than dense networks to working with images.
So if you want to build an autoencoder for images (e.g., for unsupervised pretraining
or dimensionality reduction), you will need to build a convolutional autoencoder.3

The encoder is a regular CNN composed of convolutional layers and pooling layers.
It typically reduces the spatial dimensionality of the inputs (i.e., height and width)
while increasing the depth (i.e., the number of feature maps). The decoder must do
the reverse (upscale the image and reduce its depth back to the original dimensions),
and for this you can use transpose convolutional layers (alternatively, you could
combine upsampling layers with convolutional layers). Here is a basic convolutional
autoencoder for Fashion MNIST:

conv_encoder = tf.keras.Sequential([
 tf.keras.layers.Reshape([28, 28, 1]),
 tf.keras.layers.Conv2D(16, 3, padding="same", activation="relu"),
 tf.keras.layers.MaxPool2D(pool_size=2), # output: 14 × 14 x 16
 tf.keras.layers.Conv2D(32, 3, padding="same", activation="relu"),
 tf.keras.layers.MaxPool2D(pool_size=2), # output: 7 × 7 x 32
 tf.keras.layers.Conv2D(64, 3, padding="same", activation="relu"),
 tf.keras.layers.MaxPool2D(pool_size=2), # output: 3 × 3 x 64
 tf.keras.layers.Conv2D(30, 3, padding="same", activation="relu"),
 tf.keras.layers.GlobalAvgPool2D() # output: 30
])
conv_decoder = tf.keras.Sequential([
 tf.keras.layers.Dense(3 * 3 * 16),
 tf.keras.layers.Reshape((3, 3, 16)),
 tf.keras.layers.Conv2DTranspose(32, 3, strides=2, activation="relu"),
 tf.keras.layers.Conv2DTranspose(16, 3, strides=2, padding="same",
 activation="relu"),
 tf.keras.layers.Conv2DTranspose(1, 3, strides=2, padding="same"),
 tf.keras.layers.Reshape([28, 28])
])
conv_ae = tf.keras.Sequential([conv_encoder, conv_decoder])

648 | Chapter 17: Autoencoders, GANs, and Diffusion Models

https://homl.info/convae

4 Pascal Vincent et al., “Extracting and Composing Robust Features with Denoising Autoencoders”, Proceedings
of the 25th International Conference on Machine Learning (2008): 1096–1103.

5 Pascal Vincent et al., “Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network
with a Local Denoising Criterion”, Journal of Machine Learning Research 11 (2010): 3371–3408.

It’s also possible to create autoencoders with other architecture types, such as RNNs
(see the notebook for an example).

OK, let’s step back for a second. So far we have looked at various kinds of autoencod‐
ers (basic, stacked, and convolutional), and how to train them (either in one shot
or layer by layer). We also looked at a couple of applications: data visualization and
unsupervised pretraining.

Up to now, in order to force the autoencoder to learn interesting features, we have
limited the size of the coding layer, making it undercomplete. There are actually
many other kinds of constraints that can be used, including ones that allow the cod‐
ing layer to be just as large as the inputs, or even larger, resulting in an overcomplete
autoencoder. Then, in the following sections we’ll look at a few more kinds of autoen‐
coders: denoising autoencoders, sparse autoencoders, and variational autoencoders.

Denoising Autoencoders
Another way to force the autoencoder to learn useful features is to add noise to its
inputs, training it to recover the original, noise-free inputs. This idea has been around
since the 1980s (e.g., it is mentioned in Yann LeCun’s 1987 master’s thesis). In a 2008
paper,4 Pascal Vincent et al. showed that autoencoders could also be used for feature
extraction. In a 2010 paper,5 Vincent et al. introduced stacked denoising autoencoders.

The noise can be pure Gaussian noise added to the inputs, or it can be randomly
switched-off inputs, just like in dropout (introduced in Chapter 11). Figure 17-8
shows both options.

The implementation is straightforward: it is a regular stacked autoencoder with
an additional Dropout layer applied to the encoder’s inputs (or you could use a
GaussianNoise layer instead). Recall that the Dropout layer is only active during
training (and so is the GaussianNoise layer):

Denoising Autoencoders | 649

https://homl.info/113
https://homl.info/113
https://homl.info/114

dropout_encoder = tf.keras.Sequential([
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dropout(0.5),
 tf.keras.layers.Dense(100, activation="relu"),
 tf.keras.layers.Dense(30, activation="relu")
])
dropout_decoder = tf.keras.Sequential([
 tf.keras.layers.Dense(100, activation="relu"),
 tf.keras.layers.Dense(28 * 28),
 tf.keras.layers.Reshape([28, 28])
])
dropout_ae = tf.keras.Sequential([dropout_encoder, dropout_decoder])

Figure 17-8. Denoising autoencoders, with Gaussian noise (left) or dropout (right)

Figure 17-9 shows a few noisy images (with half the pixels turned off), and the
images reconstructed by the dropout-based denoising autoencoder. Notice how the
autoencoder guesses details that are actually not in the input, such as the top of
the white shirt (bottom row, fourth image). As you can see, not only can denoising
autoencoders be used for data visualization or unsupervised pretraining, like the
other autoencoders we’ve discussed so far, but they can also be used quite simply and
efficiently to remove noise from images.

650 | Chapter 17: Autoencoders, GANs, and Diffusion Models

Figure 17-9. Noisy images (top) and their reconstructions (bottom)

Sparse Autoencoders
Another kind of constraint that often leads to good feature extraction is sparsity:
by adding an appropriate term to the cost function, the autoencoder is pushed to
reduce the number of active neurons in the coding layer. For example, it may be
pushed to have on average only 5% significantly active neurons in the coding layer.
This forces the autoencoder to represent each input as a combination of a small
number of activations. As a result, each neuron in the coding layer typically ends up
representing a useful feature (if you could speak only a few words per month, you
would probably try to make them worth listening to).

A simple approach is to use the sigmoid activation function in the coding layer (to
constrain the codings to values between 0 and 1), use a large coding layer (e.g.,
with 300 units), and add some ℓ1 regularization to the coding layer’s activations. The
decoder is just a regular decoder:

sparse_l1_encoder = tf.keras.Sequential([
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(100, activation="relu"),
 tf.keras.layers.Dense(300, activation="sigmoid"),
 tf.keras.layers.ActivityRegularization(l1=1e-4)
])
sparse_l1_decoder = tf.keras.Sequential([
 tf.keras.layers.Dense(100, activation="relu"),
 tf.keras.layers.Dense(28 * 28),
 tf.keras.layers.Reshape([28, 28])
])
sparse_l1_ae = tf.keras.Sequential([sparse_l1_encoder, sparse_l1_decoder])

Sparse Autoencoders | 651

This ActivityRegularization layer just returns its inputs, but as a side effect it
adds a training loss equal to the sum of the absolute values of its inputs. This only
affects training. Equivalently, you could remove the ActivityRegularization layer
and set activity_regularizer=tf.keras.regularizers.l1(1e-4) in the previous
layer. This penalty will encourage the neural network to produce codings close to
0, but since it will also be penalized if it does not reconstruct the inputs correctly,
it will have to output at least a few nonzero values. Using the ℓ1 norm rather than
the ℓ2 norm will push the neural network to preserve the most important codings
while eliminating the ones that are not needed for the input image (rather than just
reducing all codings).

Another approach, which often yields better results, is to measure the actual sparsity
of the coding layer at each training iteration, and penalize the model when the
measured sparsity differs from a target sparsity. We do so by computing the average
activation of each neuron in the coding layer, over the whole training batch. The
batch size must not be too small, or else the mean will not be accurate.

Once we have the mean activation per neuron, we want to penalize the neurons that
are too active, or not active enough, by adding a sparsity loss to the cost function.
For example, if we measure that a neuron has an average activation of 0.3, but the
target sparsity is 0.1, it must be penalized to activate less. One approach could be
simply adding the squared error (0.3 – 0.1)2 to the cost function, but in practice a
better approach is to use the Kullback–Leibler (KL) divergence (briefly discussed in
Chapter 4), which has much stronger gradients than the mean squared error, as you
can see in Figure 17-10.

Figure 17-10. Sparsity loss

652 | Chapter 17: Autoencoders, GANs, and Diffusion Models

Given two discrete probability distributions P and Q, the KL divergence between
these distributions, noted DKL(P ∥ Q), can be computed using Equation 17-1.

Equation 17-1. Kullback–Leibler divergence

DKL P ∥ Q = ∑
i
P i log P i

Q i

In our case, we want to measure the divergence between the target probability p
that a neuron in the coding layer will activate and the actual probability q, estimated
by measuring the mean activation over the training batch. So, the KL divergence
simplifies to Equation 17-2.

Equation 17-2. KL divergence between the target sparsity p and the actual sparsity q

DKL p ∥ q = p log p
q

+ 1 − p log 1 − p
1 − q

Once we have computed the sparsity loss for each neuron in the coding layer, we
sum up these losses and add the result to the cost function. In order to control the
relative importance of the sparsity loss and the reconstruction loss, we can multiply
the sparsity loss by a sparsity weight hyperparameter. If this weight is too high, the
model will stick closely to the target sparsity, but it may not reconstruct the inputs
properly, making the model useless. Conversely, if it is too low, the model will mostly
ignore the sparsity objective and will not learn any interesting features.

We now have all we need to implement a sparse autoencoder based on the KL diver‐
gence. First, let’s create a custom regularizer to apply KL divergence regularization:

kl_divergence = tf.keras.losses.kullback_leibler_divergence

class KLDivergenceRegularizer(tf.keras.regularizers.Regularizer):
 def __init__(self, weight, target):
 self.weight = weight
 self.target = target

 def __call__(self, inputs):
 mean_activities = tf.reduce_mean(inputs, axis=0)
 return self.weight * (
 kl_divergence(self.target, mean_activities) +
 kl_divergence(1. - self.target, 1. - mean_activities))

Now we can build the sparse autoencoder, using the KLDivergenceRegularizer for
the coding layer’s activations:

Sparse Autoencoders | 653

6 Diederik Kingma and Max Welling, “Auto-Encoding Variational Bayes”, arXiv preprint arXiv:1312.6114
(2013).

kld_reg = KLDivergenceRegularizer(weight=5e-3, target=0.1)
sparse_kl_encoder = tf.keras.Sequential([
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(100, activation="relu"),
 tf.keras.layers.Dense(300, activation="sigmoid",
 activity_regularizer=kld_reg)
])
sparse_kl_decoder = tf.keras.Sequential([
 tf.keras.layers.Dense(100, activation="relu"),
 tf.keras.layers.Dense(28 * 28),
 tf.keras.layers.Reshape([28, 28])
])
sparse_kl_ae = tf.keras.Sequential([sparse_kl_encoder, sparse_kl_decoder])

After training this sparse autoencoder on Fashion MNIST, the coding layer will have
roughly 10% sparsity.

Variational Autoencoders
An important category of autoencoders was introduced in 2013 by Diederik Kingma
and Max Welling6 and quickly became one of the most popular variants: variational
autoencoders (VAEs).

VAEs are quite different from all the autoencoders we have discussed so far, in these
particular ways:

• They are probabilistic autoencoders, meaning that their outputs are partly deter‐•
mined by chance, even after training (as opposed to denoising autoencoders,
which use randomness only during training).

• Most importantly, they are generative autoencoders, meaning that they can gener‐•
ate new instances that look like they were sampled from the training set.

Both these properties make VAEs rather similar to RBMs, but they are easier to train,
and the sampling process is much faster (with RBMs you need to wait for the network
to stabilize into a “thermal equilibrium” before you can sample a new instance). As
their name suggests, variational autoencoders perform variational Bayesian inference,
which is an efficient way of carrying out approximate Bayesian inference. Recall that
Bayesian inference means updating a probability distribution based on new data,
using equations derived from Bayes’ theorem. The original distribution is called the
prior, while the updated distribution is called the posterior. In our case, we want to
find a good approximation of the data distribution. Once we have that, we can sample
from it.

654 | Chapter 17: Autoencoders, GANs, and Diffusion Models

https://homl.info/115
https://homl.info/115

7 Variational autoencoders are actually more general; the codings are not limited to Gaussian distributions.

Let’s take a look at how VAEs work. Figure 17-11 (left) shows a variational autoen‐
coder. You can recognize the basic structure of all autoencoders, with an encoder
followed by a decoder (in this example, they both have two hidden layers), but there
is a twist: instead of directly producing a coding for a given input, the encoder
produces a mean coding μ and a standard deviation σ. The actual coding is then
sampled randomly from a Gaussian distribution with mean μ and standard deviation
σ. After that the decoder decodes the sampled coding normally. The right part of
the diagram shows a training instance going through this autoencoder. First, the
encoder produces μ and σ, then a coding is sampled randomly (notice that it is not
exactly located at μ), and finally this coding is decoded; the final output resembles the
training instance.

Figure 17-11. A variational autoencoder (left) and an instance going through it (right)

As you can see in the diagram, although the inputs may have a very convoluted
distribution, a variational autoencoder tends to produce codings that look as though
they were sampled from a simple Gaussian distribution:7 during training, the cost

Variational Autoencoders | 655

8 For more mathematical details, check out the original paper on variational autoencoders, or Carl Doersch’s
great tutorial (2016).

function (discussed next) pushes the codings to gradually migrate within the coding
space (also called the latent space) to end up looking like a cloud of Gaussian points.
One great consequence is that after training a variational autoencoder, you can very
easily generate a new instance: just sample a random coding from the Gaussian
distribution, decode it, and voilà!

Now, let’s look at the cost function. It is composed of two parts. The first is the usual
reconstruction loss that pushes the autoencoder to reproduce its inputs. We can use
the MSE for this, as we did earlier. The second is the latent loss that pushes the
autoencoder to have codings that look as though they were sampled from a simple
Gaussian distribution: it is the KL divergence between the target distribution (i.e.,
the Gaussian distribution) and the actual distribution of the codings. The math is
a bit more complex than with the sparse autoencoder, in particular because of the
Gaussian noise, which limits the amount of information that can be transmitted to
the coding layer. This pushes the autoencoder to learn useful features. Luckily, the
equations simplify, so the latent loss can be computed using Equation 17-3.8

Equation 17-3. Variational autoencoder’s latent loss

ℒ = − 1
2 ∑
i = 1

n
1 + log σi2 − σi2 − μi2

In this equation, ℒ is the latent loss, n is the codings’ dimensionality, and μi and σi
are the mean and standard deviation of the ith component of the codings. The vectors
μ and σ (which contain all the μi and σi) are output by the encoder, as shown in
Figure 17-11 (left).

A common tweak to the variational autoencoder’s architecture is to make the encoder
output γ = log(σ2) rather than σ. The latent loss can then be computed as shown in
Equation 17-4. This approach is more numerically stable and speeds up training.

Equation 17-4. Variational autoencoder’s latent loss, rewritten using γ = log(σ²)

ℒ = − 1
2 ∑
i = 1

n
1 + γi − exp γi − μi2

Let’s start building a variational autoencoder for Fashion MNIST (as shown in Fig‐
ure 17-11, but using the γ tweak). First, we will need a custom layer to sample the
codings, given μ and γ:

656 | Chapter 17: Autoencoders, GANs, and Diffusion Models

https://homl.info/116

class Sampling(tf.keras.layers.Layer):
 def call(self, inputs):
 mean, log_var = inputs
 return tf.random.normal(tf.shape(log_var)) * tf.exp(log_var / 2) + mean

This Sampling layer takes two inputs: mean (μ) and log_var (γ). It uses the function
tf.random.normal() to sample a random vector (of the same shape as γ) from the
Gaussian distribution, with mean 0 and standard deviation 1. Then it multiplies it by
exp(γ / 2) (which is equal to σ, as you can verify mathematically), and finally it adds μ
and returns the result. This samples a codings vector from the Gaussian distribution
with mean μ and standard deviation σ.

Next, we can create the encoder, using the functional API because the model is not
entirely sequential:

codings_size = 10

inputs = tf.keras.layers.Input(shape=[28, 28])
Z = tf.keras.layers.Flatten()(inputs)
Z = tf.keras.layers.Dense(150, activation="relu")(Z)
Z = tf.keras.layers.Dense(100, activation="relu")(Z)
codings_mean = tf.keras.layers.Dense(codings_size)(Z) # μ
codings_log_var = tf.keras.layers.Dense(codings_size)(Z) # γ
codings = Sampling()([codings_mean, codings_log_var])
variational_encoder = tf.keras.Model(
 inputs=[inputs], outputs=[codings_mean, codings_log_var, codings])

Note that the Dense layers that output codings_mean (μ) and codings_log_var
(γ) have the same inputs (i.e., the outputs of the second Dense layer). We then
pass both codings_mean and codings_log_var to the Sampling layer. Finally, the
variational_encoder model has three outputs. Only the codings are required, but
we add codings_mean and codings_log_var as well, in case we want to inspect their
values. Now let’s build the decoder:

decoder_inputs = tf.keras.layers.Input(shape=[codings_size])
x = tf.keras.layers.Dense(100, activation="relu")(decoder_inputs)
x = tf.keras.layers.Dense(150, activation="relu")(x)
x = tf.keras.layers.Dense(28 * 28)(x)
outputs = tf.keras.layers.Reshape([28, 28])(x)
variational_decoder = tf.keras.Model(inputs=[decoder_inputs], outputs=[outputs])

For this decoder, we could have used the sequential API instead of the functional
API, since it is really just a simple stack of layers, virtually identical to many of the
decoders we have built so far. Finally, let’s build the variational autoencoder model:

_, _, codings = variational_encoder(inputs)
reconstructions = variational_decoder(codings)
variational_ae = tf.keras.Model(inputs=[inputs], outputs=[reconstructions])

We ignore the first two outputs of the encoder (we only want to feed the codings to
the decoder). Lastly, we must add the latent loss and the reconstruction loss:

Variational Autoencoders | 657

latent_loss = -0.5 * tf.reduce_sum(
 1 + codings_log_var - tf.exp(codings_log_var) - tf.square(codings_mean),
 axis=-1)
variational_ae.add_loss(tf.reduce_mean(latent_loss) / 784.)

We first apply Equation 17-4 to compute the latent loss for each instance in the batch,
summing over the last axis. Then we compute the mean loss over all the instances in
the batch, and we divide the result by 784 to ensure it has the appropriate scale com‐
pared to the reconstruction loss. Indeed, the variational autoencoder’s reconstruction
loss is supposed to be the sum of the pixel reconstruction errors, but when Keras
computes the "mse" loss it computes the mean over all 784 pixels, rather than the
sum. So, the reconstruction loss is 784 times smaller than we need it to be. We could
define a custom loss to compute the sum rather than the mean, but it is simpler to
divide the latent loss by 784 (the final loss will be 784 times smaller than it should be,
but this just means that we should use a larger learning rate).

And finally, we can compile and fit the autoencoder!

variational_ae.compile(loss="mse", optimizer="nadam")
history = variational_ae.fit(X_train, X_train, epochs=25, batch_size=128,
 validation_data=(X_valid, X_valid))

Generating Fashion MNIST Images
Now let’s use this variational autoencoder to generate images that look like fashion
items. All we need to do is sample random codings from a Gaussian distribution and
decode them:

codings = tf.random.normal(shape=[3 * 7, codings_size])
images = variational_decoder(codings).numpy()

Figure 17-12 shows the 12 generated images.

Figure 17-12. Fashion MNIST images generated by the variational autoencoder

658 | Chapter 17: Autoencoders, GANs, and Diffusion Models

9 Ian Goodfellow et al., “Generative Adversarial Nets”, Proceedings of the 27th International Conference on
Neural Information Processing Systems 2 (2014): 2672–2680.

The majority of these images look fairly convincing, if a bit too fuzzy. The rest are not
great, but don’t be too harsh on the autoencoder—it only had a few minutes to learn!

Variational autoencoders make it possible to perform semantic interpolation: instead
of interpolating between two images at the pixel level, which would look as if the two
images were just overlaid, we can interpolate at the codings level. For example, let’s
take a few codings along an arbitrary line in latent space and decode them. We get a
sequence of images that gradually go from pants to sweaters (see Figure 17-13):

codings = np.zeros([7, codings_size])
codings[:, 3] = np.linspace(-0.8, 0.8, 7) # axis 3 looks best in this case
images = variational_decoder(codings).numpy()

Figure 17-13. Semantic interpolation

Let’s now turn our attention to GANs: they are harder to train, but when you manage
to get them to work, they produce pretty amazing images.

Generative Adversarial Networks
Generative adversarial networks were proposed in a 2014 paper9 by Ian Goodfellow et
al., and although the idea got researchers excited almost instantly, it took a few years
to overcome some of the difficulties of training GANs. Like many great ideas, it seems
simple in hindsight: make neural networks compete against each other in the hope
that this competition will push them to excel. As shown in Figure 17-14, a GAN is
composed of two neural networks:

Generator
Takes a random distribution as input (typically Gaussian) and outputs some
data—typically, an image. You can think of the random inputs as the latent
representations (i.e., codings) of the image to be generated. So, as you can see, the
generator offers the same functionality as a decoder in a variational autoencoder,
and it can be used in the same way to generate new images: just feed it some
Gaussian noise, and it outputs a brand-new image. However, it is trained very
differently, as you will soon see.

Generative Adversarial Networks | 659

https://homl.info/gan

Discriminator
Takes either a fake image from the generator or a real image from the training set
as input, and must guess whether the input image is fake or real.

Figure 17-14. A generative adversarial network

During training, the generator and the discriminator have opposite goals: the dis‐
criminator tries to tell fake images from real images, while the generator tries to
produce images that look real enough to trick the discriminator. Because the GAN
is composed of two networks with different objectives, it cannot be trained like a
regular neural network. Each training iteration is divided into two phases:

• In the first phase, we train the discriminator. A batch of real images is sampled•
from the training set and is completed with an equal number of fake images
produced by the generator. The labels are set to 0 for fake images and 1 for real
images, and the discriminator is trained on this labeled batch for one step, using
the binary cross-entropy loss. Importantly, backpropagation only optimizes the
weights of the discriminator during this phase.

• In the second phase, we train the generator. We first use it to produce another•
batch of fake images, and once again the discriminator is used to tell whether
the images are fake or real. This time we do not add real images in the batch,
and all the labels are set to 1 (real): in other words, we want the generator to

660 | Chapter 17: Autoencoders, GANs, and Diffusion Models

produce images that the discriminator will (wrongly) believe to be real! Crucially,
the weights of the discriminator are frozen during this step, so backpropagation
only affects the weights of the generator.

The generator never actually sees any real images, yet it gradually
learns to produce convincing fake images! All it gets is the gradi‐
ents flowing back through the discriminator. Fortunately, the better
the discriminator gets, the more information about the real images
is contained in these secondhand gradients, so the generator can
make significant progress.

Let’s go ahead and build a simple GAN for Fashion MNIST.

First, we need to build the generator and the discriminator. The generator is similar
to an autoencoder’s decoder, and the discriminator is a regular binary classifier:
it takes an image as input and ends with a Dense layer containing a single unit
and using the sigmoid activation function. For the second phase of each training
iteration, we also need the full GAN model containing the generator followed by the
discriminator:

codings_size = 30

Dense = tf.keras.layers.Dense
generator = tf.keras.Sequential([
 Dense(100, activation="relu", kernel_initializer="he_normal"),
 Dense(150, activation="relu", kernel_initializer="he_normal"),
 Dense(28 * 28, activation="sigmoid"),
 tf.keras.layers.Reshape([28, 28])
])
discriminator = tf.keras.Sequential([
 tf.keras.layers.Flatten(),
 Dense(150, activation="relu", kernel_initializer="he_normal"),
 Dense(100, activation="relu", kernel_initializer="he_normal"),
 Dense(1, activation="sigmoid")
])
gan = tf.keras.Sequential([generator, discriminator])

Next, we need to compile these models. As the discriminator is a binary classifier,
we can naturally use the binary cross-entropy loss. The gan model is also a binary
classifier, so it can use the binary cross-entropy loss as well. However, the generator
will only be trained through the gan model, so we do not need to compile it at all.
Importantly, the discriminator should not be trained during the second phase, so we
make it non-trainable before compiling the gan model:

discriminator.compile(loss="binary_crossentropy", optimizer="rmsprop")
discriminator.trainable = False
gan.compile(loss="binary_crossentropy", optimizer="rmsprop")

Generative Adversarial Networks | 661

The trainable attribute is taken into account by Keras only when
compiling a model, so after running this code, the discriminator
is trainable if we call its fit() method or its train_on_batch()
method (which we will be using), while it is not trainable when we
call these methods on the gan model.

Since the training loop is unusual, we cannot use the regular fit() method. Instead,
we will write a custom training loop. For this, we first need to create a Dataset to
iterate through the images:

batch_size = 32
dataset = tf.data.Dataset.from_tensor_slices(X_train).shuffle(buffer_size=1000)
dataset = dataset.batch(batch_size, drop_remainder=True).prefetch(1)

We are now ready to write the training loop. Let’s wrap it in a train_gan() function:

def train_gan(gan, dataset, batch_size, codings_size, n_epochs):
 generator, discriminator = gan.layers
 for epoch in range(n_epochs):
 for X_batch in dataset:
 # phase 1 - training the discriminator
 noise = tf.random.normal(shape=[batch_size, codings_size])
 generated_images = generator(noise)
 X_fake_and_real = tf.concat([generated_images, X_batch], axis=0)
 y1 = tf.constant([[0.]] * batch_size + [[1.]] * batch_size)
 discriminator.train_on_batch(X_fake_and_real, y1)
 # phase 2 - training the generator
 noise = tf.random.normal(shape=[batch_size, codings_size])
 y2 = tf.constant([[1.]] * batch_size)
 gan.train_on_batch(noise, y2)

train_gan(gan, dataset, batch_size, codings_size, n_epochs=50)

As discussed earlier, you can see the two phases at each iteration:

• In phase one we feed Gaussian noise to the generator to produce fake images,•
and we complete this batch by concatenating an equal number of real images.
The targets y1 are set to 0 for fake images and 1 for real images. Then we train
the discriminator on this batch. Remember that the discriminator is trainable in
this phase, but we are not touching the generator.

• In phase two, we feed the GAN some Gaussian noise. Its generator will start by•
producing fake images, then the discriminator will try to guess whether these
images are fake or real. In this phase, we are trying to improve the generator,
which means that we want the discriminator to fail: this is why the targets y2 are
all set to 1, although the images are fake. In this phase, the discriminator is not
trainable, so the only part of the gan model that will improve is the generator.

662 | Chapter 17: Autoencoders, GANs, and Diffusion Models

That’s it! After training, you can randomly sample some codings from a Gaussian
distribution, and feed them to the generator to produce new images:

codings = tf.random.normal(shape=[batch_size, codings_size])
generated_images = generator.predict(codings)

If you display the generated images (see Figure 17-15), you will see that at the end of
the first epoch, they already start to look like (very noisy) Fashion MNIST images.

Figure 17-15. Images generated by the GAN after one epoch of training

Unfortunately, the images never really get much better than that, and you may even
find epochs where the GAN seems to be forgetting what it learned. Why is that? Well,
it turns out that training a GAN can be challenging. Let’s see why.

The Difficulties of Training GANs
During training, the generator and the discriminator constantly try to outsmart each
other, in a zero-sum game. As training advances, the game may end up in a state that
game theorists call a Nash equilibrium, named after the mathematician John Nash:
this is when no player would be better off changing their own strategy, assuming the
other players do not change theirs. For example, a Nash equilibrium is reached when
everyone drives on the left side of the road: no driver would be better off being the
only one to switch sides. Of course, there is a second possible Nash equilibrium: when
everyone drives on the right side of the road. Different initial states and dynamics
may lead to one equilibrium or the other. In this example, there is a single optimal
strategy once an equilibrium is reached (i.e., driving on the same side as everyone
else), but a Nash equilibrium can involve multiple competing strategies (e.g., a preda‐
tor chases its prey, the prey tries to escape, and neither would be better off changing
their strategy).

Generative Adversarial Networks | 663

10 For a nice comparison of the main GAN losses, check out this great GitHub project by Hwalsuk Lee.
11 Mario Lucic et al., “Are GANs Created Equal? A Large-Scale Study”, Proceedings of the 32nd International

Conference on Neural Information Processing Systems (2018): 698–707.

So how does this apply to GANs? Well, the authors of the GAN paper demonstrated
that a GAN can only reach a single Nash equilibrium: that’s when the generator
produces perfectly realistic images, and the discriminator is forced to guess (50% real,
50% fake). This fact is very encouraging: it would seem that you just need to train
the GAN for long enough, and it will eventually reach this equilibrium, giving you
a perfect generator. Unfortunately, it’s not that simple: nothing guarantees that the
equilibrium will ever be reached.

The biggest difficulty is called mode collapse: this is when the generator’s outputs
gradually become less diverse. How can this happen? Suppose that the generator gets
better at producing convincing shoes than any other class. It will fool the discrimina‐
tor a bit more with shoes, and this will encourage it to produce even more images
of shoes. Gradually, it will forget how to produce anything else. Meanwhile, the
only fake images that the discriminator will see will be shoes, so it will also forget
how to discriminate fake images of other classes. Eventually, when the discriminator
manages to discriminate the fake shoes from the real ones, the generator will be
forced to move to another class. It may then become good at shirts, forgetting about
shoes, and the discriminator will follow. The GAN may gradually cycle across a few
classes, never really becoming very good at any of them.

Moreover, because the generator and the discriminator are constantly pushing against
each other, their parameters may end up oscillating and becoming unstable. Training
may begin properly, then suddenly diverge for no apparent reason, due to these
instabilities. And since many factors affect these complex dynamics, GANs are very
sensitive to the hyperparameters: you may have to spend a lot of effort fine-tuning
them. In fact, that’s why I used RMSProp rather than Nadam when compiling the
models: when using Nadam, I ran into a severe mode collapse.

These problems have kept researchers very busy since 2014: many papers have been
published on this topic, some proposing new cost functions10 (though a 2018 paper11

by Google researchers questions their efficiency) or techniques to stabilize training or
to avoid the mode collapse issue. For example, a popular technique called experience
replay consists of storing the images produced by the generator at each iteration in
a replay buffer (gradually dropping older generated images) and training the discrim‐
inator using real images plus fake images drawn from this buffer (rather than just
fake images produced by the current generator). This reduces the chances that the
discriminator will overfit the latest generator’s outputs. Another common technique
is called mini-batch discrimination: it measures how similar images are across the
batch and provides this statistic to the discriminator, so it can easily reject a whole

664 | Chapter 17: Autoencoders, GANs, and Diffusion Models

https://homl.info/ganloss
https://homl.info/gansequal

12 Alec Radford et al., “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial
Networks”, arXiv preprint arXiv:1511.06434 (2015).

batch of fake images that lack diversity. This encourages the generator to produce a
greater variety of images, reducing the chance of mode collapse. Other papers simply
propose specific architectures that happen to perform well.

In short, this is still a very active field of research, and the dynamics of GANs are
still not perfectly understood. But the good news is that great progress has been
made, and some of the results are truly astounding! So let’s look at some of the most
successful architectures, starting with deep convolutional GANs, which were the state
of the art just a few years ago. Then we will look at two more recent (and more
complex) architectures.

Deep Convolutional GANs
The authors of the original GAN paper experimented with convolutional layers, but
only tried to generate small images. Soon after, many researchers tried to build GANs
based on deeper convolutional nets for larger images. This proved to be tricky, as
training was very unstable, but Alec Radford et al. finally succeeded in late 2015,
after experimenting with many different architectures and hyperparameters. They
called their architecture deep convolutional GANs (DCGANs).12 Here are the main
guidelines they proposed for building stable convolutional GANs:

• Replace any pooling layers with strided convolutions (in the discriminator) and•
transposed convolutions (in the generator).

• Use batch normalization in both the generator and the discriminator, except in•
the generator’s output layer and the discriminator’s input layer.

• Remove fully connected hidden layers for deeper architectures.•
• Use ReLU activation in the generator for all layers except the output layer, which•

should use tanh.
• Use leaky ReLU activation in the discriminator for all layers.•

These guidelines will work in many cases, but not always, so you may still need
to experiment with different hyperparameters. In fact, just changing the random
seed and training the exact same model again will sometimes work. Here is a small
DCGAN that works reasonably well with Fashion MNIST:

Generative Adversarial Networks | 665

https://homl.info/dcgan

codings_size = 100

generator = tf.keras.Sequential([
 tf.keras.layers.Dense(7 * 7 * 128),
 tf.keras.layers.Reshape([7, 7, 128]),
 tf.keras.layers.BatchNormalization(),
 tf.keras.layers.Conv2DTranspose(64, kernel_size=5, strides=2,
 padding="same", activation="relu"),
 tf.keras.layers.BatchNormalization(),
 tf.keras.layers.Conv2DTranspose(1, kernel_size=5, strides=2,
 padding="same", activation="tanh"),
])
discriminator = tf.keras.Sequential([
 tf.keras.layers.Conv2D(64, kernel_size=5, strides=2, padding="same",
 activation=tf.keras.layers.LeakyReLU(0.2)),
 tf.keras.layers.Dropout(0.4),
 tf.keras.layers.Conv2D(128, kernel_size=5, strides=2, padding="same",
 activation=tf.keras.layers.LeakyReLU(0.2)),
 tf.keras.layers.Dropout(0.4),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(1, activation="sigmoid")
])
gan = tf.keras.Sequential([generator, discriminator])

The generator takes codings of size 100, projects them to 6,272 dimensions (7 * 7
* 128), and reshapes the result to get a 7 × 7 × 128 tensor. This tensor is batch
normalized and fed to a transposed convolutional layer with a stride of 2, which
upsamples it from 7 × 7 to 14 × 14 and reduces its depth from 128 to 64. The result
is batch normalized again and fed to another transposed convolutional layer with a
stride of 2, which upsamples it from 14 × 14 to 28 × 28 and reduces the depth from 64
to 1. This layer uses the tanh activation function, so the outputs will range from –1 to
1. For this reason, before training the GAN, we need to rescale the training set to that
same range. We also need to reshape it to add the channel dimension:

X_train_dcgan = X_train.reshape(-1, 28, 28, 1) * 2. - 1. # reshape and rescale

The discriminator looks much like a regular CNN for binary classification, except
instead of using max pooling layers to downsample the image, we use strided convo‐
lutions (strides=2). Note that we use the leaky ReLU activation function. Overall,
we respected the DCGAN guidelines, except we replaced the BatchNormalization
layers in the discriminator with Dropout layers; otherwise, training was unstable in
this case. Feel free to tweak this architecture: you will see how sensitive it is to the
hyperparameters, especially the relative learning rates of the two networks.

Lastly, to build the dataset and then compile and train this model, we can use the
same code as earlier. After 50 epochs of training, the generator produces images like
those shown in Figure 17-16. It’s still not perfect, but many of these images are pretty
convincing.

666 | Chapter 17: Autoencoders, GANs, and Diffusion Models

Figure 17-16. Images generated by the DCGAN after 50 epochs of training

If you scale up this architecture and train it on a large dataset of faces, you can get
fairly realistic images. In fact, DCGANs can learn quite meaningful latent representa‐
tions, as you can see in Figure 17-17: many images were generated, and nine of them
were picked manually (top left), including three representing men with glasses, three
men without glasses, and three women without glasses. For each of these categories,
the codings that were used to generate the images were averaged, and an image was
generated based on the resulting mean codings (lower left). In short, each of the
three lower-left images represents the mean of the three images located above it. But
this is not a simple mean computed at the pixel level (this would result in three
overlapping faces), it is a mean computed in the latent space, so the images still look
like normal faces. Amazingly, if you compute men with glasses, minus men without
glasses, plus women without glasses—where each term corresponds to one of the
mean codings—and you generate the image that corresponds to this coding, you get
the image at the center of the 3 × 3 grid of faces on the right: a woman with glasses!
The eight other images around it were generated based on the same vector plus a bit
of noise, to illustrate the semantic interpolation capabilities of DCGANs. Being able
to do arithmetic on faces feels like science fiction!

DCGANs aren’t perfect, though. For example, when you try to generate very large
images using DCGANs, you often end up with locally convincing features but overall
inconsistencies, such as shirts with one sleeve much longer than the other, different
earrings, or eyes looking in opposite directions. How can you fix this?

Generative Adversarial Networks | 667

13 Reproduced with the kind authorization of the authors.
14 Mehdi Mirza and Simon Osindero, “Conditional Generative Adversarial Nets”, arXiv preprint

arXiv:1411.1784 (2014).
15 Tero Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, Proceedings

of the International Conference on Learning Representations (2018).

Figure 17-17. Vector arithmetic for visual concepts (part of figure 7 from the DCGAN
paper)13

If you add each image’s class as an extra input to both the gener‐
ator and the discriminator, they will both learn what each class
looks like, and thus you will be able to control the class of each
image produced by the generator. This is called a conditional
GAN(CGAN).14

Progressive Growing of GANs
In a 2018 paper,15 Nvidia researchers Tero Kerras et al. proposed an important
technique: they suggested generating small images at the beginning of training, then
gradually adding convolutional layers to both the generator and the discriminator
to produce larger and larger images (4 × 4, 8 × 8, 16 × 16, …, 512 × 512, 1,024 ×
1,024). This approach resembles greedy layer-wise training of stacked autoencoders.
The extra layers get added at the end of the generator and at the beginning of the
discriminator, and previously trained layers remain trainable.

For example, when growing the generator’s outputs from 4 × 4 to 8 × 8 (see Fig‐
ure 17-18), an upsampling layer (using nearest neighbor filtering) is added to the

668 | Chapter 17: Autoencoders, GANs, and Diffusion Models

https://homl.info/cgan
https://homl.info/cgan
https://homl.info/progan

existing convolutional layer (“Conv 1”) to produce 8 × 8 feature maps. These are fed
to the new convolutional layer (“Conv 2”), which in turn feeds into a new output con‐
volutional layer. To avoid breaking the trained weights of Conv 1, we gradually fade
in the two new convolutional layers (represented with dashed lines in Figure 17-18)
and fade out the original output layer. The final outputs are a weighted sum of the
new outputs (with weight α) and the original outputs (with weight 1 – α), slowly
increasing α from 0 to 1. A similar fade-in/fade-out technique is used when a new
convolutional layer is added to the discriminator (followed by an average pooling
layer for downsampling). Note that all convolutional layers use "same" padding and
strides of 1, so they preserve the height and width of their inputs. This includes the
original convolutional layer, so it now produces 8 × 8 outputs (since its inputs are
now 8 × 8). Lastly, the output layers use kernel size 1. They just project their inputs
down to the desired number of color channels (typically 3).

Figure 17-18. A progressively growing GAN: a GAN generator outputs 4 × 4 color
images (left); we extend it to output 8 × 8 images (right)

The paper also introduced several other techniques aimed at increasing the diversity
of the outputs (to avoid mode collapse) and making training more stable:

Mini-batch standard deviation layer
Added near the end of the discriminator. For each position in the inputs, it
computes the standard deviation across all channels and all instances in the batch
(S = tf.math.reduce_std(inputs, axis=[0, -1])). These standard deviations

Generative Adversarial Networks | 669

16 The dynamic range of a variable is the ratio between the highest and the lowest value it may take.

are then averaged across all points to get a single value (v = tf.reduce_

mean(S)). Finally, an extra feature map is added to each instance in the batch and
filled with the computed value (tf.concat([inputs, tf.fill([batch_size,
height, width, 1], v)], axis=-1)). How does this help? Well, if the gener‐
ator produces images with little variety, then there will be a small standard
deviation across feature maps in the discriminator. Thanks to this layer, the
discriminator will have easy access to this statistic, making it less likely to be
fooled by a generator that produces too little diversity. This will encourage the
generator to produce more diverse outputs, reducing the risk of mode collapse.

Equalized learning rate
Initializes all weights using a Gaussian distribution with mean 0 and standard
deviation 1 rather than using He initialization. However, the weights are scaled
down at runtime (i.e., every time the layer is executed) by the same factor as
in He initialization: they are divided by 2

ninputs, where ninputs is the number
of inputs to the layer. The paper demonstrated that this technique significantly
improved the GAN’s performance when using RMSProp, Adam, or other adap‐
tive gradient optimizers. Indeed, these optimizers normalize the gradient updates
by their estimated standard deviation (see Chapter 11), so parameters that have
a larger dynamic range16 will take longer to train, while parameters with a small
dynamic range may be updated too quickly, leading to instabilities. By rescaling
the weights as part of the model itself rather than just rescaling them upon
initialization, this approach ensures that the dynamic range is the same for all
parameters throughout training, so they all learn at the same speed. This both
speeds up and stabilizes training.

Pixelwise normalization layer
Added after each convolutional layer in the generator. It normalizes each activa‐
tion based on all the activations in the same image and at the same location, but
across all channels (dividing by the square root of the mean squared activation).
In TensorFlow code, this is inputs / tf.sqrt(tf.reduce_mean(tf.square(X),
axis=-1, keepdims=True) + 1e-8) (the smoothing term 1e-8 is needed to
avoid division by zero). This technique avoids explosions in the activations due
to excessive competition between the generator and the discriminator.

The combination of all these techniques allowed the authors to generate extremely
convincing high-definition images of faces. But what exactly do we call “convincing”?
Evaluation is one of the big challenges when working with GANs: although it is
possible to automatically evaluate the diversity of the generated images, judging their
quality is a much trickier and subjective task. One technique is to use human raters,

670 | Chapter 17: Autoencoders, GANs, and Diffusion Models

https://homl.info/progandemo
https://homl.info/progandemo

17 Tero Karras et al., “A Style-Based Generator Architecture for Generative Adversarial Networks”, arXiv preprint
arXiv:1812.04948 (2018).

but this is costly and time-consuming. So, the authors proposed to measure the
similarity between the local image structure of the generated images and the training
images, considering every scale. This idea led them to another groundbreaking inno‐
vation: StyleGANs.

StyleGANs
The state of the art in high-resolution image generation was advanced once again
by the same Nvidia team in a 2018 paper17 that introduced the popular StyleGAN
architecture. The authors used style transfer techniques in the generator to ensure that
the generated images have the same local structure as the training images, at every
scale, greatly improving the quality of the generated images. The discriminator and
the loss function were not modified, only the generator. A StyleGAN generator is
composed of two networks (see Figure 17-19):

Mapping network
An eight-layer MLP that maps the latent representations z (i.e., the codings)
to a vector w. This vector is then sent through multiple affine transformations
(i.e., Dense layers with no activation functions, represented by the “A” boxes in
Figure 17-19), which produces multiple vectors. These vectors control the style of
the generated image at different levels, from fine-grained texture (e.g., hair color)
to high-level features (e.g., adult or child). In short, the mapping network maps
the codings to multiple style vectors.

Synthesis network
Responsible for generating the images. It has a constant learned input (to be
clear, this input will be constant after training, but during training it keeps getting
tweaked by backpropagation). It processes this input through multiple convolu‐
tional and upsampling layers, as earlier, but there are two twists. First, some noise
is added to the input and to all the outputs of the convolutional layers (before the
activation function). Second, each noise layer is followed by an adaptive instance
normalization (AdaIN) layer: it standardizes each feature map independently (by
subtracting the feature map’s mean and dividing by its standard deviation), then
it uses the style vector to determine the scale and offset of each feature map (the
style vector contains one scale and one bias term for each feature map).

Generative Adversarial Networks | 671

https://homl.info/stylegan

18 Reproduced with the kind authorization of the authors.

Figure 17-19. StyleGAN’s generator architecture (part of Figure 1 from the StyleGAN
paper)18

The idea of adding noise independently from the codings is very important. Some
parts of an image are quite random, such as the exact position of each freckle or hair.
In earlier GANs, this randomness had to either come from the codings or be some
pseudorandom noise produced by the generator itself. If it came from the codings,
it meant that the generator had to dedicate a significant portion of the codings’ repre‐
sentational power to storing noise, which this is quite wasteful. Moreover, the noise
had to be able to flow through the network and reach the final layers of the generator:
this seems like an unnecessary constraint that probably slowed down training. And
finally, some visual artifacts may appear because the same noise was used at different
levels. If instead the generator tried to produce its own pseudorandom noise, this
noise might not look very convincing, leading to more visual artifacts. Plus, part of
the generator’s weights would be dedicated to generating pseudorandom noise, which
again seems wasteful. By adding extra noise inputs, all these issues are avoided; the

672 | Chapter 17: Autoencoders, GANs, and Diffusion Models

19 Jascha Sohl-Dickstein et al., “Deep Unsupervised Learning using Nonequilibrium Thermodynamics”, arXiv
preprint arXiv:1503.03585 (2015).

GAN is able to use the provided noise to add the right amount of stochasticity to each
part of the image.

The added noise is different for each level. Each noise input consists of a single
feature map full of Gaussian noise, which is broadcast to all feature maps (of the
given level) and scaled using learned per-feature scaling factors (this is represented by
the “B” boxes in Figure 17-19) before it is added.

Finally, StyleGAN uses a technique called mixing regularization (or style mixing),
where a percentage of the generated images are produced using two different codings.
Specifically, the codings c1 and c2 are sent through the mapping network, giving two
style vectors w1 and w2. Then the synthesis network generates an image based on the
styles w1 for the first levels and the styles w2 for the remaining levels. The cutoff level
is picked randomly. This prevents the network from assuming that styles at adjacent
levels are correlated, which in turn encourages locality in the GAN, meaning that
each style vector only affects a limited number of traits in the generated image.

There is such a wide variety of GANs out there that it would require a whole book to
cover them all. Hopefully this introduction has given you the main ideas, and most
importantly the desire to learn more. Go ahead and implement your own GAN, and
do not get discouraged if it has trouble learning at first: unfortunately, this is normal,
and it will require quite a bit of patience to get it working, but the result is worth
it. If you’re struggling with an implementation detail, there are plenty of Keras or
TensorFlow implementations that you can look at. In fact, if all you want is to get
some amazing results quickly, then you can just use a pretrained model (e.g., there
are pretrained StyleGAN models available for Keras).

Now that we’ve examined autoencoders and GANs, let’s look at one last type of
architecture: diffusion models.

Diffusion Models
The ideas behind diffusion models have been around for many years, but they were
first formalized in their modern form in a 2015 paper19 by Jascha Sohl-Dickstein
et al. from Stanford University and UC Berkeley. The authors applied tools from
thermodynamics to model a diffusion process, similar to a drop of milk diffusing in
a cup of tea. The core idea is to train a model to learn the reverse process: start from
the completely mixed state, and gradually “unmix” the milk from the tea. Using this
idea, they obtained promising results in image generation, but since GANs produced
more convincing images back then, diffusion models did not get as much attention.

Diffusion Models | 673

https://homl.info/diffusion

20 Jonathan Ho et al., “Denoising Diffusion Probabilistic Models” (2020).
21 Alex Nichol and Prafulla Dhariwal, “Improved Denoising Diffusion Probabilistic Models” (2021).

Then, in 2020, Jonathan Ho et al., also from UC Berkeley, managed to build a diffu‐
sion model capable of generating highly realistic images, which they called a denoising
diffusion probabilistic model (DDPM).20 A few months later, a 2021 paper21 by OpenAI
researchers Alex Nichol and Prafulla Dhariwal analyzed the DDPM architecture and
proposed several improvements that allowed DDPMs to finally beat GANs: not only
are DDPMs much easier to train than GANs, but the generated images are more
diverse and of even higher quality. The main downside of DDPMs, as you will see, is
that they take a very long time to generate images, compared to GANs or VAEs.

So how exactly does a DDPM work? Well, suppose you start with a picture of a cat
(like the one you’ll see in Figure 17-20), noted x0, and at each time step t you add a
little bit of Gaussian noise to the image, with mean 0 and variance βt. This noise is
independent for each pixel: we call it isotropic. You first obtain the image x1, then x2,
and so on, until the cat is completely hidden by the noise, impossible to see. The last
time step is noted T. In the original DDPM paper, the authors used T = 1,000, and
they scheduled the variance βt in such a way that the cat signal fades linearly between
time steps 0 and T. In the improved DDPM paper, T was bumped up to 4,000, and
the variance schedule was tweaked to change more slowly at the beginning and at
the end. In short, we’re gradually drowning the cat in noise: this is called the forward
process.

As we add more and more Gaussian noise in the forward process, the distribution of
pixel values becomes more and more Gaussian. One important detail I left out is that
the pixel values get rescaled slightly at each step, by a factor of 1 − βt. This ensures
that the mean of the pixel values gradually approaches 0, since the scaling factor is a
bit smaller than 1 (imagine repeatedly multiplying a number by 0.99). It also ensures
that the variance will gradually converge to 1. This is because the standard deviation
of the pixel values also gets scaled by 1 − βt, so the variance gets scaled by 1 – βt
(i.e., the square of the scaling factor). But the variance cannot shrink to 0 since we’re
adding Gaussian noise with variance βt at each step. And since variances add up when
you sum Gaussian distributions, you can see that the variance can only converge to
1 – βt + βt = 1.

The forward diffusion process is summarized in Equation 17-5. This equation won’t
teach you anything new about the forward process, but it’s useful to understand this
type of mathematical notation, as it’s often used in ML papers. This equation defines
the probability distribution q of xt given xt–1 as a Gaussian distribution with mean xt–1
times the scaling factor, and with a covariance matrix equal to βtI. This is the identity
matrix I multiplied by βt, which means that the noise is isotropic with variance βt.

674 | Chapter 17: Autoencoders, GANs, and Diffusion Models

https://homl.info/ddpm
https://homl.info/ddpm2

Equation 17-5. Probability distribution q of the forward diffusion process

q xt xt − 1 = N 1 − βtxt − 1 , βtI

Interestingly, there’s a shortcut for the forward process: it’s possible to sample an
image xt given x0 without having to first compute x1, x2, …, xt–1. Indeed, since the sum
of multiple Gaussian distributions is also a Gaussian distribution, all the noise can be
added in just one shot using Equation 17-6. This is the equation we will be using, as it
is much faster.

Equation 17-6. Shortcut for the forward diffusion process

q xt x0 = N αtx0 , 1 − αt I

Our goal, of course, is not to drown cats in noise. On the contrary, we want to
create many new cats! We can do so by training a model that can perform the reverse
process: going from xt to xt–1. We can then use it to remove a tiny bit of noise from an
image, and repeat the operation many times until all the noise is gone. If we train the
model on a dataset containing many cat images, then we can give it a picture entirely
full of Gaussian noise, and the model will gradually make a brand new cat appear (see
Figure 17-20).

Figure 17-20. The forward process q and reverse process p

OK, so let’s start coding! The first thing we need to do is to code the forward process.
For this, we will first need to implement the variance schedule. How can we control
how fast the cat disappears? Initially, 100% of the variance comes from the original
cat image. Then at each time step t, the variance gets multiplied by 1 – βt, as explained
earlier, and noise gets added. So, the part of the variance that comes from the initial
distribution shrinks by a factor of 1 – βt at each step. If we define αt = 1 – βt, then after
t time steps, the cat signal will have been multiplied by a factor of α̅t = α1×α2×…×αt =
αt = ∏i = 1

t αt. It’s this “cat signal” factor α̅t that we want to schedule so it shrinks down

Diffusion Models | 675

from 1 to 0 gradually between time steps 0 and T. In the improved DDPM paper,
the authors schedule α̅t according to Equation 17-7. This schedule is represented in
Figure 17-21.

Equation 17-7. Variance schedule equations for the forward diffusion process

βt = 1 −
αt
αt − 1

, with αt = f t
f 0 and f t = cos t/T + s

1 + s · π2
2

In these equations:

• s is a tiny value which prevents βt from being too small near t = 0. In the paper,•
the authors used s = 0.008.

• βt is clipped to be no larger than 0.999, to avoid instabilities near t = T.•

Figure 17-21. Noise variance schedule βt, and the remaining signal variance α̅t

Let’s create a small function to compute αt, βt, and α̅t, and call it with T = 4,000:

def variance_schedule(T, s=0.008, max_beta=0.999):
 t = np.arange(T + 1)
 f = np.cos((t / T + s) / (1 + s) * np.pi / 2) ** 2
 alpha = np.clip(f[1:] / f[:-1], 1 - max_beta, 1)
 alpha = np.append(1, alpha).astype(np.float32) # add α₀ = 1
 beta = 1 - alpha
 alpha_cumprod = np.cumprod(alpha)
 return alpha, alpha_cumprod, beta # αₜ , α̅ₜ , βₜ for t = 0 to T

T = 4000
alpha, alpha_cumprod, beta = variance_schedule(T)

676 | Chapter 17: Autoencoders, GANs, and Diffusion Models

To train our model to reverse the diffusion process, we will need noisy images from
different time steps of the forward process. For this, let’s create a prepare_batch()
function that will take a batch of clean images from the dataset and prepare them:

def prepare_batch(X):
 X = tf.cast(X[..., tf.newaxis], tf.float32) * 2 - 1 # scale from –1 to +1
 X_shape = tf.shape(X)
 t = tf.random.uniform([X_shape[0]], minval=1, maxval=T + 1, dtype=tf.int32)
 alpha_cm = tf.gather(alpha_cumprod, t)
 alpha_cm = tf.reshape(alpha_cm, [X_shape[0]] + [1] * (len(X_shape) - 1))
 noise = tf.random.normal(X_shape)
 return {
 "X_noisy": alpha_cm ** 0.5 * X + (1 - alpha_cm) ** 0.5 * noise,
 "time": t,
 }, noise

Let’s go through this code:

• For simplicity we will use Fashion MNIST, so the function must first add a•
channel axis. It will also help to scale the pixel values from –1 to 1, so it’s closer to
the final Gaussian distribution with mean 0 and variance 1.

• Next, the function creates t, a vector containing a random time step for each•
image in the batch, between 1 and T.

• Then it uses tf.gather() to get the value of alpha_cumprod for each of the time•
steps in the vector t. This gives us the vector alpha_cm, containing one value of α̅t
for each image.

• The next line reshapes the alpha_cm from [batch size] to [batch size, 1, 1, 1]. This•
is needed to ensure alpha_cm can be broadcasted with the batch X.

• Then we generate some Gaussian noise with mean 0 and variance 1.•
• Lastly, we use Equation 17-6 to apply the diffusion process to the images. Note•

that x ** 0.5 is equal to the square root of x. The function returns a tuple
containing the inputs and the targets. The inputs are represented as a Python
dict containing the noisy images and the time steps used to generate them. The
targets are the Gaussian noise used to generate each image.

With this setup, the model will predict the noise that should be
subtracted from the input image to get the original image. Why
not predict the original image directly? Well, the authors tried: it
simply doesn’t work as well.

Diffusion Models | 677

22 Olaf Ronneberger et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, arXiv preprint
arXiv:1505.04597 (2015).

Next, we’ll create a training dataset and a validation set that will apply the
prepare_batch() function to every batch. As earlier, X_train and X_valid contain
the Fashion MNIST images with pixel values ranging from 0 to 1:

def prepare_dataset(X, batch_size=32, shuffle=False):
 ds = tf.data.Dataset.from_tensor_slices(X)
 if shuffle:
 ds = ds.shuffle(buffer_size=10_000)
 return ds.batch(batch_size).map(prepare_batch).prefetch(1)

train_set = prepare_dataset(X_train, batch_size=32, shuffle=True)
valid_set = prepare_dataset(X_valid, batch_size=32)

Now we’re ready to build the actual diffusion model itself. It can be any model you
want, as long as it takes the noisy images and time steps as inputs, and predicts the
noise to subtract from the input images:

def build_diffusion_model():
 X_noisy = tf.keras.layers.Input(shape=[28, 28, 1], name="X_noisy")
 time_input = tf.keras.layers.Input(shape=[], dtype=tf.int32, name="time")
 [...] # build the model based on the noisy images and the time steps
 outputs = [...] # predict the noise (same shape as the input images)
 return tf.keras.Model(inputs=[X_noisy, time_input], outputs=[outputs])

The DDPM authors used a modified U-Net architecture,22 which has many similari‐
ties with the FCN architecture we discussed in Chapter 14 for semantic segmentation:
it’s a convolutional neural network that gradually downsamples the input images,
then gradually upsamples them again, with skip connections crossing over from each
level of the downsampling part to the corresponding level in the upsampling part. To
take into account the time steps, they encoded them using the same technique as the
positional encodings in the transformer architecture (see Chapter 16). At every level
in the U-Net architecture, they passed these time encodings through Dense layers and
fed them to the U-Net. Lastly, they also used multi-head attention layers at various
levels. See this chapter’s notebook for a basic implementation, or https://homl.info/
ddpmcode for the official implementation: it’s based on TF 1.x, which is deprecated,
but it’s quite readable.

WE can now train the model normally. The authors noted that using the MAE loss
worked better than the MSE. You can also use the Huber loss:

model = build_diffusion_model()
model.compile(loss=tf.keras.losses.Huber(), optimizer="nadam")
history = model.fit(train_set, validation_data=valid_set, epochs=100)

678 | Chapter 17: Autoencoders, GANs, and Diffusion Models

https://homl.info/unet
https://homl.info/ddpmcode
https://homl.info/ddpmcode

Once the model is trained, you can use it to generate new images. Unfortunately,
there’s no shortcut in the reverse diffusion process, so you have to sample xT
randomly from a Gaussian distribution with mean 0 and variance 1, then pass it
to the model to predict the noise; subtract it from the image using Equation 17-8, and
you get xT–1. Repeat the process 3,999 more times until you get x0: if all went well, it
should look like a regular Fashion MNIST image!

Equation 17-8. Going one step in reverse in the diffusion process

xt − 1 = 1
αt
xt −

βt

1 − αt
ϵθ xt, t + βtz

In this equation, ϵθ(xt, t) represents the noise predicted by the model given the input
image xt and the time step t. The θ represents the model parameters. Moreover,
z is Gaussian noise with mean 0 and variance 1. This makes the reverse process
stochastic: if you run it multiple times, you will get different images.

Let’s write a function that implements this reverse process, and call it to generate a
few images:

def generate(model, batch_size=32):
 X = tf.random.normal([batch_size, 28, 28, 1])
 for t in range(T, 0, -1):
 noise = (tf.random.normal if t > 1 else tf.zeros)(tf.shape(X))
 X_noise = model({"X_noisy": X, "time": tf.constant([t] * batch_size)})
 X = (
 1 / alpha[t] ** 0.5
 * (X - beta[t] / (1 - alpha_cumprod[t]) ** 0.5 * X_noise)
 + (1 - alpha[t]) ** 0.5 * noise
)
 return X

X_gen = generate(model) # generated images

This may take a minute or two. That’s the main drawback of diffusion models:
generating images is slow since the model needs to be called many times. It’s possible
to make this faster by using a smaller T value, or by using the same model prediction
for several steps at a time, but the resulting images may not look as nice. That said,
despite this speed limitation, diffusion models do produce high-quality and diverse
images, as you can see in Figure 17-22.

Diffusion Models | 679

23 Robin Rombach, Andreas Blattmann, et al., “High-Resolution Image Synthesis with Latent Diffusion Models”,
arXiv preprint arXiv:2112.10752 (2021).

Figure 17-22. Images generated by the DDPM

Diffusion models have made tremendous progress recently. In particular, a paper
published in December 2021 by Robin Rombach, Andreas Blattmann, et al.,23 intro‐
duced latent diffusion models, where the diffusion process takes place in latent space,
rather than in pixel space. To achieve this, a powerful autoencoder is used to com‐
press each training image into a much smaller latent space, where the diffusion
process takes place, then the autoencoder is used to decompress the final latent
representation, generating the output image. This considerably speeds up image
generation, and reduces training time and cost dramatically. Importantly, the quality
of the generated images is outstanding.

Moreover, the researchers also adapted various conditioning techniques to guide
the diffusion process using text prompts, images, or any other inputs. This makes
it possible to quickly produce a beautiful, high-resolution image of a salamander
reading a book, or anything else you might fancy. You can also condition the image
generation process using an input image. This enables many applications, such as
outpainting—where an input image is extended beyond its borders—or inpainting—
where holes in an image are filled in.

Lastly, a powerful pretrained latent diffusion model named Stable Diffusion was
open sourced in August 2022 by a collaboration between LMU Munich and a few
companies, including StabilityAI, and Runway, with support from EleutherAI and
LAION. In September 2022, it was ported to TensorFlow and included in KerasCV,
a computer vision library built by the Keras team. Now anyone can generate mind‐

680 | Chapter 17: Autoencoders, GANs, and Diffusion Models

https://homl.info/latentdiff
https://keras.io/keras_cv

blowing images in seconds, for free, even on a regular laptop (see the last exercise in
this chapter). The possibilities are endless!

In the next chapter we will move on to an entirely different branch of deep learning:
deep reinforcement learning.

Exercises
1. What are the main tasks that autoencoders are used for?1.
2. Suppose you want to train a classifier, and you have plenty of unlabeled training2.

data but only a few thousand labeled instances. How can autoencoders help?
How would you proceed?

3. If an autoencoder perfectly reconstructs the inputs, is it necessarily a good3.
autoencoder? How can you evaluate the performance of an autoencoder?

4. What are undercomplete and overcomplete autoencoders? What is the main risk4.
of an excessively undercomplete autoencoder? What about the main risk of an
overcomplete autoencoder?

5. How do you tie weights in a stacked autoencoder? What is the point of doing so?5.
6. What is a generative model? Can you name a type of generative autoencoder?6.
7. What is a GAN? Can you name a few tasks where GANs can shine?7.
8. What are the main difficulties when training GANs?8.
9. What are diffusion models good at? What is their main limitation?9.

10. Try using a denoising autoencoder to pretrain an image classifier. You can use10.
MNIST (the simplest option), or a more complex image dataset such as CIFAR10
if you want a bigger challenge. Regardless of the dataset you’re using, follow these
steps:
a. Split the dataset into a training set and a test set. Train a deep denoisinga.

autoencoder on the full training set.
b. Check that the images are fairly well reconstructed. Visualize the images thatb.

most activate each neuron in the coding layer.
c. Build a classification DNN, reusing the lower layers of the autoencoder. Trainc.

it using only 500 images from the training set. Does it perform better with or
without pretraining?

11. Train a variational autoencoder on the image dataset of your choice, and use it to11.
generate images. Alternatively, you can try to find an unlabeled dataset that you
are interested in and see if you can generate new samples.

Exercises | 681

https://homl.info/122

12. Train a DCGAN to tackle the image dataset of your choice, and use it to generate12.
images. Add experience replay and see if this helps. Turn it into a conditional
GAN where you can control the generated class.

13. Go through KerasCV’s excellent Stable Diffusion tutorial, and generate a beauti‐13.
ful drawing of a salamander reading a book. If you post your best drawing on
Twitter, please tag me at @aureliengeron. I’d love to see your creations!

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

682 | Chapter 17: Autoencoders, GANs, and Diffusion Models

https://homl.info/sdtuto
https://homl.info/colab3

1 For more details, be sure to check out Richard Sutton and Andrew Barto’s book on RL, Reinforcement
Learning: An Introduction (MIT Press).

2 Volodymyr Mnih et al., “Playing Atari with Deep Reinforcement Learning”, arXiv preprint arXiv:1312.5602
(2013).

3 Volodymyr Mnih et al., “Human-Level Control Through Deep Reinforcement Learning”, Nature 518 (2015):
529–533.

4 Check out the videos of DeepMind’s system learning to play Space Invaders, Breakout, and other video games
at https://homl.info/dqn3.

CHAPTER 18

Reinforcement Learning

Reinforcement learning (RL) is one of the most exciting fields of machine learning
today, and also one of the oldest. It has been around since the 1950s, producing many
interesting applications over the years,1 particularly in games (e.g., TD-Gammon,
a Backgammon-playing program) and in machine control, but seldom making the
headline news. However, a revolution took place in 2013, when researchers from a
British startup called DeepMind demonstrated a system that could learn to play just
about any Atari game from scratch,2 eventually outperforming humans3 in most of
them, using only raw pixels as inputs and without any prior knowledge of the rules
of the games.4 This was the first of a series of amazing feats, culminating with the
victory of their system AlphaGo against Lee Sedol, a legendary professional player of
the game of Go, in March 2016 and against Ke Jie, the world champion, in May 2017.
No program had ever come close to beating a master of this game, let alone the world
champion. Today the whole field of RL is boiling with new ideas, with a wide range of
applications.

So how did DeepMind (bought by Google for over $500 million in 2014) achieve all
this? With hindsight it seems rather simple: they applied the power of deep learning
to the field of reinforcement learning, and it worked beyond their wildest dreams. In
this chapter I will first explain what reinforcement learning is and what it’s good at,

683

https://homl.info/dqn3
https://homl.info/dqn
https://homl.info/dqn2

then present two of the most important techniques in deep reinforcement learning:
policy gradients and deep Q-networks, including a discussion of Markov decision
processes. Let’s get started!

Learning to Optimize Rewards
In reinforcement learning, a software agent makes observations and takes actions
within an environment, and in return it receives rewards from the environment. Its
objective is to learn to act in a way that will maximize its expected rewards over time.
If you don’t mind a bit of anthropomorphism, you can think of positive rewards as
pleasure, and negative rewards as pain (the term “reward” is a bit misleading in this
case). In short, the agent acts in the environment and learns by trial and error to
maximize its pleasure and minimize its pain.

This is quite a broad setting, which can apply to a wide variety of tasks. Here are a few
examples (see Figure 18-1):

a. The agent can be the program controlling a robot. In this case, the environmenta.
is the real world, the agent observes the environment through a set of sensors
such as cameras and touch sensors, and its actions consist of sending signals
to activate motors. It may be programmed to get positive rewards whenever it
approaches the target destination, and negative rewards whenever it wastes time
or goes in the wrong direction.

b. The agent can be the program controlling Ms. Pac-Man. In this case, the environ‐b.
ment is a simulation of the Atari game, the actions are the nine possible joystick
positions (upper left, down, center, and so on), the observations are screenshots,
and the rewards are just the game points.

c. Similarly, the agent can be the program playing a board game such as Go. It onlyc.
gets a reward if it wins.

d. The agent does not have to control a physically (or virtually) moving thing. Ford.
example, it can be a smart thermostat, getting positive rewards whenever it is
close to the target temperature and saves energy, and negative rewards when
humans need to tweak the temperature, so the agent must learn to anticipate
human needs.

e. The agent can observe stock market prices and decide how much to buy or selle.
every second. Rewards are obviously the monetary gains and losses.

Note that there may not be any positive rewards at all; for example, the agent may
move around in a maze, getting a negative reward at every time step, so it had
better find the exit as quickly as possible! There are many other examples of tasks to
which reinforcement learning is well suited, such as self-driving cars, recommender

684 | Chapter 18: Reinforcement Learning

5 Images (a), (d), and (e) are in the public domain. Image (b) is a screenshot from the Ms. Pac-Man game,
copyright Atari (fair use in this chapter). Image (c) is reproduced from Wikipedia; it was created by user
Stevertigo and released under Creative Commons BY-SA 2.0.

systems, placing ads on a web page, or controlling where an image classification
system should focus its attention.

Figure 18-1. Reinforcement learning examples: (a) robotics, (b) Ms. Pac-Man, (c) Go
player, (d) thermostat, (e) automatic trader5

Policy Search
The algorithm a software agent uses to determine its actions is called its policy. The
policy could be a neural network taking observations as inputs and outputting the
action to take (see Figure 18-2).

Policy Search | 685

https://creativecommons.org/licenses/by-sa/2.0

6 It is often better to give the poor performers a slight chance of survival, to preserve some diversity in the “gene
pool”.

7 If there is a single parent, this is called asexual reproduction. With two (or more) parents, it is called sexual
reproduction. An offspring’s genome (in this case a set of policy parameters) is randomly composed of parts of
its parents’ genomes.

8 One interesting example of a genetic algorithm used for reinforcement learning is the NeuroEvolution of
Augmenting Topologies (NEAT) algorithm.

Figure 18-2. Reinforcement learning using a neural network policy

The policy can be any algorithm you can think of, and it does not have to be deter‐
ministic. In fact, in some cases it does not even have to observe the environment! For
example, consider a robotic vacuum cleaner whose reward is the amount of dust it
picks up in 30 minutes. Its policy could be to move forward with some probability
p every second, or randomly rotate left or right with probability 1 – p. The rotation
angle would be a random angle between –r and +r. Since this policy involves some
randomness, it is called a stochastic policy. The robot will have an erratic trajectory,
which guarantees that it will eventually get to any place it can reach and pick up all
the dust. The question is, how much dust will it pick up in 30 minutes?

How would you train such a robot? There are just two policy parameters you can
tweak: the probability p and the angle range r. One possible learning algorithm could
be to try out many different values for these parameters, and pick the combination
that performs best (see Figure 18-3). This is an example of policy search, in this case
using a brute-force approach. When the policy space is too large (which is generally
the case), finding a good set of parameters this way is like searching for a needle in a
gigantic haystack.

Another way to explore the policy space is to use genetic algorithms. For example,
you could randomly create a first generation of 100 policies and try them out, then
“kill” the 80 worst policies6 and make the 20 survivors produce 4 offspring each. An
offspring is a copy of its parent7 plus some random variation. The surviving policies
plus their offspring together constitute the second generation. You can continue to
iterate through generations this way until you find a good policy.8

686 | Chapter 18: Reinforcement Learning

https://homl.info/neat
https://homl.info/neat

9 This is called gradient ascent. It’s just like gradient descent, but in the opposite direction: maximizing instead
of minimizing.

Figure 18-3. Four points in the policy space (left) and the agent’s corresponding behavior
(right)

Yet another approach is to use optimization techniques, by evaluating the gradients of
the rewards with regard to the policy parameters, then tweaking these parameters by
following the gradients toward higher rewards.9 We will discuss this approach, called
policy gradients (PG), in more detail later in this chapter. Going back to the vacuum
cleaner robot, you could slightly increase p and evaluate whether doing so increases
the amount of dust picked up by the robot in 30 minutes; if it does, then increase
p some more, or else reduce p. We will implement a popular PG algorithm using
TensorFlow, but before we do, we need to create an environment for the agent to live
in—so it’s time to introduce OpenAI Gym.

Introduction to OpenAI Gym
One of the challenges of reinforcement learning is that in order to train an agent,
you first need to have a working environment. If you want to program an agent that
will learn to play an Atari game, you will need an Atari game simulator. If you want
to program a walking robot, then the environment is the real world, and you can
directly train your robot in that environment. However, this has its limits: if the robot
falls off a cliff, you can’t just click Undo. You can’t speed up time either—adding
more computing power won’t make the robot move any faster—and it’s generally
too expensive to train 1,000 robots in parallel. In short, training is hard and slow in
the real world, so you generally need a simulated environment at least for bootstrap

Introduction to OpenAI Gym | 687

10 OpenAI is an artificial intelligence research company, funded in part by Elon Musk. Its stated goal is to
promote and develop friendly AIs that will benefit humanity (rather than exterminate it).

training. For example, you might use a library like PyBullet or MuJoCo for 3D
physics simulation.

OpenAI Gym10 is a toolkit that provides a wide variety of simulated environments
(Atari games, board games, 2D and 3D physical simulations, and so on), that you can
use to train agents, compare them, or develop new RL algorithms.

OpenAI Gym is preinstalled on Colab, but it’s an older version, so you’ll need to
replace it with the latest one. You also need to install a few of its dependencies. If you
are coding on your own machine instead of Colab, and you followed the installation
instructions at https://homl.info/install, then you can skip this step; otherwise, enter
these commands:

Only run these commands on Colab or Kaggle!
%pip install -q -U gym
%pip install -q -U gym[classic_control,box2d,atari,accept-rom-license]

The first %pip command upgrades Gym to the latest version. The -q option stands for
quiet: it makes the output less verbose. The -U option stands for upgrade. The second
%pip command installs the libraries required to run various kinds of environments.
This includes classic environments from control theory–the science of controlling
dynamical systems–such as balancing a pole on a cart. It also includes environments
based on the Box2D library—a 2D physics engine for games. Lastly, it includes envi‐
ronments based on the Arcade Learning Environment (ALE), which is an emulator
for Atari 2600 games. Several Atari game ROMs are downloaded automatically, and
by running this code you agree with Atari’s ROM licenses.

With that, you’re ready to use OpenAI Gym. Let’s import it and make an
environment:

import gym

env = gym.make("CartPole-v1", render_mode="rgb_array")

Here, we’ve created a CartPole environment. This is a 2D simulation in which a cart
can be accelerated left or right in order to balance a pole placed on top of it (see
Figure 18-4). This is a classic control task.

The gym.envs.registry dictionary contains the names and speci‐
fications of all the available environments.

688 | Chapter 18: Reinforcement Learning

https://pybullet.org
https://mujoco.org
https://gym.openai.com
https://homl.info/install

Figure 18-4. The CartPole environment

After the environment is created, you must initialize it using the reset() method,
optionally specifying a random seed. This returns the first observation. Observations
depend on the type of environment. For the CartPole environment, each observation
is a 1D NumPy array containing four floats representing the cart’s horizontal position
(0.0 = center), its velocity (positive means right), the angle of the pole (0.0 =
vertical), and its angular velocity (positive means clockwise). The reset() method
also returns a dictionary that may contain extra environment-specific information.
This can be useful for debugging or for training. For example, in many Atari environ‐
ments, it contains the number of lives left. However, in the CartPole environment,
this dictionary is empty.

>>> obs, info = env.reset(seed=42)
>>> obs
array([0.0273956 , -0.00611216, 0.03585979, 0.0197368], dtype=float32)
>>> info
{}

Let’s call the render() method to render this environment as an image. Since we
set render_mode="rgb_array" when creating the environment, the image will be
returned as a NumPy array:

>>> img = env.render()
>>> img.shape # height, width, channels (3 = Red, Green, Blue)
(400, 600, 3)

You can then use Matplotlib’s imshow() function to display this image, as usual.

Now let’s ask the environment what actions are possible:

>>> env.action_space
Discrete(2)

Discrete(2) means that the possible actions are integers 0 and 1, which represent
accelerating left or right. Other environments may have additional discrete actions,
or other kinds of actions (e.g., continuous). Since the pole is leaning toward the right
(obs[2] > 0), let’s accelerate the cart toward the right:

Introduction to OpenAI Gym | 689

>>> action = 1 # accelerate right
>>> obs, reward, done, truncated, info = env.step(action)
>>> obs
array([0.02727336, 0.18847767, 0.03625453, -0.26141977], dtype=float32)
>>> reward
1.0
>>> done
False
>>> truncated
False
>>> info
{}

The step() method executes the desired action and returns five values:

obs

This is the new observation. The cart is now moving toward the right (obs[1] >
0). The pole is still tilted toward the right (obs[2] > 0), but its angular velocity is
now negative (obs[3] < 0), so it will likely be tilted toward the left after the next
step.

reward

In this environment, you get a reward of 1.0 at every step, no matter what you do,
so the goal is to keep the episode running for as long as possible.

done

This value will be True when the episode is over. This will happen when the pole
tilts too much, or goes off the screen, or after 200 steps (in this last case, you have
won). After that, the environment must be reset before it can be used again.

truncated

This value will be True when an episode is interrupted early, for example by
an environment wrapper that imposes a maximum number of steps per episode
(see Gym’s documentation for more details on environment wrappers). Some RL
algorithms treat truncated episodes differently from episodes finished normally
(i.e., when done is True), but in this chapter we will treat them identically.

info

This environment-specific dictionary may provide extra information, just like the
one returned by the reset() method.

Once you have finished using an environment, you should call its
close() method to free resources.

690 | Chapter 18: Reinforcement Learning

Let’s hardcode a simple policy that accelerates left when the pole is leaning toward the
left and accelerates right when the pole is leaning toward the right. We will run this
policy to see the average rewards it gets over 500 episodes:

def basic_policy(obs):
 angle = obs[2]
 return 0 if angle < 0 else 1

totals = []
for episode in range(500):
 episode_rewards = 0
 obs, info = env.reset(seed=episode)
 for step in range(200):
 action = basic_policy(obs)
 obs, reward, done, truncated, info = env.step(action)
 episode_rewards += reward
 if done or truncated:
 break

 totals.append(episode_rewards)

This code is self-explanatory. Let’s look at the result:

>>> import numpy as np
>>> np.mean(totals), np.std(totals), min(totals), max(totals)
(41.698, 8.389445512070509, 24.0, 63.0)

Even with 500 tries, this policy never managed to keep the pole upright for more
than 63 consecutive steps. Not great. If you look at the simulation in this chapter’s
notebook, you will see that the cart oscillates left and right more and more strongly
until the pole tilts too much. Let’s see if a neural network can come up with a better
policy.

Neural Network Policies
Let’s create a neural network policy. This neural network will take an observation as
input, and it will output the action to be executed, just like the policy we hardcoded
earlier. More precisely, it will estimate a probability for each action, and then we will
select an action randomly, according to the estimated probabilities (see Figure 18-5).
In the case of the CartPole environment, there are just two possible actions (left or
right), so we only need one output neuron. It will output the probability p of action
0 (left), and of course the probability of action 1 (right) will be 1 – p. For example, if
it outputs 0.7, then we will pick action 0 with 70% probability, or action 1 with 30%
probability.

Neural Network Policies | 691

Figure 18-5. Neural network policy

You may wonder why we are picking a random action based on the probabilities
given by the neural network, rather than just picking the action with the highest
score. This approach lets the agent find the right balance between exploring new
actions and exploiting the actions that are known to work well. Here’s an analogy:
suppose you go to a restaurant for the first time, and all the dishes look equally
appealing, so you randomly pick one. If it turns out to be good, you can increase the
probability that you’ll order it next time, but you shouldn’t increase that probability
up to 100%, or else you will never try out the other dishes, some of which may be
even better than the one you tried. This exploration/exploitation dilemma is central in
reinforcement learning.

Also note that in this particular environment, the past actions and observations can
safely be ignored, since each observation contains the environment’s full state. If there
were some hidden state, then you might need to consider past actions and observa‐
tions as well. For example, if the environment only revealed the position of the cart
but not its velocity, you would have to consider not only the current observation
but also the previous observation in order to estimate the current velocity. Another
example is when the observations are noisy; in that case, you generally want to use
the past few observations to estimate the most likely current state. The CartPole

692 | Chapter 18: Reinforcement Learning

problem is thus as simple as can be; the observations are noise-free, and they contain
the environment’s full state.

Here is the code to build a basic neural network policy using Keras:

import tensorflow as tf

model = tf.keras.Sequential([
 tf.keras.layers.Dense(5, activation="relu"),
 tf.keras.layers.Dense(1, activation="sigmoid"),
])

We use a Sequential model to define the policy network. The number of inputs
is the size of the observation space—which in the case of CartPole is 4—and we
have just five hidden units because it’s a fairly simple task. Finally, we want to
output a single probability—the probability of going left—so we have a single output
neuron using the sigmoid activation function. If there were more than two possible
actions, there would be one output neuron per action, and we would use the softmax
activation function instead.

OK, we now have a neural network policy that will take observations and output
action probabilities. But how do we train it?

Evaluating Actions: The Credit Assignment Problem
If we knew what the best action was at each step, we could train the neural network
as usual, by minimizing the cross entropy between the estimated probability distri‐
bution and the target probability distribution. It would just be regular supervised
learning. However, in reinforcement learning the only guidance the agent gets is
through rewards, and rewards are typically sparse and delayed. For example, if the
agent manages to balance the pole for 100 steps, how can it know which of the 100
actions it took were good, and which of them were bad? All it knows is that the pole
fell after the last action, but surely this last action is not entirely responsible. This is
called the credit assignment problem: when the agent gets a reward, it is hard for it to
know which actions should get credited (or blamed) for it. Think of a dog that gets
rewarded hours after it behaved well; will it understand what it is being rewarded for?

To tackle this problem, a common strategy is to evaluate an action based on the sum
of all the rewards that come after it, usually applying a discount factor, γ (gamma),
at each step. This sum of discounted rewards is called the action’s return. Consider
the example in Figure 18-6. If an agent decides to go right three times in a row and
gets +10 reward after the first step, 0 after the second step, and finally –50 after the
third step, then assuming we use a discount factor γ = 0.8, the first action will have
a return of 10 + γ × 0 + γ2 × (–50) = –22. If the discount factor is close to 0, then
future rewards won’t count for much compared to immediate rewards. Conversely, if
the discount factor is close to 1, then rewards far into the future will count almost

Evaluating Actions: The Credit Assignment Problem | 693

as much as immediate rewards. Typical discount factors vary from 0.9 to 0.99. With
a discount factor of 0.95, rewards 13 steps into the future count roughly for half as
much as immediate rewards (since 0.9513 ≈ 0.5), while with a discount factor of 0.99,
rewards 69 steps into the future count for half as much as immediate rewards. In the
CartPole environment, actions have fairly short-term effects, so choosing a discount
factor of 0.95 seems reasonable.

Figure 18-6. Computing an action’s return: the sum of discounted future rewards

Of course, a good action may be followed by several bad actions that cause the pole to
fall quickly, resulting in the good action getting a low return. Similarly, a good actor
may sometimes star in a terrible movie. However, if we play the game enough times,
on average good actions will get a higher return than bad ones. We want to estimate
how much better or worse an action is, compared to the other possible actions, on
average. This is called the action advantage. For this, we must run many episodes
and normalize all the action returns, by subtracting the mean and dividing by the
standard deviation. After that, we can reasonably assume that actions with a negative
advantage were bad while actions with a positive advantage were good. OK, now that
we have a way to evaluate each action, we are ready to train our first agent using
policy gradients. Let’s see how.

Policy Gradients
As discussed earlier, PG algorithms optimize the parameters of a policy by following
the gradients toward higher rewards. One popular class of PG algorithms, called

694 | Chapter 18: Reinforcement Learning

11 Ronald J. Williams, “Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement
Leaning”, Machine Learning 8 (1992) : 229–256.

REINFORCE algorithms, was introduced back in 199211 by Ronald Williams. Here is
one common variant:

1. First, let the neural network policy play the game several times, and at each step,1.
compute the gradients that would make the chosen action even more likely—but
don’t apply these gradients yet.

2. Once you have run several episodes, compute each action’s advantage, using the2.
method described in the previous section.

3. If an action’s advantage is positive, it means that the action was probably good,3.
and you want to apply the gradients computed earlier to make the action even
more likely to be chosen in the future. However, if the action’s advantage is nega‐
tive, it means the action was probably bad, and you want to apply the opposite
gradients to make this action slightly less likely in the future. The solution is to
multiply each gradient vector by the corresponding action’s advantage.

4. Finally, compute the mean of all the resulting gradient vectors, and use it to4.
perform a gradient descent step.

Let’s use Keras to implement this algorithm. We will train the neural network policy
we built earlier so that it learns to balance the pole on the cart. First, we need a
function that will play one step. We will pretend for now that whatever action it takes
is the right one so that we can compute the loss and its gradients. These gradients will
just be saved for a while, and we will modify them later depending on how good or
bad the action turned out to be:

def play_one_step(env, obs, model, loss_fn):
 with tf.GradientTape() as tape:
 left_proba = model(obs[np.newaxis])
 action = (tf.random.uniform([1, 1]) > left_proba)
 y_target = tf.constant([[1.]]) - tf.cast(action, tf.float32)
 loss = tf.reduce_mean(loss_fn(y_target, left_proba))

 grads = tape.gradient(loss, model.trainable_variables)
 obs, reward, done, truncated, info = env.step(int(action))
 return obs, reward, done, truncated, grads

Let’s walk though this function:

• Within the GradientTape block (see Chapter 12), we start by calling the model,•
giving it a single observation. We reshape the observation so it becomes a batch
containing a single instance, as the model expects a batch. This outputs the
probability of going left.

Policy Gradients | 695

https://homl.info/132

• Next, we sample a random float between 0 and 1, and we check whether it is•
greater than left_proba. The action will be False with probability left_proba,
or True with probability 1 – left_proba. Once we cast this Boolean to an
integer, the action will be 0 (left) or 1 (right) with the appropriate probabilities.

• We now define the target probability of going left: it is 1 minus the action (cast to•
a float). If the action is 0 (left), then the target probability of going left will be 1. If
the action is 1 (right), then the target probability will be 0.

• Then we compute the loss using the given loss function, and we use the tape to•
compute the gradient of the loss with regard to the model’s trainable variables.
Again, these gradients will be tweaked later, before we apply them, depending on
how good or bad the action turned out to be.

• Finally, we play the selected action, and we return the new observation, the•
reward, whether the episode is ended or not, whether it is truncated or not, and
of course the gradients that we just computed.

Now let’s create another function that will rely on the play_one_step() function to
play multiple episodes, returning all the rewards and gradients for each episode and
each step:

def play_multiple_episodes(env, n_episodes, n_max_steps, model, loss_fn):
 all_rewards = []
 all_grads = []
 for episode in range(n_episodes):
 current_rewards = []
 current_grads = []
 obs, info = env.reset()
 for step in range(n_max_steps):
 obs, reward, done, truncated, grads = play_one_step(
 env, obs, model, loss_fn)
 current_rewards.append(reward)
 current_grads.append(grads)
 if done or truncated:
 break

 all_rewards.append(current_rewards)
 all_grads.append(current_grads)

 return all_rewards, all_grads

This code returns a list of reward lists: one reward list per episode, containing one
reward per step. It also returns a list of gradient lists: one gradient list per episode,
each containing one tuple of gradients per step and each tuple containing one gradi‐
ent tensor per trainable variable.

The algorithm will use the play_multiple_episodes() function to play the game
several times (e.g., 10 times), then it will go back and look at all the rewards, discount
them, and normalize them. To do that, we need a couple more functions; the first

696 | Chapter 18: Reinforcement Learning

will compute the sum of future discounted rewards at each step, and the second will
normalize all these discounted rewards (i.e., the returns) across many episodes by
subtracting the mean and dividing by the standard deviation:

def discount_rewards(rewards, discount_factor):
 discounted = np.array(rewards)
 for step in range(len(rewards) - 2, -1, -1):
 discounted[step] += discounted[step + 1] * discount_factor
 return discounted

def discount_and_normalize_rewards(all_rewards, discount_factor):
 all_discounted_rewards = [discount_rewards(rewards, discount_factor)
 for rewards in all_rewards]
 flat_rewards = np.concatenate(all_discounted_rewards)
 reward_mean = flat_rewards.mean()
 reward_std = flat_rewards.std()
 return [(discounted_rewards - reward_mean) / reward_std
 for discounted_rewards in all_discounted_rewards]

Let’s check that this works:

>>> discount_rewards([10, 0, -50], discount_factor=0.8)
array([-22, -40, -50])
>>> discount_and_normalize_rewards([[10, 0, -50], [10, 20]],
... discount_factor=0.8)
...
[array([-0.28435071, -0.86597718, -1.18910299]),
 array([1.26665318, 1.0727777])]

The call to discount_rewards() returns exactly what we expect (see Figure 18-6).
You can verify that the function discount_and_normalize_rewards() does indeed
return the normalized action advantages for each action in both episodes. Notice
that the first episode was much worse than the second, so its normalized advantages
are all negative; all actions from the first episode would be considered bad, and
conversely all actions from the second episode would be considered good.

We are almost ready to run the algorithm! Now let’s define the hyperparameters. We
will run 150 training iterations, playing 10 episodes per iteration, and each episode
will last at most 200 steps. We will use a discount factor of 0.95:

n_iterations = 150
n_episodes_per_update = 10
n_max_steps = 200
discount_factor = 0.95

We also need an optimizer and the loss function. A regular Nadam optimizer with
learning rate 0.01 will do just fine, and we will use the binary cross-entropy loss
function because we are training a binary classifier (there are two possible actions—
left or right):

optimizer = tf.keras.optimizers.Nadam(learning_rate=0.01)
loss_fn = tf.keras.losses.binary_crossentropy

Policy Gradients | 697

We are now ready to build and run the training loop!

for iteration in range(n_iterations):
 all_rewards, all_grads = play_multiple_episodes(
 env, n_episodes_per_update, n_max_steps, model, loss_fn)
 all_final_rewards = discount_and_normalize_rewards(all_rewards,
 discount_factor)
 all_mean_grads = []
 for var_index in range(len(model.trainable_variables)):
 mean_grads = tf.reduce_mean(
 [final_reward * all_grads[episode_index][step][var_index]
 for episode_index, final_rewards in enumerate(all_final_rewards)
 for step, final_reward in enumerate(final_rewards)], axis=0)
 all_mean_grads.append(mean_grads)

 optimizer.apply_gradients(zip(all_mean_grads, model.trainable_variables))

Let’s walk through this code:

• At each training iteration, this loop calls the play_multiple_episodes() func‐•
tion, which plays 10 episodes and returns the rewards and gradients for each step
in each episode.

• Then we call the discount_and_normalize_rewards() function to compute each•
action’s normalized advantage, called the final_reward in this code. This pro‐
vides a measure of how good or bad each action actually was, in hindsight.

• Next, we go through each trainable variable, and for each of them we compute•
the weighted mean of the gradients for that variable over all episodes and all
steps, weighted by the final_reward.

• Finally, we apply these mean gradients using the optimizer: the model’s trainable•
variables will be tweaked, and hopefully the policy will be a bit better.

And we’re done! This code will train the neural network policy, and it will success‐
fully learn to balance the pole on the cart. The mean reward per episode will get very
close to 200. By default, that’s the maximum for this environment. Success!

The simple policy gradients algorithm we just trained solved the CartPole task, but
it would not scale well to larger and more complex tasks. Indeed, it is highly sample
inefficient, meaning it needs to explore the game for a very long time before it can
make significant progress. This is due to the fact that it must run multiple episodes to
estimate the advantage of each action, as we have seen. However, it is the foundation
of more powerful algorithms, such as actor-critic algorithms (which we will discuss
briefly at the end of this chapter).

698 | Chapter 18: Reinforcement Learning

Researchers try to find algorithms that work well even when the
agent initially knows nothing about the environment. However,
unless you are writing a paper, you should not hesitate to inject
prior knowledge into the agent, as it will speed up training dramat‐
ically. For example, since you know that the pole should be as
vertical as possible, you could add negative rewards proportional
to the pole’s angle. This will make the rewards much less sparse
and speed up training. Also, if you already have a reasonably good
policy (e.g., hardcoded), you may want to train the neural network
to imitate it before using policy gradients to improve it.

We will now look at another popular family of algorithms. Whereas PG algorithms
directly try to optimize the policy to increase rewards, the algorithms we will explore
now are less direct: the agent learns to estimate the expected return for each state,
or for each action in each state, then it uses this knowledge to decide how to act.
To understand these algorithms, we must first consider Markov decision processes
(MDPs).

Markov Decision Processes
In the early 20th century, the mathematician Andrey Markov studied stochastic pro‐
cesses with no memory, called Markov chains. Such a process has a fixed number of
states, and it randomly evolves from one state to another at each step. The probability
for it to evolve from a state s to a state s′ is fixed, and it depends only on the pair (s,
s′), not on past states. This is why we say that the system has no memory.

Figure 18-7 shows an example of a Markov chain with four states.

Figure 18-7. Example of a Markov chain

Suppose that the process starts in state s0, and there is a 70% chance that it will
remain in that state at the next step. Eventually it is bound to leave that state and
never come back, because no other state points back to s0. If it goes to state s1, it will
then most likely go to state s2 (90% probability), then immediately back to state s1
(with 100% probability). It may alternate a number of times between these two states,

Markov Decision Processes | 699

12 Richard Bellman, “A Markovian Decision Process”, Journal of Mathematics and Mechanics 6, no. 5 (1957):
679–684.

but eventually it will fall into state s3 and remain there forever, since there’s no way
out: this is called a terminal state. Markov chains can have very different dynamics,
and they are heavily used in thermodynamics, chemistry, statistics, and much more.

Markov decision processes were first described in the 1950s by Richard Bellman.12

They resemble Markov chains, but with a twist: at each step, an agent can choose
one of several possible actions, and the transition probabilities depend on the chosen
action. Moreover, some state transitions return some reward (positive or negative),
and the agent’s goal is to find a policy that will maximize reward over time.

For example, the MDP represented in Figure 18-8 has three states (represented
by circles) and up to three possible discrete actions at each step (represented by
diamonds).

Figure 18-8. Example of a Markov decision process

If it starts in state s0, the agent can choose between actions a0, a1, or a2. If it chooses
action a1, it just remains in state s0 with certainty, and without any reward. It can thus
decide to stay there forever if it wants to. But if it chooses action a0, it has a 70%
probability of gaining a reward of +10 and remaining in state s0. It can then try again
and again to gain as much reward as possible, but at one point it is going to end up
instead in state s1. In state s1 it has only two possible actions: a0 or a2. It can choose
to stay put by repeatedly choosing action a0, or it can choose to move on to state s2
and get a negative reward of –50 (ouch). In state s2 it has no choice but to take action
a1, which will most likely lead it back to state s0, gaining a reward of +40 on the way.
You get the picture. By looking at this MDP, can you guess which strategy will gain
the most reward over time? In state s0 it is clear that action a0 is the best option, and
in state s2 the agent has no choice but to take action a1, but in state s1 it is not obvious
whether the agent should stay put (a0) or go through the fire (a2).

700 | Chapter 18: Reinforcement Learning

https://homl.info/133

Bellman found a way to estimate the optimal state value of any state s, noted V*(s),
which is the sum of all discounted future rewards the agent can expect on average
after it reaches the state, assuming it acts optimally. He showed that if the agent
acts optimally, then the Bellman optimality equation applies (see Equation 18-1). This
recursive equation says that if the agent acts optimally, then the optimal value of the
current state is equal to the reward it will get on average after taking one optimal
action, plus the expected optimal value of all possible next states that this action can
lead to.

Equation 18-1. Bellman optimality equation

V* s = max
a

∑
s′
T s, a, s′ R s, a, s′ + γ · V* s′ for all s

In this equation:

• T(s, a, s′) is the transition probability from state s to state s′, given that the agent•
chose action a. For example, in Figure 18-8, T(s2, a1, s0) = 0.8.

• R(s, a, s′) is the reward that the agent gets when it goes from state s to state•
s′, given that the agent chose action a. For example, in Figure 18-8, R(s2, a1,
s0) = +40.

• γ is the discount factor.•

This equation leads directly to an algorithm that can precisely estimate the optimal
state value of every possible state: first initialize all the state value estimates to zero,
and then iteratively update them using the value iteration algorithm (see Equation
18-2). A remarkable result is that, given enough time, these estimates are guaranteed
to converge to the optimal state values, corresponding to the optimal policy.

Equation 18-2. Value iteration algorithm

Vk + 1 s max
a

∑
s′
T s, a, s′ R s, a, s′ + γ · Vk s′ for all s

In this equation, Vk(s) is the estimated value of state s at the kth iteration of the
algorithm.

This algorithm is an example of dynamic programming, which
breaks down a complex problem into tractable subproblems that
can be tackled iteratively.

Markov Decision Processes | 701

Knowing the optimal state values can be useful, in particular to evaluate a policy, but
it does not give us the optimal policy for the agent. Luckily, Bellman found a very
similar algorithm to estimate the optimal state-action values, generally called Q-values
(quality values). The optimal Q-value of the state-action pair (s, a), noted Q*(s, a),
is the sum of discounted future rewards the agent can expect on average after it
reaches the state s and chooses action a, but before it sees the outcome of this action,
assuming it acts optimally after that action.

Let’s look at how it works. Once again, you start by initializing all the Q-value
estimates to zero, then you update them using the Q-value iteration algorithm (see
Equation 18-3).

Equation 18-3. Q-value iteration algorithm

Qk + 1 s, a ∑
s′
T s, a, s′ R s, a, s′ + γ · max

a′
Qk s′, a′ for all s, a

Once you have the optimal Q-values, defining the optimal policy, noted π*(s), is
trivial; when the agent is in state s, it should choose the action with the highest

Q-value for that state: π* s = argmax
a

Q* s, a .

Let’s apply this algorithm to the MDP represented in Figure 18-8. First, we need to
define the MDP:

transition_probabilities = [# shape=[s, a, s']
 [[0.7, 0.3, 0.0], [1.0, 0.0, 0.0], [0.8, 0.2, 0.0]],
 [[0.0, 1.0, 0.0], None, [0.0, 0.0, 1.0]],
 [None, [0.8, 0.1, 0.1], None]
]
rewards = [# shape=[s, a, s']
 [[+10, 0, 0], [0, 0, 0], [0, 0, 0]],
 [[0, 0, 0], [0, 0, 0], [0, 0, -50]],
 [[0, 0, 0], [+40, 0, 0], [0, 0, 0]]
]
possible_actions = [[0, 1, 2], [0, 2], [1]]

For example, to know the transition probability of going from s2 to s0 after play‐
ing action a1, we will look up transition_probabilities[2][1][0] (which is
0.8). Similarly, to get the corresponding reward, we will look up rewards[2][1]
[0] (which is +40). And to get the list of possible actions in s2, we will look
up possible_actions[2] (in this case, only action a1 is possible). Next, we must
initialize all the Q-values to zero (except for the impossible actions, for which we set
the Q-values to –∞):

Q_values = np.full((3, 3), -np.inf) # -np.inf for impossible actions
for state, actions in enumerate(possible_actions):
 Q_values[state, actions] = 0.0 # for all possible actions

702 | Chapter 18: Reinforcement Learning

Now let’s run the Q-value iteration algorithm. It applies Equation 18-3 repeatedly, to
all Q-values, for every state and every possible action:

gamma = 0.90 # the discount factor

for iteration in range(50):
 Q_prev = Q_values.copy()
 for s in range(3):
 for a in possible_actions[s]:
 Q_values[s, a] = np.sum([
 transition_probabilities[s][a][sp]
 * (rewards[s][a][sp] + gamma * Q_prev[sp].max())
 for sp in range(3)])

That’s it! The resulting Q-values look like this:

>>> Q_values
array([[18.91891892, 17.02702702, 13.62162162],
 [0. , -inf, -4.87971488],
 [-inf, 50.13365013, -inf]])

For example, when the agent is in state s0 and it chooses action a1, the expected sum
of discounted future rewards is approximately 17.0.

For each state, we can find the action that has the highest Q-value:

>>> Q_values.argmax(axis=1) # optimal action for each state
array([0, 0, 1])

This gives us the optimal policy for this MDP when using a discount factor of 0.90:
in state s0 choose action a0, in state s1 choose action a0 (i.e., stay put), and in state s2
choose action a1 (the only possible action). Interestingly, if we increase the discount
factor to 0.95, the optimal policy changes: in state s1 the best action becomes a2 (go
through the fire!). This makes sense because the more you value future rewards, the
more you are willing to put up with some pain now for the promise of future bliss.

Temporal Difference Learning
Reinforcement learning problems with discrete actions can often be modeled as
Markov decision processes, but the agent initially has no idea what the transition
probabilities are (it does not know T(s, a, s′)), and it does not know what the rewards
are going to be either (it does not know R(s, a, s′)). It must experience each state
and each transition at least once to know the rewards, and it must experience them
multiple times if it is to have a reasonable estimate of the transition probabilities.

The temporal difference (TD) learning algorithm is very similar to the Q-value itera‐
tion algorithm, but tweaked to take into account the fact that the agent has only
partial knowledge of the MDP. In general we assume that the agent initially knows
only the possible states and actions, and nothing more. The agent uses an explora‐
tion policy—for example, a purely random policy—to explore the MDP, and as it

Temporal Difference Learning | 703

progresses, the TD learning algorithm updates the estimates of the state values based
on the transitions and rewards that are actually observed (see Equation 18-4).

Equation 18-4. TD learning algorithm

Vk + 1 s 1 − α Vk s + α r + γ · Vk s′
or, equivalently:
Vk + 1 s Vk s + α · δk s, r, s′
with δk s, r, s′ = r + γ · Vk s′ − Vk s

In this equation:

• α is the learning rate (e.g., 0.01).•
• r + γ · Vk(s′) is called the TD target.•
• δk(s, r, s′) is called the TD error.•

A more concise way of writing the first form of this equation is to use the notation
a
α
b, which means ak+1 ← (1 – α) · ak + α ·bk. So, the first line of Equation 18-4 can

be rewritten like this: V s
α
r + γ · V s′ .

TD learning has many similarities with stochastic gradient descent,
including the fact that it handles one sample at a time. Moreover,
just like SGD, it can only truly converge if you gradually reduce the
learning rate; otherwise, it will keep bouncing around the optimum
Q-values.

For each state s, this algorithm keeps track of a running average of the immediate
rewards the agent gets upon leaving that state, plus the rewards it expects to get later,
assuming it acts optimally.

Q-Learning
Similarly, the Q-learning algorithm is an adaptation of the Q-value iteration algo‐
rithm to the situation where the transition probabilities and the rewards are initially
unknown (see Equation 18-5). Q-learning works by watching an agent play (e.g., ran‐
domly) and gradually improving its estimates of the Q-values. Once it has accurate
Q-value estimates (or close enough), then the optimal policy is just choosing the
action that has the highest Q-value (i.e., the greedy policy).

704 | Chapter 18: Reinforcement Learning

Equation 18-5. Q-learning algorithm

Q s, a
α
r + γ · max

a′
 Q s′, a′

For each state-action pair (s, a), this algorithm keeps track of a running average of
the rewards r the agent gets upon leaving the state s with action a, plus the sum
of discounted future rewards it expects to get. To estimate this sum, we take the
maximum of the Q-value estimates for the next state s′, since we assume that the
target policy will act optimally from then on.

Let’s implement the Q-learning algorithm. First, we will need to make an agent
explore the environment. For this, we need a step function so that the agent can
execute one action and get the resulting state and reward:

def step(state, action):
 probas = transition_probabilities[state][action]
 next_state = np.random.choice([0, 1, 2], p=probas)
 reward = rewards[state][action][next_state]
 return next_state, reward

Now let’s implement the agent’s exploration policy. Since the state space is pretty
small, a simple random policy will be sufficient. If we run the algorithm for long
enough, the agent will visit every state many times, and it will also try every possible
action many times:

def exploration_policy(state):
 return np.random.choice(possible_actions[state])

Next, after we initialize the Q-values just like earlier, we are ready to run the Q-
learning algorithm with learning rate decay (using power scheduling, introduced in
Chapter 11):

alpha0 = 0.05 # initial learning rate
decay = 0.005 # learning rate decay
gamma = 0.90 # discount factor
state = 0 # initial state

for iteration in range(10_000):
 action = exploration_policy(state)
 next_state, reward = step(state, action)
 next_value = Q_values[next_state].max() # greedy policy at the next step
 alpha = alpha0 / (1 + iteration * decay)
 Q_values[state, action] *= 1 - alpha
 Q_values[state, action] += alpha * (reward + gamma * next_value)
 state = next_state

Q-Learning | 705

This algorithm will converge to the optimal Q-values, but it will take many iterations,
and possibly quite a lot of hyperparameter tuning. As you can see in Figure 18-9, the
Q-value iteration algorithm (left) converges very quickly, in fewer than 20 iterations,
while the Q-learning algorithm (right) takes about 8,000 iterations to converge.
Obviously, not knowing the transition probabilities or the rewards makes finding the
optimal policy significantly harder!

Figure 18-9. Learning curve of the Q-value iteration algorithm versus the Q-learning
algorithm

The Q-learning algorithm is called an off-policy algorithm because the policy being
trained is not necessarily the one used during training. For example, in the code we
just ran, the policy being executed (the exploration policy) was completely random,
while the policy being trained was never used. After training, the optimal policy cor‐
responds to systematically choosing the action with the highest Q-value. Conversely,
the policy gradients algorithm is an on-policy algorithm: it explores the world using
the policy being trained. It is somewhat surprising that Q-learning is capable of
learning the optimal policy by just watching an agent act randomly. Imagine learning
to play golf when your teacher is a blindfolded monkey. Can we do better?

Exploration Policies
Of course, Q-learning can work only if the exploration policy explores the MDP
thoroughly enough. Although a purely random policy is guaranteed to eventually
visit every state and every transition many times, it may take an extremely long time
to do so. Therefore, a better option is to use the ε-greedy policy (ε is epsilon): at
each step it acts randomly with probability ε, or greedily with probability 1–ε (i.e.,
choosing the action with the highest Q-value). The advantage of the ε-greedy policy
(compared to a completely random policy) is that it will spend more and more time
exploring the interesting parts of the environment, as the Q-value estimates get better
and better, while still spending some time visiting unknown regions of the MDP. It is

706 | Chapter 18: Reinforcement Learning

quite common to start with a high value for ε (e.g., 1.0) and then gradually reduce it
(e.g., down to 0.05).

Alternatively, rather than relying only on chance for exploration, another approach is
to encourage the exploration policy to try actions that it has not tried much before.
This can be implemented as a bonus added to the Q-value estimates, as shown in
Equation 18-6.

Equation 18-6. Q-learning using an exploration function

Q s, a
α
r + γ · max

a′
 f Q s′, a′ ,N s′, a′

In this equation:

• N(s′, a′) counts the number of times the action a′ was chosen in state s′.•
• f(Q, N) is an exploration function, such as f(Q, N) = Q + κ/(1 + N), where κ is a•

curiosity hyperparameter that measures how much the agent is attracted to the
unknown.

Approximate Q-Learning and Deep Q-Learning
The main problem with Q-learning is that it does not scale well to large (or even
medium) MDPs with many states and actions. For example, suppose you wanted
to use Q-learning to train an agent to play Ms. Pac-Man (see Figure 18-1). There
are about 150 pellets that Ms. Pac-Man can eat, each of which can be present or
absent (i.e., already eaten). So, the number of possible states is greater than 2150 ≈ 1045.
And if you add all the possible combinations of positions for all the ghosts and Ms.
Pac-Man, the number of possible states becomes larger than the number of atoms in
our planet, so there’s absolutely no way you can keep track of an estimate for every
single Q-value.

The solution is to find a function Qθ(s, a) that approximates the Q-value of any state-
action pair (s, a) using a manageable number of parameters (given by the parameter
vector θ). This is called approximate Q-learning. For years it was recommended to
use linear combinations of handcrafted features extracted from the state (e.g., the
distances of the closest ghosts, their directions, and so on) to estimate Q-values, but
in 2013, DeepMind showed that using deep neural networks can work much better,
especially for complex problems, and it does not require any feature engineering. A
DNN used to estimate Q-values is called a deep Q-network (DQN), and using a DQN
for approximate Q-learning is called deep Q-learning.

Now, how can we train a DQN? Well, consider the approximate Q-value computed
by the DQN for a given state-action pair (s, a). Thanks to Bellman, we know we want

Q-Learning | 707

https://homl.info/dqn

this approximate Q-value to be as close as possible to the reward r that we actually
observe after playing action a in state s, plus the discounted value of playing optimally
from then on. To estimate this sum of future discounted rewards, we can just execute
the DQN on the next state s′, for all possible actions a′. We get an approximate future
Q-value for each possible action. We then pick the highest (since we assume we will
be playing optimally) and discount it, and this gives us an estimate of the sum of
future discounted rewards. By summing the reward r and the future discounted value
estimate, we get a target Q-value y(s, a) for the state-action pair (s, a), as shown in
Equation 18-7.

Equation 18-7. Target Q-value

y s, a = r + γ · max
a′

 Qθ s′, a′

With this target Q-value, we can run a training step using any gradient descent
algorithm. Specifically, we generally try to minimize the squared error between the
estimated Q-value Qθ(s, a) and the target Q-value y(s, a), or the Huber loss to reduce
the algorithm’s sensitivity to large errors. And that’s the deep Q-learning algorithm!
Let’s see how to implement it to solve the CartPole environment.

Implementing Deep Q-Learning
The first thing we need is a deep Q-network. In theory, we need a neural net that
takes a state-action pair as input, and outputs an approximate Q-value. However, in
practice it’s much more efficient to use a neural net that takes only a state as input,
and outputs one approximate Q-value for each possible action. To solve the CartPole
environment, we do not need a very complicated neural net; a couple of hidden layers
will do:

input_shape = [4] # == env.observation_space.shape
n_outputs = 2 # == env.action_space.n

model = tf.keras.Sequential([
 tf.keras.layers.Dense(32, activation="elu", input_shape=input_shape),
 tf.keras.layers.Dense(32, activation="elu"),
 tf.keras.layers.Dense(n_outputs)
])

To select an action using this DQN, we pick the action with the largest predicted
Q-value. To ensure that the agent explores the environment, we will use an ε-greedy
policy (i.e., we will choose a random action with probability ε):

708 | Chapter 18: Reinforcement Learning

def epsilon_greedy_policy(state, epsilon=0):
 if np.random.rand() < epsilon:
 return np.random.randint(n_outputs) # random action
 else:
 Q_values = model.predict(state[np.newaxis], verbose=0)[0]
 return Q_values.argmax() # optimal action according to the DQN

Instead of training the DQN based only on the latest experiences, we will store all
experiences in a replay buffer (or replay memory), and we will sample a random
training batch from it at each training iteration. This helps reduce the correlations
between the experiences in a training batch, which tremendously helps training. For
this, we will just use a double-ended queue (deque):

from collections import deque

replay_buffer = deque(maxlen=2000)

A deque is a queue elements can be efficiently added to or removed
from on both ends. Inserting and deleting items from the ends of
the queue is very fast, but random access can be slow when the
queue gets long. If you need a very large replay buffer, you should
use a circular buffer instead (see the notebook for an implementa‐
tion), or check out DeepMind’s Reverb library.

Each experience will be composed of six elements: a state s, the action a that the
agent took, the resulting reward r, the next state s′ it reached, a Boolean indicating
whether the episode ended at that point (done), and finally another Boolean indicat‐
ing whether the episode was truncated at that point. We will need a small function
to sample a random batch of experiences from the replay buffer. It will return six
NumPy arrays corresponding to the six experience elements:

def sample_experiences(batch_size):
 indices = np.random.randint(len(replay_buffer), size=batch_size)
 batch = [replay_buffer[index] for index in indices]
 return [
 np.array([experience[field_index] for experience in batch])
 for field_index in range(6)
] # [states, actions, rewards, next_states, dones, truncateds]

Let’s also create a function that will play a single step using the ε-greedy policy, then
store the resulting experience in the replay buffer:

def play_one_step(env, state, epsilon):
 action = epsilon_greedy_policy(state, epsilon)
 next_state, reward, done, truncated, info = env.step(action)
 replay_buffer.append((state, action, reward, next_state, done, truncated))
 return next_state, reward, done, truncated, info

Implementing Deep Q-Learning | 709

https://homl.info/reverb

Finally, let’s create one last function that will sample a batch of experiences from the
replay buffer and train the DQN by performing a single gradient descent step on this
batch:

batch_size = 32
discount_factor = 0.95
optimizer = tf.keras.optimizers.Nadam(learning_rate=1e-2)
loss_fn = tf.keras.losses.mean_squared_error

def training_step(batch_size):
 experiences = sample_experiences(batch_size)
 states, actions, rewards, next_states, dones, truncateds = experiences
 next_Q_values = model.predict(next_states, verbose=0)
 max_next_Q_values = next_Q_values.max(axis=1)
 runs = 1.0 - (dones | truncateds) # episode is not done or truncated
 target_Q_values = rewards + runs * discount_factor * max_next_Q_values
 target_Q_values = target_Q_values.reshape(-1, 1)
 mask = tf.one_hot(actions, n_outputs)
 with tf.GradientTape() as tape:
 all_Q_values = model(states)
 Q_values = tf.reduce_sum(all_Q_values * mask, axis=1, keepdims=True)
 loss = tf.reduce_mean(loss_fn(target_Q_values, Q_values))

 grads = tape.gradient(loss, model.trainable_variables)
 optimizer.apply_gradients(zip(grads, model.trainable_variables))

Here’s what’s happening in this code:

• First we define some hyperparameters, and we create the optimizer and the loss•
function.

• Then we create the training_step() function. It starts by sampling a batch of•
experiences, then it uses the DQN to predict the Q-value for each possible action
in each experience’s next state. Since we assume that the agent will be playing
optimally, we only keep the maximum Q-value for each next state. Next, we use
Equation 18-7 to compute the target Q-value for each experience’s state-action
pair.

• We want to use the DQN to compute the Q-value for each experienced state-•
action pair, but the DQN will also output the Q-values for the other possible
actions, not just for the action that was actually chosen by the agent. So, we need
to mask out all the Q-values we do not need. The tf.one_hot() function makes
it possible to convert an array of action indices into such a mask. For example,
if the first three experiences contain actions 1, 1, 0, respectively, then the mask
will start with [[0, 1], [0, 1], [1, 0],...]. We can then multiply the DQN’s
output with this mask, and this will zero out all the Q-values we do not want. We
then sum over axis 1 to get rid of all the zeros, keeping only the Q-values of the
experienced state-action pairs. This gives us the Q_values tensor, containing one
predicted Q-value for each experience in the batch.

710 | Chapter 18: Reinforcement Learning

• Next, we compute the loss: it is the mean squared error between the target and•
predicted Q-values for the experienced state-action pairs.

• Finally, we perform a gradient descent step to minimize the loss with regard to•
the model’s trainable variables.

This was the hardest part. Now training the model is straightforward:

for episode in range(600):
 obs, info = env.reset()
 for step in range(200):
 epsilon = max(1 - episode / 500, 0.01)
 obs, reward, done, truncated, info = play_one_step(env, obs, epsilon)
 if done or truncated:
 break

 if episode > 50:
 training_step(batch_size)

We run 600 episodes, each for a maximum of 200 steps. At each step, we first
compute the epsilon value for the ε-greedy policy: it will go from 1 down to 0.01,
linearly, in a bit under 500 episodes. Then we call the play_one_step() function,
which will use the ε-greedy policy to pick an action, then execute it and record the
experience in the replay buffer. If the episode is done or truncated, we exit the loop.
Finally, if we are past episode 50, we call the training_step() function to train
the model on one batch sampled from the replay buffer. The reason we play many
episodes without training is to give the replay buffer some time to fill up (if we don’t
wait enough, then there will not be enough diversity in the replay buffer). And that’s
it: we just implemented the Deep Q-learning algorithm!

Figure 18-10 shows the total rewards the agent got during each episode.

Figure 18-10. Learning curve of the deep Q-learning algorithm

Implementing Deep Q-Learning | 711

13 A great 2018 post by Alex Irpan nicely lays out RL’s biggest difficulties and limitations.

As you can see, the algorithm took a while to start learning anything, in part because
ε was very high at the beginning. Then its progress was erratic: it first reached the
max reward around episode 220, but it immediately dropped, then bounced up and
down a few times, and soon after it looked like it had finally stabilized near the
max reward, at around episode 320, its score again dropped down dramatically. This
is called catastrophic forgetting, and it is one of the big problems facing virtually
all RL algorithms: as the agent explores the environment, it updates its policy, but
what it learns in one part of the environment may break what it learned earlier in
other parts of the environment. The experiences are quite correlated, and the learning
environment keeps changing—this is not ideal for gradient descent! If you increase
the size of the replay buffer, the algorithm will be less subject to this problem. Tuning
the learning rate may also help. But the truth is, reinforcement learning is hard:
training is often unstable, and you may need to try many hyperparameter values and
random seeds before you find a combination that works well. For example, if you
try changing the activation function from "elu" to "relu", the performance will be
much lower.

Reinforcement learning is notoriously difficult, largely because of
the training instabilities and the huge sensitivity to the choice
of hyperparameter values and random seeds.13 As the researcher
Andrej Karpathy put it, “[Supervised learning] wants to work. […]
RL must be forced to work”. You will need time, patience, persever‐
ance, and perhaps a bit of luck too. This is a major reason RL is
not as widely adopted as regular deep learning (e.g., convolutional
nets). But there are a few real-world applications, beyond AlphaGo
and Atari games: for example, Google uses RL to optimize its
datacenter costs, and it is used in some robotics applications, for
hyperparameter tuning, and in recommender systems.

You might wonder why we didn’t plot the loss. It turns out that loss is a poor indicator
of the model’s performance. The loss might go down, yet the agent might perform
worse (e.g., this can happen when the agent gets stuck in one small region of the
environment, and the DQN starts overfitting this region). Conversely, the loss could
go up, yet the agent might perform better (e.g., if the DQN was underestimating the
Q-values and it starts correctly increasing its predictions, the agent will likely perform
better, getting more rewards, but the loss might increase because the DQN also sets
the targets, which will be larger too). So, it’s preferable to plot the rewards.

The basic deep Q-learning algorithm we’ve been using so far would be too unstable
to learn to play Atari games. So how did DeepMind do it? Well, they tweaked the
algorithm!

712 | Chapter 18: Reinforcement Learning

https://homl.info/rlhard

Deep Q-Learning Variants
Let’s look at a few variants of the deep Q-learning algorithm that can stabilize and
speed up training.

Fixed Q-value Targets
In the basic deep Q-learning algorithm, the model is used both to make predictions
and to set its own targets. This can lead to a situation analogous to a dog chasing
its own tail. This feedback loop can make the network unstable: it can diverge,
oscillate, freeze, and so on. To solve this problem, in their 2013 paper the DeepMind
researchers used two DQNs instead of one: the first is the online model, which learns
at each step and is used to move the agent around, and the other is the target model
used only to define the targets. The target model is just a clone of the online model:

target = tf.keras.models.clone_model(model) # clone the model's architecture
target.set_weights(model.get_weights()) # copy the weights

Then, in the training_step() function, we just need to change one line to use the
target model instead of the online model when computing the Q-values of the next
states:

next_Q_values = target.predict(next_states, verbose=0)

Finally, in the training loop, we must copy the weights of the online model to the
target model, at regular intervals (e.g., every 50 episodes):

if episode % 50 == 0:
 target.set_weights(model.get_weights())

Since the target model is updated much less often than the online model, the Q-value
targets are more stable, the feedback loop we discussed earlier is dampened, and its
effects are less severe. This approach was one of the DeepMind researchers’ main
contributions in their 2013 paper, allowing agents to learn to play Atari games from
raw pixels. To stabilize training, they used a tiny learning rate of 0.00025, they
updated the target model only every 10,000 steps (instead of 50), and they used a
very large replay buffer of 1 million experiences. They decreased epsilon very slowly,
from 1 to 0.1 in 1 million steps, and they let the algorithm run for 50 million steps.
Moreover, their DQN was a deep convolutional net.

Deep Q-Learning Variants | 713

14 Hado van Hasselt et al., “Deep Reinforcement Learning with Double Q-Learning”, Proceedings of the 30th
AAAI Conference on Artificial Intelligence (2015): 2094–2100.

15 Tom Schaul et al., “Prioritized Experience Replay”, arXiv preprint arXiv:1511.05952 (2015).

Now let’s take a look at another DQN variant that managed to beat the state of the art
once more.

Double DQN
In a 2015 paper,14 DeepMind researchers tweaked their DQN algorithm, increasing
its performance and somewhat stabilizing training. They called this variant double
DQN. The update was based on the observation that the target network is prone to
overestimating Q-values. Indeed, suppose all actions are equally good: the Q-values
estimated by the target model should be identical, but since they are approxima‐
tions, some may be slightly greater than others, by pure chance. The target model
will always select the largest Q-value, which will be slightly greater than the mean
Q-value, most likely overestimating the true Q-value (a bit like counting the height
of the tallest random wave when measuring the depth of a pool). To fix this, the
researchers proposed using the online model instead of the target model when select‐
ing the best actions for the next states, and using the target model only to estimate the
Q-values for these best actions. Here is the updated training_step() function:

def training_step(batch_size):
 experiences = sample_experiences(batch_size)
 states, actions, rewards, next_states, dones, truncateds = experiences
 next_Q_values = model.predict(next_states, verbose=0) # ≠ target.predict()
 best_next_actions = next_Q_values.argmax(axis=1)
 next_mask = tf.one_hot(best_next_actions, n_outputs).numpy()
 max_next_Q_values = (target.predict(next_states, verbose=0) * next_mask
).sum(axis=1)
 [...] # the rest is the same as earlier

Just a few months later, another improvement to the DQN algorithm was propose;
we’ll look at that next.

Prioritized Experience Replay
Instead of sampling experiences uniformly from the replay buffer, why not sample
important experiences more frequently? This idea is called importance sampling (IS)
or prioritized experience replay (PER), and it was introduced in a 2015 paper15 by
DeepMind researchers (once again!).

714 | Chapter 18: Reinforcement Learning

https://homl.info/doubledqn
https://homl.info/prioreplay

16 It could also just be that the rewards are noisy, in which case there are better methods for estimating an
experience’s importance (see the paper for some examples).

17 Ziyu Wang et al., “Dueling Network Architectures for Deep Reinforcement Learning”, arXiv preprint
arXiv:1511.06581 (2015).

More specifically, experiences are considered “important” if they are likely to lead
to fast learning progress. But how can we estimate this? One reasonable approach
is to measure the magnitude of the TD error δ = r + γ·V(s′) – V(s). A large TD
error indicates that a transition (s, a, s′) is very surprising, and thus probably worth
learning from.16 When an experience is recorded in the replay buffer, its priority is
set to a very large value, to ensure that it gets sampled at least once. However, once
it is sampled (and every time it is sampled), the TD error δ is computed, and this
experience’s priority is set to p = |δ| (plus a small constant to ensure that every expe‐
rience has a nonzero probability of being sampled). The probability P of sampling
an experience with priority p is proportional to pζ, where ζ is a hyperparameter that
controls how greedy we want importance sampling to be: when ζ = 0, we just get
uniform sampling, and when ζ = 1, we get full-blown importance sampling. In the
paper, the authors used ζ = 0.6, but the optimal value will depend on the task.

There’s one catch, though: since the samples will be biased toward important expe‐
riences, we must compensate for this bias during training by downweighting the
experiences according to their importance, or else the model will just overfit the
important experiences. To be clear, we want important experiences to be sampled
more often, but this also means we must give them a lower weight during training.
To do this, we define each experience’s training weight as w = (n P)–β, where n is the
number of experiences in the replay buffer, and β is a hyperparameter that controls
how much we want to compensate for the importance sampling bias (0 means not at
all, while 1 means entirely). In the paper, the authors used β = 0.4 at the beginning of
training and linearly increased it to β = 1 by the end of training. Again, the optimal
value will depend on the task, but if you increase one, you will usually want to
increase the other as well.

Now let’s look at one last important variant of the DQN algorithm.

Dueling DQN
The dueling DQN algorithm (DDQN, not to be confused with double DQN, although
both techniques can easily be combined) was introduced in yet another 2015 paper17

by DeepMind researchers. To understand how it works, we must first note that the
Q-value of a state-action pair (s, a) can be expressed as Q(s, a) = V(s) + A(s, a), where
V(s) is the value of state s and A(s, a) is the advantage of taking the action a in state
s, compared to all other possible actions in that state. Moreover, the value of a state is
equal to the Q-value of the best action a* for that state (since we assume the optimal

Deep Q-Learning Variants | 715

https://homl.info/ddqn

18 Matteo Hessel et al., “Rainbow: Combining Improvements in Deep Reinforcement Learning”, arXiv preprint
arXiv:1710.02298 (2017): 3215–3222.

19 David Silver et al., “Mastering the Game of Go with Deep Neural Networks and Tree Search”, Nature 529
(2016): 484–489.

policy will pick the best action), so V(s) = Q(s, a*), which implies that A(s, a*) = 0. In
a dueling DQN, the model estimates both the value of the state and the advantage of
each possible action. Since the best action should have an advantage of 0, the model
subtracts the maximum predicted advantage from all predicted advantages. Here is a
simple DDQN model, implemented using the functional API:

input_states = tf.keras.layers.Input(shape=[4])
hidden1 = tf.keras.layers.Dense(32, activation="elu")(input_states)
hidden2 = tf.keras.layers.Dense(32, activation="elu")(hidden1)
state_values = tf.keras.layers.Dense(1)(hidden2)
raw_advantages = tf.keras.layers.Dense(n_outputs)(hidden2)
advantages = raw_advantages - tf.reduce_max(raw_advantages, axis=1,
 keepdims=True)
Q_values = state_values + advantages
model = tf.keras.Model(inputs=[input_states], outputs=[Q_values])

The rest of the algorithm is just the same as earlier. In fact, you can build a double
dueling DQN and combine it with prioritized experience replay! More generally,
many RL techniques can be combined, as DeepMind demonstrated in a 2017 paper:18

the paper’s authors combined six different techniques into an agent called Rainbow,
which largely outperformed the state of the art.

As you can see, deep reinforcement learning is a fast-growing field and there’s much
more to discover!

Overview of Some Popular RL Algorithms
Before we close this chapter, let’s take a brief look at a few other popular algorithms:

AlphaGo19

AlphaGo uses a variant of Monte Carlo tree search (MCTS) based on deep neural
networks to beat human champions at the game of Go. MCTS was invented in
1949 by Nicholas Metropolis and Stanislaw Ulam. It selects the best move after
running many simulations, repeatedly exploring the search tree starting from
the current position, and spending more time on the most promising branches.
When it reaches a node that it hasn’t visited before, it plays randomly until
the game ends, and updates its estimates for each visited node (excluding the
random moves), increasing or decreasing each estimate depending on the final
outcome. AlphaGo is based on the same principle, but it uses a policy network
to select moves, rather than playing randomly. This policy net is trained using
policy gradients. The original algorithm involved three more neural networks,

716 | Chapter 18: Reinforcement Learning

https://homl.info/rainbow
https://homl.info/alphago

20 David Silver et al., “Mastering the Game of Go Without Human Knowledge”, Nature 550 (2017): 354–359.
21 David Silver et al., “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algo‐

rithm”, arXiv preprint arXiv:1712.01815.
22 Julian Schrittwieser et al., “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv

preprint arXiv:1911.08265 (2019).
23 Volodymyr Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning”, Proceedings of the 33rd

International Conference on Machine Learning (2016): 1928–1937.

and was more complicated, but it was simplified in the AlphaGo Zero paper,20

which uses a single neural network to both select moves and evaluate game states.
The AlphaZero paper21 generalized this algorithm, making it capable of tackling
not only the game of Go, but also chess and shogi (Japanese chess). Lastly, the
MuZero paper22 continued to improve upon this algorithm, outperforming the
previous iterations even though the agent starts out without even knowing the
rules of the game!

Actor-critic algorithms
Actor-critics are a family of RL algorithms that combine policy gradients with
deep Q-networks. An actor-critic agent contains two neural networks: a policy
net and a DQN. The DQN is trained normally, by learning from the agent’s
experiences. The policy net learns differently (and much faster) than in regular
PG: instead of estimating the value of each action by going through multiple
episodes, then summing the future discounted rewards for each action, and
finally normalizing them, the agent (actor) relies on the action values estimated
by the DQN (critic). It’s a bit like an athlete (the agent) learning with the help of a
coach (the DQN).

Asynchronous advantage actor-critic (A3C)23

This is an important actor-critic variant introduced by DeepMind researchers
in 2016 where multiple agents learn in parallel, exploring different copies of the
environment. At regular intervals, but asynchronously (hence the name), each
agent pushes some weight updates to a master network, then it pulls the latest
weights from that network. Each agent thus contributes to improving the master
network and benefits from what the other agents have learned. Moreover, instead
of estimating the Q-values, the DQN estimates the advantage of each action
(hence the second A in the name), which stabilizes training.

Advantage actor-critic (A2C)
A2C is a variant of the A3C algorithm that removes the asynchronicity. All model
updates are synchronous, so gradient updates are performed over larger batches,
which allows the model to better utilize the power of the GPU.

Overview of Some Popular RL Algorithms | 717

https://homl.info/alphagozero
https://homl.info/alphazero
https://homl.info/muzero
https://homl.info/a3c
https://homl.info/a2c

24 Tuomas Haarnoja et al., “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor”, Proceedings of the 35th International Conference on Machine Learning (2018): 1856–1865.

25 John Schulman et al., “Proximal Policy Optimization Algorithms”, arXiv preprint arXiv:1707.06347 (2017).
26 John Schulman et al., “Trust Region Policy Optimization”, Proceedings of the 32nd International Conference on

Machine Learning (2015): 1889–1897.
27 Deepak Pathak et al., “Curiosity-Driven Exploration by Self-Supervised Prediction”, Proceedings of the 34th

International Conference on Machine Learning (2017): 2778–2787.

Soft actor-critic (SAC)24

SAC is an actor-critic variant proposed in 2018 by Tuomas Haarnoja and other
UC Berkeley researchers. It learns not only rewards, but also to maximize the
entropy of its actions. In other words, it tries to be as unpredictable as possible
while still getting as many rewards as possible. This encourages the agent to
explore the environment, which speeds up training, and makes it less likely to
repeatedly execute the same action when the DQN produces imperfect estimates.
This algorithm has demonstrated an amazing sample efficiency (contrary to all
the previous algorithms, which learn very slowly).

Proximal policy optimization (PPO)25

This algorithm by John Schulman and other OpenAI researchers is based on
A2C, but it clips the loss function to avoid excessively large weight updates
(which often lead to training instabilities). PPO is a simplification of the previous
trust region policy optimization26 (TRPO) algorithm, also by OpenAI. OpenAI
made the news in April 2019 with its AI called OpenAI Five, based on the PPO
algorithm, which defeated the world champions at the multiplayer game Dota 2.

Curiosity-based exploration27

A recurring problem in RL is the sparsity of the rewards, which makes learning
very slow and inefficient. Deepak Pathak and other UC Berkeley researchers have
proposed an exciting way to tackle this issue: why not ignore the rewards, and
just make the agent extremely curious to explore the environment? The rewards
thus become intrinsic to the agent, rather than coming from the environment.
Similarly, stimulating curiosity in a child is more likely to give good results
than purely rewarding the child for getting good grades. How does this work?
The agent continuously tries to predict the outcome of its actions, and it seeks
situations where the outcome does not match its predictions. In other words, it
wants to be surprised. If the outcome is predictable (boring), it goes elsewhere.
However, if the outcome is unpredictable but the agent notices that it has no
control over it, it also gets bored after a while. With only curiosity, the authors
succeeded in training an agent at many video games: even though the agent gets
no penalty for losing, the game starts over, which is boring so it learns to avoid it.

718 | Chapter 18: Reinforcement Learning

https://homl.info/sac
https://homl.info/ppo
https://homl.info/trpo
https://homl.info/curiosity

28 Rui Wang et al., “Paired Open-Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and
Diverse Learning Environments and Their Solutions”, arXiv preprint arXiv:1901.01753 (2019).

29 Rui Wang et al., “Enhanced POET: Open-Ended Reinforcement Learning Through Unbounded Invention of
Learning Challenges and Their Solutions”, arXiv preprint arXiv:2003.08536 (2020).

30 Open-Ended Learning Team et al., “Open-Ended Learning Leads to Generally Capable Agents”, arXiv preprint
arXiv:2107.12808 (2021).

Open-ended learning (OEL)
The objective of OEL is to train agents capable of endlessly learning new and
interesting tasks, typically generated procedurally. We’re not there yet, but there
has been some amazing progress over the last few years. For example, a 2019
paper28 by a team of researchers from Uber AI introduced the POET algorithm,
which generates multiple simulated 2D environments with bumps and holes
and trains one agent per environment: the agent’s goal is to walk as fast as
possible while avoiding the obstacles. The algorithm starts out with simple envi‐
ronments, but they gradually get harder over time: this is called curriculum
learning. Moreover, although each agent is only trained within one environment,
it must regularly compete against other agents, across all environments. In each
environment, the winner is copied over and it replaces the agent that was there
before. This way, knowledge is regularly transferred across environments, and
the most adaptable agents are selected. In the end, the agents are much better
walkers than agents trained on a single task, and they can tackle much harder
environments. Of course, this principle can be applied to other environments and
tasks as well. If you’re interested in OEL, make sure to check out the Enhanced
POET paper,29 as well as DeepMind’s 2021 paper30 on this topic.

If you’d like to learn more about reinforcement learning, check out
the book Reinforcement Learning by Phil Winder (O’Reilly).

We covered many topics in this chapter: policy gradients, Markov chains, Markov
decision processes, Q-learning, approximate Q-learning, and deep Q-learning and
its main variants (fixed Q-value targets, double DQN, dueling DQN, and prioritized
experience replay), and finally we took a quick look at a few other popular algo‐
rithms. Reinforcement learning is a huge and exciting field, with new ideas and
algorithms popping out every day, so I hope this chapter sparked your curiosity: there
is a whole world to explore!

Overview of Some Popular RL Algorithms | 719

https://homl.info/poet
https://homl.info/poet
https://homl.info/epoet
https://homl.info/epoet
https://homl.info/oel2021
https://homl.info/rlbook

Exercises
1. How would you define reinforcement learning? How is it different from regular1.

supervised or unsupervised learning?
2. Can you think of three possible applications of RL that were not mentioned in2.

this chapter? For each of them, what is the environment? What is the agent?
What are some possible actions? What are the rewards?

3. What is the discount factor? Can the optimal policy change if you modify the3.
discount factor?

4. How do you measure the performance of a reinforcement learning agent?4.
5. What is the credit assignment problem? When does it occur? How can you5.

alleviate it?
6. What is the point of using a replay buffer?6.
7. What is an off-policy RL algorithm?7.
8. Use policy gradients to solve OpenAI Gym’s LunarLander-v2 environment.8.
9. Use a double dueling DQN to train an agent that can achieve a superhuman9.

level at the famous Atari Breakout game ("ALE/Breakout-v5"). The observations
are images. To simplify the task, you should convert them to grayscale (i.e.,
average over the channels axis) then crop them and downsample them, so they’re
just large enough to play, but not more. An individual image does not tell you
which way the ball and the paddles are going, so you should merge two or three
consecutive images to form each state. Lastly, the DQN should be composed
mostly of convolutional layers.

10. If you have about $100 to spare, you can purchase a Raspberry Pi 3 plus some10.
cheap robotics components, install TensorFlow on the Pi, and go wild! For an
example, check out this fun post by Lukas Biewald, or take a look at GoPiGo or
BrickPi. Start with simple goals, like making the robot turn around to find the
brightest angle (if it has a light sensor) or the closest object (if it has a sonar
sensor), and move in that direction. Then you can start using deep learning: for
example, if the robot has a camera, you can try to implement an object detection
algorithm so it detects people and moves toward them. You can also try to use RL
to make the agent learn on its own how to use the motors to achieve that goal.
Have fun!

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

720 | Chapter 18: Reinforcement Learning

https://homl.info/2
https://homl.info/colab3

1 An A/B experiment consists in testing two different versions of your product on different subsets of users in
order to check which version works best and get other insights.

2 Google AI Platform (formerly known as Google ML Engine) and Google AutoML merged in 2021 to form
Google Vertex AI.

CHAPTER 19

Training and Deploying
TensorFlow Models at Scale

Once you have a beautiful model that makes amazing predictions, what do you do
with it? Well, you need to put it in production! This could be as simple as running
the model on a batch of data, and perhaps writing a script that runs this model every
night. However, it is often much more involved. Various parts of your infrastructure
may need to use this model on live data, in which case you will probably want to wrap
your model in a web service: this way, any part of your infrastructure can query the
model at any time using a simple REST API (or some other protocol), as we discussed
in Chapter 2. But as time passes, you’ll need to regularly retrain your model on fresh
data and push the updated version to production. You must handle model versioning,
gracefully transition from one model to the next, possibly roll back to the previous
model in case of problems, and perhaps run multiple different models in parallel to
perform A/B experiments.1 If your product becomes successful, your service may start
to get a large number of of queries per second (QPS), and it must scale up to support
the load. A great solution to scale up your service, as you will see in this chapter, is
to use TF Serving, either on your own hardware infrastructure or via a cloud service
such as Google Vertex AI.2 It will take care of efficiently serving your model, handle
graceful model transitions, and more. If you use the cloud platform you will also get
many extra features, such as powerful monitoring tools.

721

3 A REST (or RESTful) API is an API that uses standard HTTP verbs, such as GET, POST, PUT, and DELETE,
and uses JSON inputs and outputs. The gRPC protocol is more complex but more efficient; data is exchanged
using protocol buffers (see Chapter 13).

Moreover, if you have a lot of training data and compute-intensive models, then
training time may be prohibitively long. If your product needs to adapt to changes
quickly, then a long training time can be a showstopper (e.g., think of a news
recommendation system promoting news from last week). Perhaps even more impor‐
tantly, a long training time will prevent you from experimenting with new ideas. In
machine learning (as in many other fields), it is hard to know in advance which ideas
will work, so you should try out as many as possible, as fast as possible. One way to
speed up training is to use hardware accelerators such as GPUs or TPUs. To go even
faster, you can train a model across multiple machines, each equipped with multiple
hardware accelerators. TensorFlow’s simple yet powerful distribution strategies API
makes this easy, as you will see.

In this chapter we will look at how to deploy models, first using TF Serving, then
using Vertex AI. We will also take a quick look at deploying models to mobile
apps, embedded devices, and web apps. Then we will discuss how to speed up com‐
putations using GPUs and how to train models across multiple devices and servers
using the distribution strategies API. Lastly, we will explore how to train models and
fine-tune their hyperparameters at scale using Vertex AI. That’s a lot of topics to
discuss, so let’s dive in!

Serving a TensorFlow Model
Once you have trained a TensorFlow model, you can easily use it in any Python code:
if it’s a Keras model, just call its predict() method! But as your infrastructure grows,
there comes a point where it is preferable to wrap your model in a small service
whose sole role is to make predictions and have the rest of the infrastructure query
it (e.g., via a REST or gRPC API).3 This decouples your model from the rest of the
infrastructure, making it possible to easily switch model versions or scale the service
up as needed (independently from the rest of your infrastructure), perform A/B
experiments, and ensure that all your software components rely on the same model
versions. It also simplifies testing and development, and more. You could create your
own microservice using any technology you want (e.g., using the Flask library), but
why reinvent the wheel when you can just use TF Serving?

Using TensorFlow Serving
TF Serving is a very efficient, battle-tested model server, written in C++. It can
sustain a high load, serve multiple versions of your models and watch a model
repository to automatically deploy the latest versions, and more (see Figure 19-1).

722 | Chapter 19: Training and Deploying TensorFlow Models at Scale

Figure 19-1. TF Serving can serve multiple models and automatically deploy the latest
version of each model

So let’s suppose you have trained an MNIST model using Keras, and you want to
deploy it to TF Serving. The first thing you have to do is export this model to the
SavedModel format, introduced in Chapter 10.

Exporting SavedModels

You already know how to save the model: just call model.save(). Now to version the
model, you just need to create a subdirectory for each model version. Easy!

from pathlib import Path
import tensorflow as tf

X_train, X_valid, X_test = [...] # load and split the MNIST dataset
model = [...] # build & train an MNIST model (also handles image preprocessing)

model_name = "my_mnist_model"
model_version = "0001"
model_path = Path(model_name) / model_version
model.save(model_path, save_format="tf")

It’s usually a good idea to include all the preprocessing layers in the final model you
export so that it can ingest data in its natural form once it is deployed to production.
This avoids having to take care of preprocessing separately within the application
that uses the model. Bundling the preprocessing steps within the model also makes it
simpler to update them later on and limits the risk of mismatch between a model and
the preprocessing steps it requires.

Serving a TensorFlow Model | 723

Since a SavedModel saves the computation graph, it can only be
used with models that are based exclusively on TensorFlow oper‐
ations, excluding the tf.py_function() operation, which wraps
arbitrary Python code.

TensorFlow comes with a small saved_model_cli command-line interface to inspect
SavedModels. Let use it to inspect our exported model:

$ saved_model_cli show --dir my_mnist_model/0001
The given SavedModel contains the following tag-sets:
'serve'

What does this output mean? Well, a SavedModel contains one or more metagraphs.
A metagraph is a computation graph plus some function signature definitions,
including their input and output names, types, and shapes. Each metagraph is identi‐
fied by a set of tags. For example, you may want to have a metagraph containing the
full computation graph, including the training operations: you would typically tag
this one as "train". And you might have another metagraph containing a pruned
computation graph with only the prediction operations, including some GPU-specific
operations: this one might be tagged as "serve", "gpu". You might want to have
other metagraphs as well. This can be done using TensorFlow’s low-level SavedModel
API. However, when you save a Keras model using its save() method, it saves a
single metagraph tagged as "serve". Let’s inspect this "serve" tag set:

$ saved_model_cli show --dir 0001/my_mnist_model --tag_set serve
The given SavedModel MetaGraphDef contains SignatureDefs with these keys:
SignatureDef key: "__saved_model_init_op"
SignatureDef key: "serving_default"

This metagraph contains two signature definitions: an initialization function called
"__saved_model_init_op", which you do not need to worry about, and a default
serving function called "serving_default". When saving a Keras model, the default
serving function is the model’s call() method, which makes predictions, as you
already know. Let’s get more details about this serving function:

724 | Chapter 19: Training and Deploying TensorFlow Models at Scale

https://homl.info/savedmodel
https://homl.info/savedmodel

4 If you are not familiar with Docker, it allows you to easily download a set of applications packaged in a Docker
image (including all their dependencies and usually some good default configuration) and then run them on
your system using a Docker engine. When you run an image, the engine creates a Docker container that keeps
the applications well isolated from your own system—but you can give it some limited access if you want. It
is similar to a virtual machine, but much faster and lighter, as the container relies directly on the host’s kernel.
This means that the image does not need to include or run its own kernel.

$ saved_model_cli show --dir 0001/my_mnist_model --tag_set serve \
 --signature_def serving_default
The given SavedModel SignatureDef contains the following input(s):
 inputs['flatten_input'] tensor_info:
 dtype: DT_UINT8
 shape: (-1, 28, 28)
 name: serving_default_flatten_input:0
The given SavedModel SignatureDef contains the following output(s):
 outputs['dense_1'] tensor_info:
 dtype: DT_FLOAT
 shape: (-1, 10)
 name: StatefulPartitionedCall:0
Method name is: tensorflow/serving/predict

Note that the function’s input is named "flatten_input", and the output is named
"dense_1". These correspond to the Keras model’s input and output layer names. You
can also see the type and shape of the input and output data. Looks good!

Now that you have a SavedModel, the next step is to install TF Serving.

Installing and starting TensorFlow Serving
There are many ways to install TF Serving: using the system’s package manager, using
a Docker image,4 installing from source, and more. Since Colab runs on Ubuntu, we
can use Ubuntu’s apt package manager like this:

url = "https://storage.googleapis.com/tensorflow-serving-apt"
src = "stable tensorflow-model-server tensorflow-model-server-universal"
!echo 'deb {url} {src}' > /etc/apt/sources.list.d/tensorflow-serving.list
!curl '{url}/tensorflow-serving.release.pub.gpg' | apt-key add -
!apt update -q && apt-get install -y tensorflow-model-server
%pip install -q -U tensorflow-serving-api

This code starts by adding TensorFlow’s package repository to Ubuntu’s list of
package sources. Then it downloads TensorFlow’s public GPG key and adds it to
the package manager’s key list so it can verify TensorFlow’s package signatures.
Next, it uses apt to install the tensorflow-model-server package. Lastly, it installs
the tensorflow-serving-api library, which we will need to communicate with the
server.

Serving a TensorFlow Model | 725

5 There are also GPU images available, and other installation options. For more details, please check out the
official installation instructions.

Now we want to start the server. The command will require the absolute path of the
base model directory (i.e., the path to my_mnist_model, not 0001), so let’s save that to
the MODEL_DIR environment variable:

import os

os.environ["MODEL_DIR"] = str(model_path.parent.absolute())

We can then start the server:

%%bash --bg
tensorflow_model_server \
 --port=8500 \
 --rest_api_port=8501 \
 --model_name=my_mnist_model \
 --model_base_path="${MODEL_DIR}" >my_server.log 2>&1

In Jupyter or Colab, the %%bash --bg magic command executes the cell as a bash
script, running it in the background. The >my_server.log 2>&1 part redirects the
standard output and standard error to the my_server.log file. And that’s it! TF Serving
is now running in the background, and its logs are saved to my_server.log. It loaded
our MNIST model (version 1), and it is now waiting for gRPC and REST requests,
respectively, on ports 8500 and 8501.

Running TF Serving in a Docker Container
If you are running the notebook on your own machine and you have installed
Docker, you can run docker pull tensorflow/serving in a terminal to download
the TF Serving image. The TensorFlow team highly recommends this installation
method because it is simple, it will not mess with your system, and it offers high
performance.5 To start the server inside a Docker container, you can run the following
command in a terminal:

$ docker run -it --rm -v "/path/to/my_mnist_model:/models/my_mnist_model" \
 -p 8500:8500 -p 8501:8501 -e MODEL_NAME=my_mnist_model tensorflow/serving

Here is what all these command-line options mean:

-it

Makes the container interactive (so you can press Ctrl-C to stop it) and displays
the server’s output.

--rm

Deletes the container when you stop it: no need to clutter your machine with
interrupted containers. However, it does not delete the image.

726 | Chapter 19: Training and Deploying TensorFlow Models at Scale

https://homl.info/tfserving
https://docker.com

-v "/path/to/my_mnist_model:/models/my_mnist_model"

Makes the host’s my_mnist_model directory available to the container at the
path /models/mnist_model. You must replace /path/to/my_mnist_model with the
absolute path of this directory. On Windows, remember to use \ instead of / in
the host path, but not in the container path (since the container runs on Linux).

-p 8500:8500

Makes the Docker engine forward the host’s TCP port 8500 to the container’s
TCP port 8500. By default, TF Serving uses this port to serve the gRPC API.

-p 8501:8501

Forwards the host’s TCP port 8501 to the container’s TCP port 8501. The Docker
image is configured to use this port by default to serve the REST API.

-e MODEL_NAME=my_mnist_model

Sets the container’s MODEL_NAME environment variable, so TF Serving knows
which model to serve. By default, it will look for models in the /models directory,
and it will automatically serve the latest version it finds.

tensorflow/serving

This is the name of the image to run.

Now that the server is up and running, let’s query it, first using the REST API, then
the gRPC API.

Querying TF Serving through the REST API
Let’s start by creating the query. It must contain the name of the function signature
you want to call, and of course the input data. Since the request must use the JSON
format, we have to convert the input images from a NumPy array to a Python list:

import json

X_new = X_test[:3] # pretend we have 3 new digit images to classify
request_json = json.dumps({
 "signature_name": "serving_default",
 "instances": X_new.tolist(),
})

Note that the JSON format is 100% text-based. The request string looks like this:

>>> request_json
'{"signature_name": "serving_default", "instances": [[[0, 0, 0, 0, ...]]]}'

Now let’s send this request to TF Serving via an HTTP POST request. This can be
done using the requests library (it is not part of Python’s standard library, but it is
preinstalled on Colab):

Serving a TensorFlow Model | 727

6 To be fair, this can be mitigated by serializing the data first and encoding it to Base64 before creating the REST
request. Moreover, REST requests can be compressed using gzip, which reduces the payload size significantly.

import requests

server_url = "http://localhost:8501/v1/models/my_mnist_model:predict"
response = requests.post(server_url, data=request_json)
response.raise_for_status() # raise an exception in case of error
response = response.json()

If all goes well, the response should be a dictionary containing a single
"predictions" key. The corresponding value is the list of predictions. This list is
a Python list, so let’s convert it to a NumPy array and round the floats it contains to
the second decimal:

>>> import numpy as np
>>> y_proba = np.array(response["predictions"])
>>> y_proba.round(2)
array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 1. , 0. , 0.],
 [0. , 0. , 0.99, 0.01, 0. , 0. , 0. , 0. , 0. , 0.],
 [0. , 0.97, 0.01, 0. , 0. , 0. , 0. , 0.01, 0. , 0.]])

Hurray, we have the predictions! The model is close to 100% confident that the first
image is a 7, 99% confident that the second image is a 2, and 97% confident that the
third image is a 1. That’s correct.

The REST API is nice and simple, and it works well when the input and output
data are not too large. Moreover, just about any client application can make REST
queries without additional dependencies, whereas other protocols are not always
so readily available. However, it is based on JSON, which is text-based and fairly
verbose. For example, we had to convert the NumPy array to a Python list, and
every float ended up represented as a string. This is very inefficient, both in terms
of serialization/deserialization time—we have to convert all the floats to strings and
back—and in terms of payload size: many floats end up being represented using over
15 characters, which translates to over 120 bits for 32-bit floats! This will result in
high latency and bandwidth usage when transferring large NumPy arrays.6 So, let’s see
how to use gRPC instead.

When transferring large amounts of data, or when latency is
important, it is much better to use the gRPC API, if the client
supports it, as it uses a compact binary format and an efficient
communication protocol based on HTTP/2 framing.

728 | Chapter 19: Training and Deploying TensorFlow Models at Scale

Querying TF Serving through the gRPC API

The gRPC API expects a serialized PredictRequest protocol buffer as input, and it
outputs a serialized PredictResponse protocol buffer. These protobufs are part of
the tensorflow-serving-api library, which we installed earlier. First, let’s create the
request:

from tensorflow_serving.apis.predict_pb2 import PredictRequest

request = PredictRequest()
request.model_spec.name = model_name
request.model_spec.signature_name = "serving_default"
input_name = model.input_names[0] # == "flatten_input"
request.inputs[input_name].CopyFrom(tf.make_tensor_proto(X_new))

This code creates a PredictRequest protocol buffer and fills in the required fields,
including the model name (defined earlier), the signature name of the function we
want to call, and finally the input data, in the form of a Tensor protocol buffer.
The tf.make_tensor_proto() function creates a Tensor protocol buffer based on the
given tensor or NumPy array, in this case X_new.

Next, we’ll send the request to the server and get its response. For this, we will need
the grpcio library, which is preinstalled in Colab:

import grpc
from tensorflow_serving.apis import prediction_service_pb2_grpc

channel = grpc.insecure_channel('localhost:8500')
predict_service = prediction_service_pb2_grpc.PredictionServiceStub(channel)
response = predict_service.Predict(request, timeout=10.0)

The code is quite straightforward: after the imports, we create a gRPC communica‐
tion channel to localhost on TCP port 8500, then we create a gRPC service over this
channel and use it to send a request, with a 10-second timeout. Note that the call is
synchronous: it will block until it receives the response or when the timeout period
expires. In this example the channel is insecure (no encryption, no authentication),
but gRPC and TF Serving also support secure channels over SSL/TLS.

Next, let’s convert the PredictResponse protocol buffer to a tensor:

output_name = model.output_names[0] # == "dense_1"
outputs_proto = response.outputs[output_name]
y_proba = tf.make_ndarray(outputs_proto)

If you run this code and print y_proba.round(2), you will get the exact same estima‐
ted class probabilities as earlier. And that’s all there is to it: in just a few lines of code,
you can now access your TensorFlow model remotely, using either REST or gRPC.

Serving a TensorFlow Model | 729

Deploying a new model version
Now let’s create a new model version and export a SavedModel, this time to the
my_mnist_model/0002 directory:

model = [...] # build and train a new MNIST model version

model_version = "0002"
model_path = Path(model_name) / model_version
model.save(model_path, save_format="tf")

At regular intervals (the delay is configurable), TF Serving checks the model directory
for new model versions. If it finds one, it automatically handles the transition grace‐
fully: by default, it answers pending requests (if any) with the previous model version,
while handling new requests with the new version. As soon as every pending request
has been answered, the previous model version is unloaded. You can see this at work
in the TF Serving logs (in my_server.log):

[...]
Reading SavedModel from: /models/my_mnist_model/0002
Reading meta graph with tags { serve }
[...]
Successfully loaded servable version {name: my_mnist_model version: 2}
Quiescing servable version {name: my_mnist_model version: 1}
Done quiescing servable version {name: my_mnist_model version: 1}
Unloading servable version {name: my_mnist_model version: 1}

If the SavedModel contains some example instances in the assets/
extra directory, you can configure TF Serving to run the new
model on these instances before starting to use it to serve requests.
This is called model warmup: it will ensure that everything is prop‐
erly loaded, avoiding long response times for the first requests.

This approach offers a smooth transition, but it may use too much RAM—especially
GPU RAM, which is generally the most limited. In this case, you can configure TF
Serving so that it handles all pending requests with the previous model version and
unloads it before loading and using the new model version. This configuration will
avoid having two model versions loaded at the same time, but the service will be
unavailable for a short period.

As you can see, TF Serving makes it straightforward to deploy new models. More‐
over, if you discover that version 2 does not work as well as you expected, then rolling
back to version 1 is as simple as removing the my_mnist_model/0002 directory.

730 | Chapter 19: Training and Deploying TensorFlow Models at Scale

Another great feature of TF Serving is its automatic batching capa‐
bility, which you can activate using the --enable_batching option
upon startup. When TF Serving receives multiple requests within
a short period of time (the delay is configurable), it will automat‐
ically batch them together before using the model. This offers a
significant performance boost by leveraging the power of the GPU.
Once the model returns the predictions, TF Serving dispatches
each prediction to the right client. You can trade a bit of latency
for a greater throughput by increasing the batching delay (see the
--batching_parameters_file option).

If you expect to get many queries per second, you will want to deploy TF Serving
on multiple servers and load-balance the queries (see Figure 19-2). This will require
deploying and managing many TF Serving containers across these servers. One way
to handle that is to use a tool such as Kubernetes, which is an open source system
for simplifying container orchestration across many servers. If you do not want to
purchase, maintain, and upgrade all the hardware infrastructure, you will want to
use virtual machines on a cloud platform such as Amazon AWS, Microsoft Azure,
Google Cloud Platform, IBM Cloud, Alibaba Cloud, Oracle Cloud, or some other
platform as a service (PaaS) offering. Managing all the virtual machines, handling
container orchestration (even with the help of Kubernetes), taking care of TF Serving
configuration, tuning and monitoring—all of this can be a full-time job. Fortunately,
some service providers can take care of all this for you. In this chapter we will
use Vertex AI: it’s the only platform with TPUs today; it supports TensorFlow 2,
Scikit-Learn, and XGBoost; and it offers a nice suite of AI services. There are several
other providers in this space that are capable of serving TensorFlow models as well,
though, such as Amazon AWS SageMaker and Microsoft AI Platform, so make sure
to check them out too.

Figure 19-2. Scaling up TF Serving with load balancing

Now let’s see how to serve our wonderful MNIST model on the cloud!

Serving a TensorFlow Model | 731

https://kubernetes.io

Creating a Prediction Service on Vertex AI
Vertex AI is a platform within Google Cloud Platform (GCP) that offers a wide
range of AI-related tools and services. You can upload datasets, get humans to label
them, store commonly used features in a feature store and use them for training or
in production, and train models across many GPU or TPU servers with automatic
hyperparameter tuning or model architecture search (AutoML). You can also manage
your trained models, use them to make batch predictions on large amounts of data,
schedule multiple jobs for your data workflows, serve your models via REST or
gRPC at scale, and experiment with your data and models within a hosted Jupyter
environment called the Workbench. There’s even a Matching Engine service that lets
you compare vectors very efficiently (i.e., approximate nearest neighbors). GCP also
includes other AI services, such as APIs for computer vision, translation, speech-to-
text, and more.

Before we start, there’s a little bit of setup to take care of:

1. Log in to your Google account, and then go to the Google Cloud Platform1.
console (see Figure 19-3). If you don’t have a Google account, you’ll have to
create one.

2. If it’s your first time using GCP, you’ll have to read and accept the terms and2.
conditions. New users are offered a free trial, including $300 worth of GCP credit
that you can use over the course of 90 days (as of May 2022). You’ll only need
a small portion of that to pay for the services you’ll use in this chapter. Upon
signing up for a free trial, you’ll still need to create a payment profile and enter
your credit card number: it’s used for verification purposes—probably to avoid
people using the free trial multiple times—but you won’t be billed for the first
$300, and after that you’ll only be charged if you opt in by upgrading to a paid
account.

Figure 19-3. Google Cloud Platform console

732 | Chapter 19: Training and Deploying TensorFlow Models at Scale

https://console.cloud.google.com
https://console.cloud.google.com

3. If you have used GCP before and your free trial has expired, then the services3.
you will use in this chapter will cost you some money. It shouldn’t be too much,
especially if you remember to turn off the services when you don’t need them
anymore. Make sure you understand and agree to the pricing conditions before
you run any service. I hereby decline any responsibility if services end up costing
more than you expected! Also make sure your billing account is active. To check,
open the ☰ navigation menu at the top left and click Billing, then make sure you
have set up a payment method and that the billing account is active.

4. Every resource in GCP belongs to a project. This includes all the virtual machines4.
you may use, the files you store, and the training jobs you run. When you create
an account, GCP automatically creates a project for you, called “My First Project”.
If you want, you can change its display name by going to the project settings: in
the ☰ navigation menu, select “IAM and admin → Settings”, change the project’s
display name, and click SAVE. Note that the project also has a unique ID and
number. You can choose the project ID when you create a project, but you cannot
change it later. The project number is automatically generated and cannot be
changed. If you want to create a new project, click the project name at the top
of the page, then click NEW PROJECT and enter the project name. You can also
click EDIT to set the project ID. Make sure billing is active for this new project so
that service fees can be billed (to your free credits, if any).

Always set an alarm to remind yourself to turn services off
when you know you will only need them for a few hours,
or else you might leave them running for days or months,
incurring potentially significant costs.

5. Now that you have a GCP account and a project, and billing is activated, you5.
must activate the APIs you need. In the ☰ navigation menu, select “APIs and
services”, and make sure the Cloud Storage API is enabled. If needed, click +
ENABLE APIS AND SERVICES, find Cloud Storage, and enable it. Also enable
the Vertex AI API.

You could continue to do everything via the GCP console, but I recommend using
Python instead: this way you can write scripts to automate just about anything you
want with GCP, and it’s often more convenient than clicking your way through menus
and forms, especially for common tasks.

Serving a TensorFlow Model | 733

Google Cloud CLI and Shell
Google Cloud’s command-line interface (CLI) includes the gcloud command, which
lets you control almost everything in GCP, and gsutil, which lets you interact
with Google Cloud Storage. This CLI is preinstalled in Colab: all you need to do is
authenticate using google.auth.authenticate_user(), and you’re good to go. For
example, !gcloud config list will display the configuration.

GCP also offers a preconfigured shell environment called the Google Cloud Shell,
which you can use directly in your web browser; it runs on a free Linux VM (Debian)
with the Google Cloud SDK already preinstalled and configured for you, so there’s
no need to authenticate. The Cloud Shell is available anywhere in GCP: just click the
Activate Cloud Shell icon at the top right of the page (see Figure 19-4).

Figure 19-4. Activating the Google Cloud Shell

If you prefer to install the CLI on your machine, then after installation you need to
initialize it by running gcloud init: follow the instructions to log in to GCP and
grant access to your GCP resources, then select the default GCP project you want to
use (if you have more than one) and the default region where you want your jobs to
run.

The first thing you need to do before you can use any GCP service is to authenticate.
The simplest solution when using Colab is to execute the following code:

from google.colab import auth

auth.authenticate_user()

The authentication process is based on OAuth 2.0: a pop-up window will ask you to
confirm that you want the Colab notebook to access your Google credentials. If you
accept, you must select the same Google account you used for GCP. Then you will be
asked to confirm that you agree to give Colab full access to all your data on Google
Drive and in GCP. If you allow access, only the current notebook will have access, and
only until the Colab runtime expires. Obviously, you should only accept this if you
trust the code in the notebook.

734 | Chapter 19: Training and Deploying TensorFlow Models at Scale

https://homl.info/gcloud
https://oauth.net

If you are not working with the official notebooks from https://
github.com/ageron/handson-ml3, then you should be extra careful:
if the notebook’s author is mischievous, they could include code to
do whatever they want with your data.

Authentication and Authorization on GCP
In general, using OAuth 2.0 authentication is only recommended when an application
must access the user’s personal data or resources from another application, on the
user’s behalf. For example, some applications allow the user to save data to their
Google Drive, but for that the application first needs the user to authenticate with
Google and allow access to Google Drive. In general, the application will only ask
for the level of access it needs; it won’t be an unlimited access: for example, the
application will only request access to Google Drive, not Gmail or any other Google
service. Moreover, the authorization usually expires after a while, and it can always be
revoked.

When an application needs to access a service on GCP on its own behalf, not on
behalf of the user, then it should generally use a service account. For example, if
you build a website that needs to send prediction requests to a Vertex AI endpoint,
then the website will be accessing the service on its own behalf. There’s no data or
resource that it needs to access in the user’s Google account. In fact, many users of
the website will not even have a Google account. For this scenario, you first need to
create a service account. Select “IAM and admin → Service accounts” in the GCP
console’s ☰ navigation menu (or use the search box), then click + CREATE SERVICE
ACCOUNT, fill in the first page of the form (service account name, ID, description),
and click CREATE AND CONTINUE. Next, you must give this account some access
rights. Select the “Vertex AI user” role: this will allow the service account to make
predictions and use other Vertex AI services, but nothing else. Click CONTINUE.
You can now optionally grant some users access to the service account: this is useful
when your GCP user account is part of an organization and you wish to authorize
other users in the organization to deploy applications that will be based on this
service account, or to manage the service account itself. Next, click DONE.

Once you have created a service account, your application must authenticate as that
service account. There are several ways to do that. If your application is hosted
on GCP—for example, if you are coding a website hosted on Google Compute
Engine—then the simplest and safest solution is to attach the service account to
the GCP resource that hosts your website, such as a VM instance or a Google App
Engine service. This can be done when creating the GCP resource, by selecting the
service account in the “Identity and API access” section. Some resources, such as VM
instances, also let you attach the service account after the VM instance is created: you
must stop it and edit its settings. In any case, once a service account is attached to
a VM instance, or any other GCP resource running your code, GCP’s client libraries

Serving a TensorFlow Model | 735

https://github.com/ageron/handson-ml3
https://github.com/ageron/handson-ml3

(discussed shortly) will automatically authenticate as the chosen service account, with
no extra step needed.

If your application is hosted using Kubernetes, then you should use Google’s Work‐
load Identity service to map the right service account to each Kubernetes service
account. If your application is not hosted on GCP—for example, if you are just
running the Jupyter notebook on your own machine—then you can either use the
Workload Identity Federation service (that’s the safest but hardest option), or just
generate an access key for your service account, save it to a JSON file, and point the
GOOGLE_APPLICATION_CREDENTIALS environment variable to it so your client applica‐
tion can access it. You can manage access keys by clicking the service account you just
created, and then opening the KEYS tab. Make sure to keep the key file secret: it’s like
a password for the service account.

For more details on setting up authentication and authorization so your application
can access GCP services, check out the documentation.

Now let’s create a Google Cloud Storage bucket to store our SavedModels (a GCS
bucket is a container for your data). For this we will use the google-cloud-storage
library, which is preinstalled in Colab. We first create a Client object, which will
serve as the interface with GCS, then we use it to create the bucket:

from google.cloud import storage

project_id = "my_project" # change this to your project ID
bucket_name = "my_bucket" # change this to a unique bucket name
location = "us-central1"

storage_client = storage.Client(project=project_id)
bucket = storage_client.create_bucket(bucket_name, location=location)

If you want to reuse an existing bucket, replace the last line
with bucket = storage_client.bucket(bucket_name). Make
sure location is set to the bucket’s region.

GCS uses a single worldwide namespace for buckets, so simple names like “machine-
learning” will most likely not be available. Make sure the bucket name conforms
to DNS naming conventions, as it may be used in DNS records. Moreover, bucket
names are public, so do not put anything private in the name. It is common to use
your domain name, your company name, or your project ID as a prefix to ensure
uniqueness, or simply use a random number as part of the name.

You can change the region if you want, but be sure to choose one that supports GPUs.
Also, you may want to consider the fact that prices vary greatly between regions,

736 | Chapter 19: Training and Deploying TensorFlow Models at Scale

https://homl.info/gcpauth

some regions produce much more CO₂ than others, some regions do not support all
services, and using a single-region bucket improves performance. See Google Cloud’s
list of regions and Vertex AI’s documentation on locations for more details. If you are
unsure, it might be best to stick with "us-central1".

Next, let’s upload the my_mnist_model directory to the new bucket. Files in GCS are
called blobs (or objects), and under the hood they are all just placed in the bucket
without any directory structure. Blob names can be arbitrary Unicode strings, and
they can even contain forward slashes (/). The GCP console and other tools use
these slashes to give the illusion that there are directories. So, when we upload the
my_mnist_model directory, we only care about the files, not the directories:

def upload_directory(bucket, dirpath):
 dirpath = Path(dirpath)
 for filepath in dirpath.glob("**/*"):
 if filepath.is_file():
 blob = bucket.blob(filepath.relative_to(dirpath.parent).as_posix())
 blob.upload_from_filename(filepath)

upload_directory(bucket, "my_mnist_model")

This function works fine now, but it would be very slow if there were many files to
upload. It’s not too hard to speed it up tremendously by multithreading it (see the
notebook for an implementation). Alternatively, if you have the Google Cloud CLI,
then you can use following command instead:

!gsutil -m cp -r my_mnist_model gs://{bucket_name}/

Next, let’s tell Vertex AI about our MNIST model. To communicate with Vertex AI,
we can use the google-cloud-aiplatform library (it still uses the old AI Platform
name instead of Vertex AI). It’s not preinstalled in Colab, so we need to install it.
After that, we can import the library and initialize it—just to specify some default
values for the project ID and the location—then we can create a new Vertex AI
model: we specify a display name, the GCS path to our model (in this case the version
0001), and the URL of the Docker container we want Vertex AI to use to run this
model. If you visit that URL and navigate up one level, you will find other containers
you can use. This one supports TensorFlow 2.8 with a GPU:

from google.cloud import aiplatform

server_image = "gcr.io/cloud-aiplatform/prediction/tf2-gpu.2-8:latest"

aiplatform.init(project=project_id, location=location)
mnist_model = aiplatform.Model.upload(
 display_name="mnist",
 artifact_uri=f"gs://{bucket_name}/my_mnist_model/0001",
 serving_container_image_uri=server_image,
)

Serving a TensorFlow Model | 737

https://homl.info/regions
https://homl.info/regions
https://homl.info/locations

Now let’s deploy this model so we can query it via a gRPC or REST API to make pre‐
dictions. For this we first need to create an endpoint. This is what client applications
connect to when they want to access a service. Then we need to deploy our model to
this endpoint:

endpoint = aiplatform.Endpoint.create(display_name="mnist-endpoint")

endpoint.deploy(
 mnist_model,
 min_replica_count=1,
 max_replica_count=5,
 machine_type="n1-standard-4",
 accelerator_type="NVIDIA_TESLA_K80",
 accelerator_count=1
)

This code may take a few minutes to run, because Vertex AI needs to set up a virtual
machine. In this example, we use a fairly basic machine of type n1-standard-4 (see
https://homl.info/machinetypes for other types). We also use a basic GPU of type
NVIDIA_TESLA_K80 (see https://homl.info/accelerators for other types). If you selected
another region than "us-central1", then you may need to change the machine type
or the accelerator type to values that are supported in that region (e.g., not all regions
have Nvidia Tesla K80 GPUs).

Google Cloud Platform enforces various GPU quotas, both world‐
wide and per region: you cannot create thousands of GPU nodes
without prior authorization from Google. To check your quotas,
open “IAM and admin → Quotas” in the GCP console. If some
quotas are too low (e.g., if you need more GPUs in a particular
region), you can ask for them to be increased; it often takes about
48 hours.

Vertex AI will initially spawn the minimum number of compute nodes (just one in
this case), and whenever the number of queries per second becomes too high, it will
spawn more nodes (up to the maximum number you defined, five in this case) and
will load-balance the queries between them. If the QPS rate goes down for a while,
Vertex AI will stop the extra compute nodes automatically. The cost is therefore
directly linked to the load, as well as the machine and accelerator types you selected
and the amount of data you store on GCS. This pricing model is great for occasional
users and for services with important usage spikes. It’s also ideal for startups: the price
remains low until the startup actually starts up.

738 | Chapter 19: Training and Deploying TensorFlow Models at Scale

https://homl.info/machinetypes
https://homl.info/accelerators

Congratulations, you have deployed your first model to the cloud! Now let’s query
this prediction service:

response = endpoint.predict(instances=X_new.tolist())

We first need to convert the images we want to classify to a Python list, as we did
earlier when we sent requests to TF Serving using the REST API. The response object
contains the predictions, represented as a Python list of lists of floats. Let’s round
them to two decimal places and convert them to a NumPy array:

>>> import numpy as np
>>> np.round(response.predictions, 2)
array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 1. , 0. , 0.],
 [0. , 0. , 0.99, 0.01, 0. , 0. , 0. , 0. , 0. , 0.],
 [0. , 0.97, 0.01, 0. , 0. , 0. , 0. , 0.01, 0. , 0.]])

Yes! We get the exact same predictions as earlier. We now have a nice prediction
service running on the cloud that we can query from anywhere securely, and which
can automatically scale up or down depending on the number of QPS. When you are
done using the endpoint, don’t forget to delete it, to avoid paying for nothing:

endpoint.undeploy_all() # undeploy all models from the endpoint
endpoint.delete()

Now let’s see how to run a job on Vertex AI to make predictions on a potentially very
large batch of data.

Running Batch Prediction Jobs on Vertex AI
If we have a large number of predictions to make, then instead of calling our predic‐
tion service repeatedly, we can ask Vertex AI to run a prediction job for us. This
does not require an endpoint, only a model. For example, let’s run a prediction job
on the first 100 images of the test set, using our MNIST model. For this, we first
need to prepare the batch and upload it to GCS. One way to do this is to create a
file containing one instance per line, each formatted as a JSON value—this format is
called JSON Lines—then pass this file to Vertex AI. So let’s create a JSON Lines file in
a new directory, then upload this directory to GCS:

batch_path = Path("my_mnist_batch")
batch_path.mkdir(exist_ok=True)
with open(batch_path / "my_mnist_batch.jsonl", "w") as jsonl_file:
 for image in X_test[:100].tolist():
 jsonl_file.write(json.dumps(image))
 jsonl_file.write("\n")

upload_directory(bucket, batch_path)

Serving a TensorFlow Model | 739

Now we’re ready to launch the prediction job, specifying the job’s name, the type and
number of machines and accelerators to use, the GCS path to the JSON Lines file we
just created, and the path to the GCS directory where Vertex AI will save the model’s
predictions:

batch_prediction_job = mnist_model.batch_predict(
 job_display_name="my_batch_prediction_job",
 machine_type="n1-standard-4",
 starting_replica_count=1,
 max_replica_count=5,
 accelerator_type="NVIDIA_TESLA_K80",
 accelerator_count=1,
 gcs_source=[f"gs://{bucket_name}/{batch_path.name}/my_mnist_batch.jsonl"],
 gcs_destination_prefix=f"gs://{bucket_name}/my_mnist_predictions/",
 sync=True # set to False if you don't want to wait for completion
)

For large batches, you can split the inputs into multiple JSON Lines
files and list them all via the gcs_source argument.

This will take a few minutes, mostly to spawn the compute nodes on Vertex AI.
Once this command completes, the predictions will be available in a set of files
named something like prediction.results-00001-of-00002. These files use the JSON
Lines format by default, and each value is a dictionary containing an instance and its
corresponding prediction (i.e., 10 probabilities). The instances are listed in the same
order as the inputs. The job also outputs prediction-errors* files, which can be useful
for debugging if something goes wrong. We can iterate through all these output files
using batch_prediction_job.iter_outputs(), so let’s go through all the predictions
and store them in a y_probas array:

y_probas = []
for blob in batch_prediction_job.iter_outputs():
 if "prediction.results" in blob.name:
 for line in blob.download_as_text().splitlines():
 y_proba = json.loads(line)["prediction"]
 y_probas.append(y_proba)

Now let’s see how good these predictions are:

>>> y_pred = np.argmax(y_probas, axis=1)
>>> accuracy = np.sum(y_pred == y_test[:100]) / 100
0.98

Nice, 98% accuracy!

740 | Chapter 19: Training and Deploying TensorFlow Models at Scale

The JSON Lines format is the default, but when dealing with large instances
such as images, it is too verbose. Luckily, the batch_predict() method accepts
an instances_format argument that lets you choose another format if you want.
It defaults to "jsonl", but you can change it to "csv", "tf-record", "tf-record-
gzip", "bigquery", or "file-list". If you set it to "file-list", then the
gcs_source argument should point to a text file containing one input filepath per
line; for instance, pointing to PNG image files. Vertex AI will read these files
as binary, encode them using Base64, and pass the resulting byte strings to the
model. This means that you must add a preprocessing layer in your model to
parse the Base64 strings, using tf.io.decode_base64(). If the files are images,
you must then parse the result using a function like tf.io.decode_image() or
tf.io.decode_png(), as discussed in Chapter 13.

When you’re finished using the model, you can delete it if you want, by running
mnist_model.delete(). You can also delete the directories you created in your GCS
bucket, optionally the bucket itself (if it’s empty), and the batch prediction job:

for prefix in ["my_mnist_model/", "my_mnist_batch/", "my_mnist_predictions/"]:
 blobs = bucket.list_blobs(prefix=prefix)
 for blob in blobs:
 blob.delete()

bucket.delete() # if the bucket is empty
batch_prediction_job.delete()

You now know how to deploy a model to Vertex AI, create a prediction service, and
run batch prediction jobs. But what if you want to deploy your model to a mobile app
instead? Or to an embedded device, such as a heating control system, a fitness tracker,
or a self-driving car?

Deploying a Model to a Mobile or Embedded Device
Machine learning models are not limited to running on big centralized servers with
multiple GPUs: they can run closer to the source of data (this is called edge comput‐
ing), for example in the user’s mobile device or in an embedded device. There are
many benefits to decentralizing the computations and moving them toward the edge:
it allows the device to be smart even when it’s not connected to the internet, it reduces
latency by not having to send data to a remote server and reduces the load on the
servers, and it may improve privacy, since the user’s data can stay on the device.

However, deploying models to the edge has its downsides too. The device’s computing
resources are generally tiny compared to a beefy multi-GPU server. A large model
may not fit in the device, it may use too much RAM and CPU, and it may take too
long to download. As a result, the application may become unresponsive, and the
device may heat up and quickly run out of battery. To avoid all this, you need to make

Deploying a Model to a Mobile or Embedded Device | 741

7 Also check out TensorFlow’s Graph Transform Tool for modifying and optimizing computational graphs.

a lightweight and efficient model, without sacrificing too much of its accuracy. The
TFLite library provides several tools7 to help you deploy your models to the edge,
with three main objectives:

• Reduce the model size, to shorten download time and reduce RAM usage.•
• Reduce the amount of computations needed for each prediction, to reduce•

latency, battery usage, and heating.
• Adapt the model to device-specific constraints.•

To reduce the model size, TFLite’s model converter can take a SavedModel and
compress it to a much lighter format based on FlatBuffers. This is an efficient cross-
platform serialization library (a bit like protocol buffers) initially created by Google
for gaming. It is designed so you can load FlatBuffers straight to RAM without any
preprocessing: this reduces the loading time and memory footprint. Once the model
is loaded into a mobile or embedded device, the TFLite interpreter will execute it to
make predictions. Here is how you can convert a SavedModel to a FlatBuffer and save
it to a .tflite file:

converter = tf.lite.TFLiteConverter.from_saved_model(str(model_path))
tflite_model = converter.convert()
with open("my_converted_savedmodel.tflite", "wb") as f:
 f.write(tflite_model)

You can also save a Keras model directly to a FlatBuffer using
tf.lite.TFLiteConverter.from_keras_model(model).

The converter also optimizes the model, both to shrink it and to reduce its latency. It
prunes all the operations that are not needed to make predictions (such as training
operations), and it optimizes computations whenever possible; for example, 3 × a +
4 ×_ a_ + 5 × a will be converted to 12 × a. Addtionally, it tries to fuse operations
whenever possible. For example, if possible, batch normalization layers end up folded
into the previous layer’s addition and multiplication operations. To get a good idea
of how much TFLite can optimize a model, download one of the pretrained TFLite
models, such as Inception_V1_quant (click tflite&pb), unzip the archive, then open
the excellent Netron graph visualization tool and upload the .pb file to view the
original model. It’s a big, complex graph, right? Next, open the optimized .tflite model
and marvel at its beauty!

742 | Chapter 19: Training and Deploying TensorFlow Models at Scale

https://homl.info/tfgtt
https://tensorflow.org/lite
https://google.github.io/flatbuffers
https://homl.info/litemodels
https://homl.info/litemodels
https://netron.app

Another way you can reduce the model size—other than simply using smaller neural
network architectures—is by using smaller bit-widths: for example, if you use half-
floats (16 bits) rather than regular floats (32 bits), the model size will shrink by a
factor of 2, at the cost of a (generally small) accuracy drop. Moreover, training will be
faster, and you will use roughly half the amount of GPU RAM.

TFLite’s converter can go further than that, by quantizing the model weights down
to fixed-point, 8-bit integers! This leads to a fourfold size reduction compared to
using 32-bit floats. The simplest approach is called post-training quantization: it just
quantizes the weights after training, using a fairly basic but efficient symmetrical
quantization technique. It finds the maximum absolute weight value, m, then it maps
the floating-point range –m to +m to the fixed-point (integer) range –127 to +127.
For example, if the weights range from –1.5 to +0.8, then the bytes –127, 0, and +127
will correspond to the floats –1.5, 0.0, and +1.5, respectively (see Figure 19-5). Note
that 0.0 always maps to 0 when using symmetrical quantization. Also note that the
byte values +68 to +127 will not be used in this example, since they map to floats
greater than +0.8.

Figure 19-5. From 32-bit floats to 8-bit integers, using symmetrical quantization

To perform this post-training quantization, simply add DEFAULT to the list of con‐
verter optimizations before calling the convert() method:

converter.optimizations = [tf.lite.Optimize.DEFAULT]

This technique dramatically reduces the model’s size, which makes it much faster
to download, and uses less storage space. At runtime the quantized weights get
converted back to floats before they are used. These recovered floats are not perfectly
identical to the original floats, but they’re not too far off, so the accuracy loss is
usually acceptable. To avoid recomputing the float values all the time, which would
severely slow down the model, TFLite caches them: unfortunately, this means that
this technique does not reduce RAM usage, and it doesn’t speed up the model either.
It’s mostly useful to reduce the application’s size.

Deploying a Model to a Mobile or Embedded Device | 743

The most effective way to reduce latency and power consumption is to also quantize
the activations so that the computations can be done entirely with integers, without
the need for any floating-point operations. Even when using the same bit-width (e.g.,
32-bit integers instead of 32-bit floats), integer computations use less CPU cycles,
consume less energy, and produce less heat. And if you also reduce the bit-width
(e.g., down to 8-bit integers), you can get huge speedups. Moreover, some neural
network accelerator devices—such as Google’s Edge TPU—can only process integers,
so full quantization of both weights and activations is compulsory. This can be done
post-training; it requires a calibration step to find the maximum absolute value of the
activations, so you need to provide a representative sample of training data to TFLite
(it does not need to be huge), and it will process the data through the model and
measure the activation statistics required for quantization. This step is typically fast.

The main problem with quantization is that it loses a bit of accuracy: it is similar to
adding noise to the weights and activations. If the accuracy drop is too severe, then
you may need to use quantization-aware training. This means adding fake quantiza‐
tion operations to the model so it can learn to ignore the quantization noise during
training; the final weights will then be more robust to quantization. Moreover, the
calibration step can be taken care of automatically during training, which simplifies
the whole process.

I have explained the core concepts of TFLite, but going all the way to coding a
mobile or embedded application woud require a dedicated book. Fortunately, some
exist: if you want to learn more about building TensorFlow applications for mobile
and embedded devices, check out the O’Reilly books TinyML: Machine Learning
with TensorFlow on Arduino and Ultra-Low Power Micro-Controllers, by Pete Warden
(former lead of the TFLite team) and Daniel Situnayake and AI and Machine Learning
for On-Device Development, by Laurence Moroney.

Now what if you want to use your model in a website, running directly in the user’s
browser?

Running a Model in a Web Page
Running your machine learning model on the client side, in the user’s browser, rather
than on the server side can be useful in many scenarios, such as:

• When your web application is often used in situations where the user’s connec‐•
tivity is intermittent or slow (e.g., a website for hikers), so running the model
directly on the client side is the only way to make your website reliable.

• When you need the model’s responses to be as fast as possible (e.g., for an online•
game). Removing the need to query the server to make predictions will definitely
reduce the latency and make the website much more responsive.

744 | Chapter 19: Training and Deploying TensorFlow Models at Scale

https://homl.info/tinyml
https://homl.info/tinyml
https://homl.info/ondevice
https://homl.info/ondevice

8 For example, a PWA must include icons of various sizes for different mobile devices, it must be served via
HTTPS, it must include a manifest file containing metadata such as the name of the app and the background
color.

• When your web service makes predictions based on some private user data, and•
you want to protect the user’s privacy by making the predictions on the client
side so that the private data never has to leave the user’s machine.

For all these scenarios, you can use the TensorFlow.js (TFJS) JavaScript library. This
library can load a TFLite model and make predictions directly in the user’s browser.
For example, the following JavaScript module imports the TFJS library, downloads
a pretrained MobileNet model, and uses this model to classify an image and log the
predictions. You can play with the code at https://homl.info/tfjscode, using Glitch.com,
a website that lets you build web apps in your browser for free; click the PREVIEW
button in the lower-right corner of the page to see the code in action:

import "https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest";
import "https://cdn.jsdelivr.net/npm/@tensorflow-models/mobilenet@1.0.0";

const image = document.getElementById("image");

mobilenet.load().then(model => {
 model.classify(image).then(predictions => {
 for (var i = 0; i < predictions.length; i++) {
 let className = predictions[i].className
 let proba = (predictions[i].probability * 100).toFixed(1)
 console.log(className + " : " + proba + "%");
 }
 });
});

It’s even possible to turn this website into a progressive web app (PWA): this is a
website that respects a number of criteria8 that allow it to be viewed in any browser,
and even installed as a standalone app on a mobile device. For example, try visiting
https://homl.info/tfjswpa on a mobile device: most modern browsers will ask you
whether you would like to add TFJS Demo to your home screen. If you accept, you
will see a new icon in your list of applications. Clicking this icon will load the TFJS
Demo website inside its own window, just like a regular mobile app. A PWA can even
be configured to work offline, by using a service worker: this is a JavaScript module
that runs in its own separate thread in the browser and intercepts network requests,
allowing it to cache resources so the PWA can run faster, or even entirely offline. It
can also deliver push messages, run tasks in the background, and more. PWAs allow
you to manage a single code base for the web and for mobile devices. They also make
it easier to ensure that all users run the same version of your application. You can play
with this TFJS Demo’s PWA code on Glitch.com at https://homl.info/wpacode.

Running a Model in a Web Page | 745

https://tensorflow.org/js
https://homl.info/tfjscode
https://homl.info/tfjswpa
https://homl.info/wpacode

Check out many more demos of machine learning models running
in your browser at https://tensorflow.org/js/demos.

TFJS also supports training a model directly in your web browser! And it’s actually
pretty fast. If your computer has a GPU card, then TFJS can generally use it, even
if it’s not an Nvidia card. Indeed, TFJS will use WebGL when it’s available, and since
modern web browsers generally support a wide range of GPU cards, TFJS actually
supports more GPU cards than regular TensorFlow (which only supports Nvidia
cards).

Training a model in a user’s web browser can be especially useful to guarantee that
this user’s data remains private. A model can be trained centrally, and then fine-tuned
locally, in the browser, based on that user’s data. If you’re interested in this topic,
check out federated learning.

Once again, doing justice to this topic would require a whole book. If you want to
learn more about TensorFlow.js, check out the O’reilly books Practical Deep Learning
for Cloud, Mobile, and Edge, by Anirudh Koul et al., or Learning TensorFlow.js, by
Gant Laborde.

Now that you’ve seen how to deploy TensorFlow models to TF Serving, or to the
cloud with Vertex AI, or to mobile and embedded devices using TFLite, or to a web
browser using TFJS, let’s discuss how to use GPUs to speed up computations.

Using GPUs to Speed Up Computations
In Chapter 11 we looked at several techniques that can considerably speed up train‐
ing: better weight initialization, sophisticated optimizers, and so on. But even with all
of these techniques, training a large neural network on a single machine with a single
CPU can take hours, days, or even weeks, depending on the task. Thanks to GPUs,
this training time can be reduced down to minutes or hours. Not only does this save
an enormous amount of time, but it also means that you can experiment with various
models much more easily, and frequently retrain your models on fresh data.

In the previous chapters, we used GPU-enabled runtimes on Google Colab. All you
have to do for this is select “Change runtime type” from the Runtime menu, and
choose the GPU accelerator type; TensorFlow automatically detects the GPU and uses
it to speed up computations, and the code is exactly the same as without a GPU.
Then, in this chapter you saw how to deploy your models to Vertex AI on multiple
GPU-enabled compute nodes: it’s just a matter of selecting the right GPU-enabled
Docker image when creating the Vertex AI model, and selecting the desired GPU
type when calling endpoint.deploy(). But what if you want to buy your own GPU?

746 | Chapter 19: Training and Deploying TensorFlow Models at Scale

https://tensorflow.org/js/demos
https://tensorflow.org/federated
https://homl.info/tfjsbook
https://homl.info/tfjsbook
https://homl.info/tfjsbook2

And what if you want to distribute the computations across the CPU and multiple
GPU devices on a single machine (see Figure 19-6)? This is what we will discuss
now, then later in this chapter we will discuss how to distribute computations across
multiple servers.

Figure 19-6. Executing a TensorFlow graph across multiple devices in parallel

Getting Your Own GPU
If you know that you’ll be using a GPU heavily and for a long period of time, then
buying your own can make financial sense. You may also want to train your models
locally because you do not want to upload your data to the cloud. Or perhaps you just
want to buy a GPU card for gaming, and you’d like to use it for deep learning as well.

If you decide to purchase a GPU card, then take some time to make the right choice.
You will need to consider the amount of RAM you will need for your tasks (e.g.,
typically at least 10 GB for image processing or NLP), the bandwidth (i.e., how fast
you can send data into and out of the GPU), the number of cores, the cooling system,
etc. Tim Dettmers wrote an excellent blog post to help you choose: I encourage you
to read it carefully. At the time of this writing, TensorFlow only supports Nvidia cards
with CUDA Compute Capability 3.5+ (as well as Google’s TPUs, of course), but it
may extend its support to other manufacturers, so make sure to check TensorFlow’s
documentation to see what devices are supported today.

Using GPUs to Speed Up Computations | 747

https://homl.info/66
https://homl.info/cudagpus
https://homl.info/cudagpus
https://tensorflow.org/install
https://tensorflow.org/install

9 Please check the TensorFlow docs for detailed and up-to-date installation instructions, as they change quite
often.

If you go for an Nvidia GPU card, you will need to install the appropriate Nvidia
drivers and several Nvidia libraries.9 These include the Compute Unified Device
Architecture library (CUDA) Toolkit, which allows developers to use CUDA-enabled
GPUs for all sorts of computations (not just graphics acceleration), and the CUDA
Deep Neural Network library (cuDNN), a GPU-accelerated library of common DNN
computations such as activation layers, normalization, forward and backward convo‐
lutions, and pooling (see Chapter 14). cuDNN is part of Nvidia’s Deep Learning SDK.
Note that you will need to create an Nvidia developer account in order to download
it. TensorFlow uses CUDA and cuDNN to control the GPU cards and accelerate
computations (see Figure 19-7).

Figure 19-7. TensorFlow uses CUDA and cuDNN to control GPUs and boost DNNs

Once you have installed the GPU card(s) and all the required drivers and libraries,
you can use the nvidia-smi command to check that everything is properly installed.
This command lists the available GPU cards, as well as all the processes running on
each card. In this example, it’s an Nvidia Tesla T4 GPU card with about 15 GB of
available RAM, and there are no processes currently running on it:

748 | Chapter 19: Training and Deploying TensorFlow Models at Scale

$ nvidia-smi
Sun Apr 10 04:52:10 2022
+---+
| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 Tesla T4 Off	00000000:00:04.0 Off	0
N/A 34C P8 9W / 70W	3MiB / 15109MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

To check that TensorFlow actually sees your GPU, run the following commands and
make sure the result is not empty:

>>> physical_gpus = tf.config.list_physical_devices("GPU")
>>> physical_gpus
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

Managing the GPU RAM
By default TensorFlow automatically grabs almost all the RAM in all available GPUs
the first time you run a computation. It does this to limit GPU RAM fragmentation.
This means that if you try to start a second TensorFlow program (or any program
that requires the GPU), it will quickly run out of RAM. This does not happen as often
as you might think, as you will most often have a single TensorFlow program running
on a machine: usually a training script, a TF Serving node, or a Jupyter notebook.
If you need to run multiple programs for some reason (e.g., to train two different
models in parallel on the same machine), then you will need to split the GPU RAM
between these processes more evenly.

Using GPUs to Speed Up Computations | 749

If you have multiple GPU cards on your machine, a simple solution is to assign
each of them to a single process. To do this, you can set the CUDA_VISIBLE_DEVICES
environment variable so that each process only sees the appropriate GPU card(s).
Also set the CUDA_DEVICE_ORDER environment variable to PCI_BUS_ID to ensure that
each ID always refers to the same GPU card. For example, if you have four GPU
cards, you could start two programs, assigning two GPUs to each of them, by execut‐
ing commands like the following in two separate terminal windows:

$ CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_VISIBLE_DEVICES=0,1 python3 program_1.py
and in another terminal:
$ CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_VISIBLE_DEVICES=3,2 python3 program_2.py

Program 1 will then only see GPU cards 0 and 1, named "/gpu:0" and "/gpu:1",
respectively, in TensorFlow, and program 2 will only see GPU cards 2 and 3,
named "/gpu:1" and "/gpu:0", respectively (note the order). Everything will work
fine (see Figure 19-8). Of course, you can also define these environment variables
in Python by setting os.environ["CUDA_DEVICE_ORDER"] and os.environ["CUDA_
VISIBLE_DEVICES"], as long as you do so before using TensorFlow.

Figure 19-8. Each program gets two GPUs

Another option is to tell TensorFlow to grab only a specific amount of GPU RAM.
This must be done immediately after importing TensorFlow. For example, to make
TensorFlow grab only 2 GiB of RAM on each GPU, you must create a logical GPU
device (sometimes called a virtual GPU device) for each physical GPU device and set
its memory limit to 2 GiB (i.e., 2,048 MiB):

for gpu in physical_gpus:
 tf.config.set_logical_device_configuration(
 gpu,
 [tf.config.LogicalDeviceConfiguration(memory_limit=2048)]
)

Let’s suppose you have four GPUs, each with at least 4 GiB of RAM: in this case,
two programs like this one can run in parallel, each using all four GPU cards (see
Figure 19-9). If you run the nvidia-smi command while both programs are running,
you should see that each process holds 2 GiB of RAM on each card.

750 | Chapter 19: Training and Deploying TensorFlow Models at Scale

Figure 19-9. Each program gets all four GPUs, but with only 2 GiB of RAM on each
GPU

Yet another option is to tell TensorFlow to grab memory only when it needs it. Again,
this must be done immediately after importing TensorFlow:

for gpu in physical_gpus:
 tf.config.experimental.set_memory_growth(gpu, True)

Another way to do this is to set the TF_FORCE_GPU_ALLOW_GROWTH environment
variable to true. With this option, TensorFlow will never release memory once
it has grabbed it (again, to avoid memory fragmentation), except of course when
the program ends. It can be harder to guarantee deterministic behavior using this
option (e.g., one program may crash because another program’s memory usage went
through the roof), so in production you’ll probably want to stick with one of the
previous options. However, there are some cases where it is very useful: for example,
when you use a machine to run multiple Jupyter notebooks, several of which use
TensorFlow. The TF_FORCE_GPU_ALLOW_GROWTH environment variable is set to true in
Colab runtimes.

Lastly, in some cases you may want to split a GPU into two or more logical devices.
For example, this is useful if you only have one physical GPU—like in a Colab
runtime—but you want to test a multi-GPU algorithm. The following code splits
GPU #0 into two logical devices, with 2 GiB of RAM each (again, this must be done
immediately after importing TensorFlow):

tf.config.set_logical_device_configuration(
 physical_gpus[0],
 [tf.config.LogicalDeviceConfiguration(memory_limit=2048),
 tf.config.LogicalDeviceConfiguration(memory_limit=2048)]
)

These two logical devices are called "/gpu:0" and "/gpu:1", and you can use them as
if they were two normal GPUs. You can list all logical devices like this:

Using GPUs to Speed Up Computations | 751

10 As we saw in Chapter 12, a kernel is an operation’s implementation for a specific data type and device type.
For example, there is a GPU kernel for the float32 tf.matmul() operation, but there is no GPU kernel for
int32 tf.matmul(), only a CPU kernel.

11 You can also use tf.debugging.set_log_device_placement(True) to log all device placements.

>>> logical_gpus = tf.config.list_logical_devices("GPU")
>>> logical_gpus
[LogicalDevice(name='/device:GPU:0', device_type='GPU'),
 LogicalDevice(name='/device:GPU:1', device_type='GPU')]

Now let’s see how TensorFlow decides which devices it should use to place variables
and execute operations.

Placing Operations and Variables on Devices
Keras and tf.data generally do a good job of placing operations and variables where
they belong, but you can also place operations and variables manually on each device,
if you want more control:

• You generally want to place the data preprocessing operations on the CPU, and•
place the neural network operations on the GPUs.

• GPUs usually have a fairly limited communication bandwidth, so it is important•
to avoid unnecessary data transfers into and out of the GPUs.

• Adding more CPU RAM to a machine is simple and fairly cheap, so there’s•
usually plenty of it, whereas the GPU RAM is baked into the GPU: it is an
expensive and thus limited resource, so if a variable is not needed in the next few
training steps, it should probably be placed on the CPU (e.g., datasets generally
belong on the CPU).

By default, all variables and all operations will be placed on the first GPU (the one
named "/gpu:0"), except for variables and operations that don’t have a GPU kernel:10

these are placed on the CPU (always named "/cpu:0"). A tensor or variable’s device
attribute tells you which device it was placed on:11

>>> a = tf.Variable([1., 2., 3.]) # float32 variable goes to the GPU
>>> a.device
'/job:localhost/replica:0/task:0/device:GPU:0'
>>> b = tf.Variable([1, 2, 3]) # int32 variable goes to the CPU
>>> b.device
'/job:localhost/replica:0/task:0/device:CPU:0'

You can safely ignore the prefix /job:localhost/replica:0/task:0 for now; we will
discuss jobs, replicas, and tasks later in this chapter. As you can see, the first variable
was placed on GPU #0, which is the default device. However, the second variable was

752 | Chapter 19: Training and Deploying TensorFlow Models at Scale

placed on the CPU: this is because there are no GPU kernels for integer variables, or
for operations involving integer tensors, so TensorFlow fell back to the CPU.

If you want to place an operation on a different device than the default one, use a
tf.device() context:

>>> with tf.device("/cpu:0"):
... c = tf.Variable([1., 2., 3.])
...
>>> c.device
'/job:localhost/replica:0/task:0/device:CPU:0'

The CPU is always treated as a single device ("/cpu:0"), even
if your machine has multiple CPU cores. Any operation placed
on the CPU may run in parallel across multiple cores if it has a
multithreaded kernel.

If you explicitly try to place an operation or variable on a device that does not exist
or for which there is no kernel, then TensorFlow will silently fall back to the device
it would have chosen by default. This is useful when you want to be able to run the
same code on different machines that don’t have the same number of GPUs. However,
you can run tf.config.set_soft_device_placement(False) if you prefer to get an
exception.

Now, how exactly does TensorFlow execute operations across multiple devices?

Parallel Execution Across Multiple Devices
As we saw in Chapter 12, one of the benefits of using TF functions is parallelism.
Let’s look at this a bit more closely. When TensorFlow runs a TF function, it starts
by analyzing its graph to find the list of operations that need to be evaluated, and it
counts how many dependencies each of them has. TensorFlow then adds each opera‐
tion with zero dependencies (i.e., each source operation) to the evaluation queue of
this operation’s device (see Figure 19-10). Once an operation has been evaluated, the
dependency counter of each operation that depends on it is decremented. Once an
operation’s dependency counter reaches zero, it is pushed to the evaluation queue of
its device. And once all the outputs have been computed, they are returned.

Using GPUs to Speed Up Computations | 753

Figure 19-10. Parallelized execution of a TensorFlow graph

Operations in the CPU’s evaluation queue are dispatched to a thread pool called
the inter-op thread pool. If the CPU has multiple cores, then these operations will
effectively be evaluated in parallel. Some operations have multithreaded CPU ker‐
nels: these kernels split their tasks into multiple suboperations, which are placed in
another evaluation queue and dispatched to a second thread pool called the intra-op
thread pool (shared by all multithreaded CPU kernels). In short, multiple operations
and suboperations may be evaluated in parallel on different CPU cores.

For the GPU, things are a bit simpler. Operations in a GPU’s evaluation queue are
evaluated sequentially. However, most operations have multithreaded GPU kernels,
typically implemented by libraries that TensorFlow depends on, such as CUDA and
cuDNN. These implementations have their own thread pools, and they typically
exploit as many GPU threads as they can (which is the reason why there is no
need for an inter-op thread pool in GPUs: each operation already floods most GPU
threads).

For example, in Figure 19-10, operations A, B, and C are source ops, so they can
immediately be evaluated. Operations A and B are placed on the CPU, so they are
sent to the CPU’s evaluation queue, then they are dispatched to the inter-op thread
pool and immediately evaluated in parallel. Operation A happens to have a multi‐
threaded kernel; its computations are split into three parts, which are executed in
parallel by the intra-op thread pool. Operation C goes to GPU #0’s evaluation queue,
and in this example its GPU kernel happens to use cuDNN, which manages its own

754 | Chapter 19: Training and Deploying TensorFlow Models at Scale

12 This can be useful if you want to guarantee perfect reproducibility, as I explain in this video, based on TF 1.

13 At the time of writing, it only prefetches the data to the CPU RAM, but use tf.data.experimental.prefetch
_to_device() to make it prefetch the data and push it to the device of your choice so that the GPU does not
waste time waiting for the data to be transferred.

intra-op thread pool and runs the operation across many GPU threads in parallel.
Suppose C finishes first. The dependency counters of D and E are decremented and
they reach 0, so both operations are pushed to GPU #0’s evaluation queue, and they
are executed sequentially. Note that C only gets evaluated once, even though both
D and E depend on it. Suppose B finishes next. Then F’s dependency counter is
decremented from 4 to 3, and since that’s not 0, it does not run yet. Once A, D, and
E are finished, then F’s dependency counter reaches 0, and it is pushed to the CPU’s
evaluation queue and evaluated. Finally, TensorFlow returns the requested outputs.

An extra bit of magic that TensorFlow performs is when the TF function modifies a
stateful resource, such as a variable: it ensures that the order of execution matches the
order in the code, even if there is no explicit dependency between the statements. For
example, if your TF function contains v.assign_add(1) followed by v.assign(v *
2), TensorFlow will ensure that these operations are executed in that order.

You can control the number of threads in the inter-op thread
pool by calling tf.config.threading.set_inter_op_parallel

ism_threads(). To set the number of intra-op threads, use
tf.config.threading.set_intra_op_parallelism_threads().
This is useful if you do not want TensorFlow to use all the CPU
cores or if you want it to be single-threaded.12

With that, you have all you need to run any operation on any device, and exploit the
power of your GPUs! Here are some of the things you could do:

• You could train several models in parallel, each on its own GPU: just•
write a training script for each model and run them in parallel, setting
CUDA_DEVICE_ORDER and CUDA_VISIBLE_DEVICES so that each script only sees
a single GPU device. This is great for hyperparameter tuning, as you can train
in parallel multiple models with different hyperparameters. If you have a single
machine with two GPUs, and it takes one hour to train one model on one GPU,
then training two models in parallel, each on its own dedicated GPU, will take
just one hour. Simple!

• You could train a model on a single GPU and perform all the preprocessing in•
parallel on the CPU, using the dataset’s prefetch() method13 to prepare the next
few batches in advance so that they are ready when the GPU needs them (see
Chapter 13).

Using GPUs to Speed Up Computations | 755

https://homl.info/repro

14 If the two CNNs are identical, then it is called a Siamese neural network.

• If your model takes two images as input and processes them using two CNNs•
before joining their outputs,14 then it will probably run much faster if you place
each CNN on a different GPU.

• You can create an efficient ensemble: just place a different trained model on each•
GPU so that you can get all the predictions much faster to produce the ensemble’s
final prediction.

But what if you want to speed up training by using multiple GPUs?

Training Models Across Multiple Devices
There are two main approaches to training a single model across multiple devices:
model parallelism, where the model is split across the devices, and data parallelism,
where the model is replicated across every device, and each replica is trained on a
different subset of the data. Let’s look at these two options.

Model Parallelism
So far we have trained each neural network on a single device. What if we want
to train a single neural network across multiple devices? This requires chopping
the model into separate chunks and running each chunk on a different device.
Unfortunately, such model parallelism turns out to be pretty tricky, and its effective‐
ness really depends on the architecture of your neural network. For fully connected
networks, there is generally not much to be gained from this approach (see Fig‐
ure 19-11). Intuitively, it may seem that an easy way to split the model is to place each
layer on a different device, but this does not work because each layer needs to wait
for the output of the previous layer before it can do anything. So perhaps you can
slice it vertically—for example, with the left half of each layer on one device, and the
right part on another device? This is slightly better, since both halves of each layer can
indeed work in parallel, but the problem is that each half of the next layer requires
the output of both halves, so there will be a lot of cross-device communication
(represented by the dashed arrows). This is likely to completely cancel out the benefit
of the parallel computation, since cross-device communication is slow (and even
more so when the devices are located on different machines).

756 | Chapter 19: Training and Deploying TensorFlow Models at Scale

Figure 19-11. Splitting a fully connected neural network

Some neural network architectures, such as convolutional neural networks (see
Chapter 14), contain layers that are only partially connected to the lower layers, so it
is much easier to distribute chunks across devices in an efficient way (Figure 19-12).

Figure 19-12. Splitting a partially connected neural network

Training Models Across Multiple Devices | 757

15 If you are interested in going further with model parallelism, check out Mesh TensorFlow.

Deep recurrent neural networks (see Chapter 15) can be split a bit more efficiently
across multiple GPUs. If you split the network horizontally by placing each layer on a
different device, and feed the network with an input sequence to process, then at the
first time step only one device will be active (working on the sequence’s first value), at
the second step two will be active (the second layer will be handling the output of the
first layer for the first value, while the first layer will be handling the second value),
and by the time the signal propagates to the output layer, all devices will be active
simultaneously (Figure 19-13). There is still a lot of cross-device communication
going on, but since each cell may be fairly complex, the benefit of running multiple
cells in parallel may (in theory) outweigh the communication penalty. However, in
practice a regular stack of LSTM layers running on a single GPU actually runs much
faster.

Figure 19-13. Splitting a deep recurrent neural network

In short, model parallelism may speed up running or training some types of neural
networks, but not all, and it requires special care and tuning, such as making sure
that devices that need to communicate the most run on the same machine.15 Next
we’ll look at a much simpler and generally more efficient option: data parallelism.

758 | Chapter 19: Training and Deploying TensorFlow Models at Scale

https://github.com/tensorflow/mesh

Data Parallelism
Another way to parallelize the training of a neural network is to replicate it on every
device and run each training step simultaneously on all replicas, using a different
mini-batch for each. The gradients computed by each replica are then averaged, and
the result is used to update the model parameters. This is called data parallelism, or
sometimes single program, multiple data (SPMD). There are many variants of this
idea, so let’s look at the most important ones.

Data parallelism using the mirrored strategy
Arguably the simplest approach is to completely mirror all the model parameters
across all the GPUs and always apply the exact same parameter updates on every
GPU. This way, all replicas always remain perfectly identical. This is called the
mirrored strategy, and it turns out to be quite efficient, especially when using a single
machine (see Figure 19-14).

Figure 19-14. Data parallelism using the mirrored strategy

Training Models Across Multiple Devices | 759

The tricky part when using this approach is to efficiently compute the mean of all
the gradients from all the GPUs and distribute the result across all the GPUs. This
can be done using an AllReduce algorithm, a class of algorithms where multiple nodes
collaborate to efficiently perform a reduce operation (such as computing the mean,
sum, and max), while ensuring that all nodes obtain the same final result. Fortunately,
there are off-the-shelf implementations of such algorithms, as you will see.

Data parallelism with centralized parameters
Another approach is to store the model parameters outside of the GPU devices
performing the computations (called workers); for example, on the CPU (see Fig‐
ure 19-15). In a distributed setup, you may place all the parameters on one or more
CPU-only servers called parameter servers, whose only role is to host and update the
parameters.

Figure 19-15. Data parallelism with centralized parameters

Whereas the mirrored strategy imposes synchronous weight updates across all GPUs,
this centralized approach allows either synchronous or asynchronous updates. Let’s
take a look at the pros and cons of both options.

760 | Chapter 19: Training and Deploying TensorFlow Models at Scale

16 This name is slightly confusing because it sounds like some replicas are special, doing nothing. In reality, all
replicas are equivalent: they all work hard to be among the fastest at each training step, and the losers vary
at every step (unless some devices are really slower than others). However, it does mean that if one or two
servers crash, training will continue just fine.

Synchronous updates. With synchronous updates, the aggregator waits until all gradi‐
ents are available before it computes the average gradients and passes them to the
optimizer, which will update the model parameters. Once a replica has finished
computing its gradients, it must wait for the parameters to be updated before it can
proceed to the next mini-batch. The downside is that some devices may be slower
than others, so the fast devices will have to wait for the slow ones at every step, mak‐
ing the whole process as slow as the slowest device. Moreover, the parameters will be
copied to every device almost at the same time (immediately after the gradients are
applied), which may saturate the parameter servers’ bandwidth.

To reduce the waiting time at each step, you could ignore the gradi‐
ents from the slowest few replicas (typically ~10%). For example,
you could run 20 replicas, but only aggregate the gradients from
the fastest 18 replicas at each step, and just ignore the gradients
from the last 2. As soon as the parameters are updated, the first
18 replicas can start working again immediately, without having to
wait for the 2 slowest replicas. This setup is generally described as
having 18 replicas plus 2 spare replicas.16

Asynchronous updates. With asynchronous updates, whenever a replica has finished
computing the gradients, the gradients are immediately used to update the model
parameters. There is no aggregation (it removes the “mean” step in Figure 19-15)
and no synchronization. Replicas work independently of the other replicas. Since
there is no waiting for the other replicas, this approach runs more training steps per
minute. Moreover, although the parameters still need to be copied to every device at
every step, this happens at different times for each replica, so the risk of bandwidth
saturation is reduced.

Data parallelism with asynchronous updates is an attractive choice because of its
simplicity, the absence of synchronization delay, and its better use of the bandwidth.
However, although it works reasonably well in practice, it is almost surprising that
it works at all! Indeed, by the time a replica has finished computing the gradients
based on some parameter values, these parameters will have been updated several
times by other replicas (on average N – 1 times, if there are N replicas), and there is
no guarantee that the computed gradients will still be pointing in the right direction
(see Figure 19-16). When gradients are severely out of date, they are called stale
gradients: they can slow down convergence, introducing noise and wobble effects

Training Models Across Multiple Devices | 761

17 Jianmin Chen et al., “Revisiting Distributed Synchronous SGD”, arXiv preprint arXiv:1604.00981 (2016).

(the learning curve may contain temporary oscillations), or they can even make the
training algorithm diverge.

Figure 19-16. Stale gradients when using asynchronous updates

There are a few ways you can reduce the effect of stale gradients:

• Reduce the learning rate.•
• Drop stale gradients or scale them down.•
• Adjust the mini-batch size.•
• Start the first few epochs using just one replica (this is called the warmup phase).•

Stale gradients tend to be more damaging at the beginning of training, when
gradients are typically large and the parameters have not settled into a valley
of the cost function yet, so different replicas may push the parameters in quite
different directions.

A paper published by the Google Brain team in 201617 benchmarked various
approaches and found that using synchronous updates with a few spare replicas
was more efficient than using asynchronous updates, not only converging faster but
also producing a better model. However, this is still an active area of research, so you
should not rule out asynchronous updates just yet.

762 | Chapter 19: Training and Deploying TensorFlow Models at Scale

https://homl.info/68

18 Aaron Harlap et al., “PipeDream: Fast and Efficient Pipeline Parallel DNN Training”, arXiv preprint
arXiv:1806.03377 (2018).

Bandwidth saturation
Whether you use synchronous or asynchronous updates, data parallelism with cen‐
tralized parameters still requires communicating the model parameters from the
parameter servers to every replica at the beginning of each training step, and the
gradients in the other direction at the end of each training step. Similarly, when using
the mirrored strategy, the gradients produced by each GPU will need to be shared
with every other GPU. Unfortunately, there often comes a point where adding an
extra GPU will not improve performance at all because the time spent moving the
data into and out of GPU RAM (and across the network in a distributed setup)
will outweigh the speedup obtained by splitting the computation load. At that point,
adding more GPUs will just worsen the bandwidth saturation and actually slow down
training.

Saturation is more severe for large dense models, since they have a lot of parameters
and gradients to transfer. It is less severe for small models (but the parallelization gain
is limited) and for large sparse models, where the gradients are typically mostly zeros
and so can be communicated efficiently. Jeff Dean, initiator and lead of the Google
Brain project, reported typical speedups of 25–40× when distributing computations
across 50 GPUs for dense models, and a 300× speedup for sparser models trained
across 500 GPUs. As you can see, sparse models really do scale better. Here are a few
concrete examples:

• Neural machine translation: 6× speedup on 8 GPUs•
• Inception/ImageNet: 32× speedup on 50 GPUs•
• RankBrain: 300× speedup on 500 GPUs•

There is plenty of research going on to alleviate the bandwidth saturation issue, with
the goal of allowing training to scale linearly with the number of GPUs available. For
example, a 2018 paper18 by a team of researchers from Carnegie Mellon University,
Stanford University, and Microsoft Research proposed a system called PipeDream
that managed to reduce network communications by over 90%, making it possible to
train large models across many machines. They achieved this using a new technique
called pipeline parallelism, which combines model parallelism and data parallelism:
the model is chopped into consecutive parts, called stages, each of which is trained on
a different machine. This results in an asynchronous pipeline in which all machines
work in parallel with very little idle time. During training, each stage alternates one
round of forward propagation and one round of backpropagation (see Figure 19-17):
it pulls a mini-batch from its input queue, processes it, and sends the outputs to the
next stage’s input queue, then it pulls one mini-batch of gradients from its gradient

Training Models Across Multiple Devices | 763

https://homl.info/69
https://homl.info/pipedream

19 Paul Barham et al., “Pathways: Asynchronous Distributed Dataflow for ML”, arXiv preprint arXiv:2203.12533
(2022).

queue, backpropagates these gradients and updates its own model parameters, and
pushes the backpropagated gradients to the previous stage’s gradient queue. It then
repeats the whole process again and again. Each stage can also use regular data
parallelism (e.g., using the mirrored strategy), independently from the other stages.

Figure 19-17. PipeDream’s pipeline parallelism

However, as it’s presented here, PipeDream would not work so well. To understand
why, consider mini-batch #5 in Figure 19-17: when it went through stage 1 during
the forward pass, the gradients from mini-batch #4 had not yet been backpropagated
through that stage, but by the time #5’s gradients flow back to stage 1, #4’s gradients
will have been used to update the model parameters, so #5’s gradients will be a
bit stale. As we have seen, this can degrade training speed and accuracy, and even
make it diverge: the more stages there are, the worse this problem becomes. The
paper’s authors proposed methods to mitigate this issue, though: for example, each
stage saves weights during forward propagation and restores them during backpro‐
pagation, to ensure that the same weights are used for both the forward pass and
the backward pass. This is called weight stashing. Thanks to this, PipeDream demon‐
strates impressive scaling capability, well beyond simple data parallelism.

The latest breakthrough in this field of research was published in a 2022 paper19 by
Google researchers: they developed a system called Pathways that uses automated
model parallelism, asynchronous gang scheduling, and other techniques to reach
close to 100% hardware utilization across thousands of TPUs! Scheduling means
organizing when and where each task must run, and gang scheduling means running
related tasks at the same time in parallel and close to each other to reduce the time
tasks have to wait for the others’ outputs. As we saw in Chapter 16, this system was
used to train a massive language model across over 6,000 TPUs, with close to 100%
hardware utilization: that’s a mindblowing engineering feat.

At the time of writing, Pathways is not public yet, but it’s likely that in the near
future you will be able to train huge models on Vertex AI using Pathways or a
similar system. In the meantime, to reduce the saturation problem, you’ll probably
want to use a few powerful GPUs rather than plenty of weak GPUs, and if you need
to train a model across multiple servers, you should group your GPUs on few and

764 | Chapter 19: Training and Deploying TensorFlow Models at Scale

https://homl.info/pathways

very well interconnected servers. You can also try dropping the float precision from
32 bits (tf.float32) to 16 bits (tf.bfloat16). This will cut in half the amount of
data to transfer, often without much impact on the convergence rate or the model’s
performance. Lastly, if you are using centralized parameters, you can shard (split) the
parameters across multiple parameter servers: adding more parameter servers will
reduce the network load on each server and limit the risk of bandwidth saturation.

OK, now that we’ve gone through all the theory, let’s actually train a model across
multiple GPUs!

Training at Scale Using the Distribution Strategies API
Luckily, TensorFlow comes with a very nice API that takes care of all the complexity
of distributing your model across multiple devices and machines: the distribution
strategies API. To train a Keras model across all available GPUs (on a single machine,
for now) using data parallelism with the mirrored strategy, just create a Mirrored
Strategy object, call its scope() method to get a distribution context, and wrap the
creation and compilation of your model inside that context. Then call the model’s
fit() method normally:

strategy = tf.distribute.MirroredStrategy()

with strategy.scope():
 model = tf.keras.Sequential([...]) # create a Keras model normally
 model.compile([...]) # compile the model normally

batch_size = 100 # preferably divisible by the number of replicas
model.fit(X_train, y_train, epochs=10,
 validation_data=(X_valid, y_valid), batch_size=batch_size)

Under the hood, Keras is distribution-aware, so in this MirroredStrategy context
it knows that it must replicate all variables and operations across all available GPU
devices. If you look at the model’s weights, they are of type MirroredVariable:

>>> type(model.weights[0])
tensorflow.python.distribute.values.MirroredVariable

Note that the fit() method will automatically split each training batch across all the
replicas, so it’s preferable to ensure that the batch size is divisible by the number of
replicas (i.e., the number of available GPUs) so that all replicas get batches of the
same size. And that’s all! Training will generally be significantly faster than using a
single device, and the code change was really minimal.

Training Models Across Multiple Devices | 765

20 For more details on AllReduce algorithms, read Yuichiro Ueno’s post on the technologies behind deep
learning and Sylvain Jeaugey’s post on massively scaling deep learning training with NCCL.

Once you have finished training your model, you can use it to make predictions
efficiently: call the predict() method, and it will automatically split the batch across
all replicas, making predictions in parallel. Again, the batch size must be divisible by
the number of replicas. If you call the model’s save() method, it will be saved as a
regular model, not as a mirrored model with multiple replicas. So when you load it, it
will run like a regular model, on a single device: by default on GPU #0, or on the CPU
if there are no GPUs. If you want to load a model and run it on all available devices,
you must call tf.keras.models.load_model() within a distribution context:

with strategy.scope():
 model = tf.keras.models.load_model("my_mirrored_model")

If you only want to use a subset of all the available GPU devices, you can pass the list
to the MirroredStrategy’s constructor:

strategy = tf.distribute.MirroredStrategy(devices=["/gpu:0", "/gpu:1"])

By default, the MirroredStrategy class uses the NVIDIA Collective Communications
Library (NCCL) for the AllReduce mean operation, but you can change it by setting
the cross_device_ops argument to an instance of the tf.distribute.Hierarchical
CopyAllReduce class, or an instance of the tf.distribute.ReductionToOneDevice
class. The default NCCL option is based on the tf.distribute.NcclAllReduce class,
which is usually faster, but this depends on the number and types of GPUs, so you
may want to give the alternatives a try.20

If you want to try using data parallelism with centralized parameters, replace the
MirroredStrategy with the CentralStorageStrategy:

strategy = tf.distribute.experimental.CentralStorageStrategy()

You can optionally set the compute_devices argument to specify the list of devices
you want to use as workers—by default it will use all available GPUs—and you can
optionally set the parameter_device argument to specify the device you want to store
the parameters on. By default it will use the CPU, or the GPU if there is just one.

Now let’s see how to train a model across a cluster of TensorFlow servers!

Training a Model on a TensorFlow Cluster
A TensorFlow cluster is a group of TensorFlow processes running in parallel, usually
on different machines, and talking to each other to complete some work—for exam‐
ple, training or executing a neural network model. Each TF process in the cluster is
called a task, or a TF server. It has an IP address, a port, and a type (also called its

766 | Chapter 19: Training and Deploying TensorFlow Models at Scale

https://homl.info/uenopost
https://homl.info/ncclalgo

role or its job). The type can be either "worker", "chief", "ps" (parameter server), or
"evaluator":

• Each worker performs computations, usually on a machine with one or more•
GPUs.

• The chief performs computations as well (it is a worker), but it also handles extra•
work such as writing TensorBoard logs or saving checkpoints. There is a single
chief in a cluster. If no chief is specified explicitly, then by convention the first
worker is the chief.

• A parameter server only keeps track of variable values, and it is usually on a CPU-•
only machine. This type of task is only used with the ParameterServerStrategy.

• An evaluator obviously takes care of evaluation. This type is not used often, and•
when it’s used, there’s usually just one evaluator.

To start a TensorFlow cluster, you must first define its specification. This means
defining each task’s IP address, TCP port, and type. For example, the following cluster
specification defines a cluster with three tasks (two workers and one parameter server;
see Figure 19-18). The cluster spec is a dictionary with one key per job, and the values
are lists of task addresses (IP:port):

cluster_spec = {
 "worker": [
 "machine-a.example.com:2222", # /job:worker/task:0
 "machine-b.example.com:2222" # /job:worker/task:1
],
 "ps": ["machine-a.example.com:2221"] # /job:ps/task:0
}

In general there will be a single task per machine, but as this example shows, you can
configure multiple tasks on the same machine if you want. In this case, if they share
the same GPUs, make sure the RAM is split appropriately, as discussed earlier.

By default, every task in the cluster may communicate with every
other task, so make sure to configure your firewall to authorize
all communications between these machines on these ports (it’s
usually simpler if you use the same port on every machine).

Training Models Across Multiple Devices | 767

Figure 19-18. An example TensorFlow cluster

When you start a task, you must give it the cluster spec, and you must also tell
it what its type and index are (e.g., worker #0). The simplest way to specify every‐
thing at once (both the cluster spec and the current task’s type and index) is to
set the TF_CONFIG environment variable before starting TensorFlow. It must be a
JSON-encoded dictionary containing a cluster specification (under the "cluster"
key) and the type and index of the current task (under the "task" key). For example,
the following TF_CONFIG environment variable uses the cluster we just defined and
specifies that the task to start is worker #0:

os.environ["TF_CONFIG"] = json.dumps({
 "cluster": cluster_spec,
 "task": {"type": "worker", "index": 0}
})

In general you want to define the TF_CONFIG environment variable
outside of Python, so the code does not need to include the current
task’s type and index (this makes it possible to use the same code
across all workers).

Now let’s train a model on a cluster! We will start with the mirrored strategy. First,
you need to set the TF_CONFIG environment variable appropriately for each task.
There should be no parameter server (remove the "ps" key in the cluster spec), and
in general you will want a single worker per machine. Make extra sure you set a
different task index for each task. Finally, run the following script on every worker:

768 | Chapter 19: Training and Deploying TensorFlow Models at Scale

import tempfile
import tensorflow as tf

strategy = tf.distribute.MultiWorkerMirroredStrategy() # at the start!
resolver = tf.distribute.cluster_resolver.TFConfigClusterResolver()
print(f"Starting task {resolver.task_type} #{resolver.task_id}")
[...] # load and split the MNIST dataset

with strategy.scope():
 model = tf.keras.Sequential([...]) # build the Keras model
 model.compile([...]) # compile the model

model.fit(X_train, y_train, validation_data=(X_valid, y_valid), epochs=10)

if resolver.task_id == 0: # the chief saves the model to the right location
 model.save("my_mnist_multiworker_model", save_format="tf")
else:
 tmpdir = tempfile.mkdtemp() # other workers save to a temporary directory
 model.save(tmpdir, save_format="tf")
 tf.io.gfile.rmtree(tmpdir) # and we can delete this directory at the end!

That’s almost the same code you used earlier, except this time you are using the
MultiWorkerMirroredStrategy. When you start this script on the first workers, they
will remain blocked at the AllReduce step, but training will begin as soon as the last
worker starts up, and you will see them all advancing at exactly the same rate since
they synchronize at each step.

When using the MultiWorkerMirroredStrategy, it’s important to
ensure that all workers do the same thing, including saving model
checkpoints or writing TensorBoard logs, even though you will
only keep what the chief writes. This is because these operations
may need to run the AllReduce operations, so all workers must be
in sync.

There are two AllReduce implementations for this distribution strategy: a ring All‐
Reduce algorithm based on gRPC for the network communications, and NCCL’s
implementation. The best algorithm to use depends on the number of workers, the
number and types of GPUs, and the network. By default, TensorFlow will apply some
heuristics to select the right algorithm for you, but you can force NCCL (or RING)
like this:

strategy = tf.distribute.MultiWorkerMirroredStrategy(
 communication_options=tf.distribute.experimental.CommunicationOptions(
 implementation=tf.distribute.experimental.CollectiveCommunication.NCCL))

Training Models Across Multiple Devices | 769

If you prefer to implement asynchronous data parallelism with parameter servers,
change the strategy to ParameterServerStrategy, add one or more parameter
servers, and configure TF_CONFIG appropriately for each task. Note that although
the workers will work asynchronously, the replicas on each worker will work
synchronously.

Lastly, if you have access to TPUs on Google Cloud—for example, if you use Colab
and you set the accelerator type to TPU—then you can create a TPUStrategy like this:

resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)

This needs to be run right after importing TensorFlow. You can then use this strategy
normally.

If you are a researcher, you may be eligible to use TPUs for free; see
https://tensorflow.org/tfrc for more details.

You can now train models across multiple GPUs and multiple servers: give yourself
a pat on the back! If you want to train a very large model, however, you will need
many GPUs, across many servers, which will require either buying a lot of hardware
or managing a lot of cloud virtual machines. In many cases, it’s less hassle and less
expensive to use a cloud service that takes care of provisioning and managing all this
infrastructure for you, just when you need it. Let’s see how to do that using Vertex AI.

Running Large Training Jobs on Vertex AI
Vertex AI allows you to create custom training jobs with your own training code.
In fact, you can use almost the same training code as you would use on your own
TF cluster. The main thing you must change is where the chief should save the
model, the checkpoints, and the TensorBoard logs. Instead of saving the model to
a local directory, the chief must save it to GCS, using the path provided by Vertex
AI in the AIP_MODEL_DIR environment variable. For the model checkpoints and
TensorBoard logs, you should use the paths contained in the AIP_CHECKPOINT_DIR
and AIP_TENSORBOARD_LOG_DIR environment variables, respectively. Of course, you
must also make sure that the training data can be accessed from the virtual machines,
such as on GCS, or another GCP service like BigQuery, or directly from the web.
Lastly, Vertex AI sets the "chief" task type explicitly, so you should identify the chief
using resolved.task_type == "chief" instead of resolved.task_id == 0:

770 | Chapter 19: Training and Deploying TensorFlow Models at Scale

https://cloud.google.com/tpu
https://tensorflow.org/tfrc

import os
[...] # other imports, create MultiWorkerMirroredStrategy, and resolver

if resolver.task_type == "chief":
 model_dir = os.getenv("AIP_MODEL_DIR") # paths provided by Vertex AI
 tensorboard_log_dir = os.getenv("AIP_TENSORBOARD_LOG_DIR")
 checkpoint_dir = os.getenv("AIP_CHECKPOINT_DIR")
else:
 tmp_dir = Path(tempfile.mkdtemp()) # other workers use temporary dirs
 model_dir = tmp_dir / "model"
 tensorboard_log_dir = tmp_dir / "logs"
 checkpoint_dir = tmp_dir / "ckpt"

callbacks = [tf.keras.callbacks.TensorBoard(tensorboard_log_dir),
 tf.keras.callbacks.ModelCheckpoint(checkpoint_dir)]
[...] # build and compile using the strategy scope, just like earlier
model.fit(X_train, y_train, validation_data=(X_valid, y_valid), epochs=10,
 callbacks=callbacks)
model.save(model_dir, save_format="tf")

If you place the training data on GCS, you can create a
tf.data.TextLineDataset or tf.data.TFRecordDataset to access
it: just use the GCS paths as the filenames (e.g., gs://my_bucket/
data/001.csv). These datasets rely on the tf.io.gfile package to
access files: it supports both local files and GCS files.

Now you can create a custom training job on Vertex AI, based on this script. You’ll
need to specify the job name, the path to your training script, the Docker image to
use for training, the one to use for predictions (after training), any additional Python
libraries you may need, and lastly the bucket that Vertex AI should use as a staging
directory to store the training script. By default, that’s also where the training script
will save the trained model, as well as the TensorBoard logs and model checkpoints (if
any). Let’s create the job:

custom_training_job = aiplatform.CustomTrainingJob(
 display_name="my_custom_training_job",
 script_path="my_vertex_ai_training_task.py",
 container_uri="gcr.io/cloud-aiplatform/training/tf-gpu.2-4:latest",
 model_serving_container_image_uri=server_image,
 requirements=["gcsfs==2022.3.0"], # not needed, this is just an example
 staging_bucket=f"gs://{bucket_name}/staging"
)

Training Models Across Multiple Devices | 771

And now let’s run it on two workers, each with two GPUs:

mnist_model2 = custom_training_job.run(
 machine_type="n1-standard-4",
 replica_count=2,
 accelerator_type="NVIDIA_TESLA_K80",
 accelerator_count=2,
)

And that’s it: Vertex AI will provision the compute nodes you requested (within your
quotas), and it will run your training script across them. Once the job is complete, the
run() method will return a trained model that you can use exactly like the one you
created earlier: you can deploy it to an endpoint, or use it to make batch predictions.
If anything goes wrong during training, you can view the logs in the GCP console:
in the ☰ navigation menu, select Vertex AI → Training, click on your training job,
and click VIEW LOGS. Alternatively, you can click the CUSTOM JOBS tab and copy
the job’s ID (e.g., 1234), then select Logging from the ☰ navigation menu and query
resource.labels.job_id=1234.

To visualize the training progress, just start TensorBoard and
point its --logdir to the GCS path of the logs. It will use applica‐
tion default credentials, which you can set up using gcloud auth
application-default login. Vertex AI also offers hosted Tensor‐
Board servers if you prefer.

If you want to try out a few hyperparameter values, one option is to run multiple jobs.
You can pass the hyperparameter values to your script as command-line arguments
by setting the args parameter when calling the run() method, or you can pass them
as environment variables using the environment_variables parameter.

However, if you want to run a large hyperparameter tuning job on the cloud, a much
better option is to use Vertex AI’s hyperparameter tuning service. Let’s see how.

Hyperparameter Tuning on Vertex AI
Vertex AI’s hyperparameter tuning service is based on a Bayesian optimization algo‐
rithm, capable of quickly finding optimal combinations of hyperparameters. To use
it, you first need to create a training script that accepts hyperparameter values as
command-line arguments. For example, your script could use the argparse standard
library like this:

772 | Chapter 19: Training and Deploying TensorFlow Models at Scale

import argparse

parser = argparse.ArgumentParser()
parser.add_argument("--n_hidden", type=int, default=2)
parser.add_argument("--n_neurons", type=int, default=256)
parser.add_argument("--learning_rate", type=float, default=1e-2)
parser.add_argument("--optimizer", default="adam")
args = parser.parse_args()

The hyperparameter tuning service will call your script multiple times, each time
with different hyperparameter values: each run is called a trial, and the set of trials is
called a study. Your training script must then use the given hyperparameter values to
build and compile a model. You can use a mirrored distribution strategy if you want,
in case each trial runs on a multi-GPU machine. Then the script can load the dataset
and train the model. For example:

import tensorflow as tf

def build_model(args):
 with tf.distribute.MirroredStrategy().scope():
 model = tf.keras.Sequential()
 model.add(tf.keras.layers.Flatten(input_shape=[28, 28], dtype=tf.uint8))
 for _ in range(args.n_hidden):
 model.add(tf.keras.layers.Dense(args.n_neurons, activation="relu"))
 model.add(tf.keras.layers.Dense(10, activation="softmax"))
 opt = tf.keras.optimizers.get(args.optimizer)
 opt.learning_rate = args.learning_rate
 model.compile(loss="sparse_categorical_crossentropy", optimizer=opt,
 metrics=["accuracy"])
 return model

[...] # load the dataset
model = build_model(args)
history = model.fit([...])

You can use the AIP_* environment variables we mentioned earlier
to determine where to save the checkpoints, the TensorBoard logs,
and the final model.

Lastly, the script must report the model’s performance back to Vertex AI’s hyperpara‐
meter tuning service, so it can decide which hyperparameters to try next. For this,
you must use the hypertune library, which is automatically installed on Vertex AI
training VMs:

Training Models Across Multiple Devices | 773

import hypertune

hypertune = hypertune.HyperTune()
hypertune.report_hyperparameter_tuning_metric(
 hyperparameter_metric_tag="accuracy", # name of the reported metric
 metric_value=max(history.history["val_accuracy"]), # metric value
 global_step=model.optimizer.iterations.numpy(),
)

Now that your training script is ready, you need to define the type of machine you
would like to run it on. For this, you must define a custom job, which Vertex AI will
use as a template for each trial:

trial_job = aiplatform.CustomJob.from_local_script(
 display_name="my_search_trial_job",
 script_path="my_vertex_ai_trial.py", # path to your training script
 container_uri="gcr.io/cloud-aiplatform/training/tf-gpu.2-4:latest",
 staging_bucket=f"gs://{bucket_name}/staging",
 accelerator_type="NVIDIA_TESLA_K80",
 accelerator_count=2, # in this example, each trial will have 2 GPUs
)

Finally, you’re ready to create and run the hyperparameter tuning job:

from google.cloud.aiplatform import hyperparameter_tuning as hpt

hp_job = aiplatform.HyperparameterTuningJob(
 display_name="my_hp_search_job",
 custom_job=trial_job,
 metric_spec={"accuracy": "maximize"},
 parameter_spec={
 "learning_rate": hpt.DoubleParameterSpec(min=1e-3, max=10, scale="log"),
 "n_neurons": hpt.IntegerParameterSpec(min=1, max=300, scale="linear"),
 "n_hidden": hpt.IntegerParameterSpec(min=1, max=10, scale="linear"),
 "optimizer": hpt.CategoricalParameterSpec(["sgd", "adam"]),
 },
 max_trial_count=100,
 parallel_trial_count=20,
)
hp_job.run()

Here, we tell Vertex AI to maximize the metric named "accuracy": this name must
match the name of the metric reported by the training script. We also define the
search space, using a log scale for the learning rate and a linear (i.e., uniform)
scale for the other hyperparameters. The hyperparameter names must match the
command-line arguments of the training script. Then we set the maximum number
of trials to 100, and the maximum number of trials running in parallel to 20. If you
increase the number of parallel trials to (say) 60, the total search time will be reduced
significantly, by a factor of up to 3. But the first 60 trials will be started in parallel, so
they will not benefit from the other trials’ feedback. Therefore, you should increase
the max number of trials to compensate—for example, up to about 140.

774 | Chapter 19: Training and Deploying TensorFlow Models at Scale

This will take quite a while. Once the job is completed, you can fetch the trial results
using hp_job.trials. Each trial result is represented as a protobuf object, containing
the hyperparameter values and the resulting metrics. Let’s find the best trial:

def get_final_metric(trial, metric_id):
 for metric in trial.final_measurement.metrics:
 if metric.metric_id == metric_id:
 return metric.value

trials = hp_job.trials
trial_accuracies = [get_final_metric(trial, "accuracy") for trial in trials]
best_trial = trials[np.argmax(trial_accuracies)]

Now let’s look at this trial’s accuracy, and its hyperparameter values:

>>> max(trial_accuracies)
0.977400004863739
>>> best_trial.id
'98'
>>> best_trial.parameters
[parameter_id: "learning_rate" value { number_value: 0.001 },
 parameter_id: "n_hidden" value { number_value: 8.0 },
 parameter_id: "n_neurons" value { number_value: 216.0 },
 parameter_id: "optimizer" value { string_value: "adam" }
]

That’s it! Now you can get this trial’s SavedModel, optionally train it a bit more, and
deploy it to production.

Vertex AI also includes an AutoML service, which completely takes
care of finding the right model architecture and training it for you.
All you need to do is upload your dataset to Vertex AI using a
special format that depends on the type of dataset (images, text,
tabular, video, etc.), then create an AutoML training job, pointing
to the dataset and specifying the maximum number of compute
hours you’re willing to spend. See the notebook for an example.

Hyperparameter Tuning Using Keras Tuner on Vertex AI
Instead of using Vertex AI’s hyperparameter tuning service, you can use Keras Tuner
(introduced in Chapter 10) and run it on Vertex AI VMs. Keras Tuner provides a sim‐
ple way to scale hyperparameter search by distributing it across multiple machines:
it only requires setting three environment variables on each machine, then running
your regular Keras Tuner code on each machine. You can use the exact same script on
all machines. One of the machines acts as the chief (i.e., the oracle), and the others act
as workers. Each worker asks the chief which hyperparameter values to try, then the
worker trains the model using these hyperparameter values, and finally it reports the

Training Models Across Multiple Devices | 775

model’s performance back to the chief, which can then decide which hyperparameter
values the worker should try next.

The three environment variables you need to set on each machine are:

KERASTUNER_TUNER_ID

This is equal to "chief" on the chief machine, or a unique identifier on each
worker machine, such as "worker0", "worker1", etc.

KERASTUNER_ORACLE_IP

This is the IP address or hostname of the chief machine. The chief itself should
generally use "0.0.0.0" to listen on every IP address on the machine.

KERASTUNER_ORACLE_PORT

This is the TCP port that the chief will be listening on.

You can distribute Keras Tuner across any set of machines. If you want to run it on
Vertex AI machines, then you can spawn a regular training job, and just modify the
training script to set the environment variables properly before using Keras Tuner.
See the notebook for an example.

Now you have all the tools and knowledge you need to create state-of-the-art neural
net architectures and train them at scale using various distribution strategies, on your
own infrastructure or on the cloud, and then deploy them anywhere. In other words,
you now have superpowers: use them well!

Exercises
1. What does a SavedModel contain? How do you inspect its content?1.
2. When should you use TF Serving? What are its main features? What are some2.

tools you can use to deploy it?
3. How do you deploy a model across multiple TF Serving instances?3.
4. When should you use the gRPC API rather than the REST API to query a model4.

served by TF Serving?
5. What are the different ways TFLite reduces a model’s size to make it run on a5.

mobile or embedded device?
6. What is quantization-aware training, and why would you need it?6.
7. What are model parallelism and data parallelism? Why is the latter generally7.

recommended?
8. When training a model across multiple servers, what distribution strategies can8.

you use? How do you choose which one to use?

776 | Chapter 19: Training and Deploying TensorFlow Models at Scale

9. Train a model (any model you like) and deploy it to TF Serving or Google Vertex9.
AI. Write the client code to query it using the REST API or the gRPC API.
Update the model and deploy the new version. Your client code will now query
the new version. Roll back to the first version.

10. Train any model across multiple GPUs on the same machine using the Mirrored10.
Strategy (if you do not have access to GPUs, you can use Google Colab with
a GPU runtime and create two logical GPUs). Train the model again using the
CentralStorageStrategy and compare the training time.

11. Fine-tune a model of your choice on Vertex AI, using either Keras Tuner or11.
Vertex AI’s hyperparameter tuning service.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

Thank You!
Before we close the last chapter of this book, I would like to thank you for reading it
up to the last paragraph. I truly hope that you had as much fun reading this book as I
had writing it, and that it will be useful for your projects, big or small.

If you find errors, please send feedback. More generally, I would love to know what
you think, so please don’t hesitate to contact me via O’Reilly, through the ageron/
handson-ml3 GitHub project, or on Twitter at @aureliengeron.

Going forward, my best advice to you is to practice and practice: try going through all
the exercises (if you have not done so already), play with the notebooks, join Kaggle
or some other ML community, watch ML courses, read papers, attend conferences,
and meet experts. Things move fast, so try to keep up to date. Several YouTube
channels regularly present deep learning papers in great detail, in a very approachable
way. I particularly recommend the channels by Yannic Kilcher, Letitia Parcalabescu,
and Xander Steenbrugge. For fascinating ML discussions and higher-level insights,
make sure to check out ML Street Talk, and Lex Fridman’s channel. It also helps
tremendously to have a concrete project to work on, whether it is for work or for fun
(ideally for both), so if there’s anything you have always dreamed of building, give
it a shot! Work incrementally; don’t shoot for the moon right away, but stay focused
on your project and build it piece by piece. It will require patience and perseverance,
but when you have a walking robot, or a working chatbot, or whatever else you fancy
building, it will be immensely rewarding!

My greatest hope is that this book will inspire you to build a wonderful ML applica‐
tion that will benefit all of us. What will it be?

—Aurélien Géron

Thank You! | 777

https://homl.info/colab3

APPENDIX A

Machine Learning Project Checklist

This checklist can guide you through your machine learning projects. There are eight
main steps:

1. Frame the problem and look at the big picture.1.
2. Get the data.2.
3. Explore the data to gain insights.3.
4. Prepare the data to better expose the underlying data patterns to machine learn‐4.

ing algorithms.
5. Explore many different models and shortlist the best ones.5.
6. Fine-tune your models and combine them into a great solution.6.
7. Present your solution.7.
8. Launch, monitor, and maintain your system.8.

Obviously, you should feel free to adapt this checklist to your needs.

Frame the Problem and Look at the Big Picture
1. Define the objective in business terms.1.
2. How will your solution be used?2.
3. What are the current solutions/workarounds (if any)?3.
4. How should you frame this problem (supervised/unsupervised, online/offline,4.

etc.)?
5. How should performance be measured?5.
6. Is the performance measure aligned with the business objective?6.

779

7. What would be the minimum performance needed to reach the business objec‐7.
tive?

8. What are comparable problems? Can you reuse experience or tools?8.
9. Is human expertise available?9.

10. How would you solve the problem manually?10.
11. List the assumptions you (or others) have made so far.11.
12. Verify assumptions if possible.12.

Get the Data
Note: automate as much as possible so you can easily get fresh data.

1. List the data you need and how much you need.1.
2. Find and document where you can get that data.2.
3. Check how much space it will take.3.
4. Check legal obligations, and get authorization if necessary.4.
5. Get access authorizations.5.
6. Create a workspace (with enough storage space).6.
7. Get the data.7.
8. Convert the data to a format you can easily manipulate (without changing the8.

data itself).
9. Ensure sensitive information is deleted or protected (e.g., anonymized).9.

10. Check the size and type of data (time series, sample, geographical, etc.).10.
11. Sample a test set, put it aside, and never look at it (no data snooping!).11.

Explore the Data
Note: try to get insights from a field expert for these steps.

1. Create a copy of the data for exploration (sampling it down to a manageable size1.
if necessary).

2. Create a Jupyter notebook to keep a record of your data exploration.2.
3. Study each attribute and its characteristics:3.

• Name•
• Type (categorical, int/float, bounded/unbounded, text, structured, etc.)•
• % of missing values•

780 | Appendix A: Machine Learning Project Checklist

• Noisiness and type of noise (stochastic, outliers, rounding errors, etc.)•
• Usefulness for the task•
• Type of distribution (Gaussian, uniform, logarithmic, etc.)•

4. For supervised learning tasks, identify the target attribute(s).4.
5. Visualize the data.5.
6. Study the correlations between attributes.6.
7. Study how you would solve the problem manually.7.
8. Identify the promising transformations you may want to apply.8.
9. Identify extra data that would be useful (go back to “Get the Data” on page 780).9.

10. Document what you have learned.10.

Prepare the Data
Notes:

• Work on copies of the data (keep the original dataset intact).•
• Write functions for all data transformations you apply, for five reasons:•

— So you can easily prepare the data the next time you get a fresh dataset—
— So you can apply these transformations in future projects—
— To clean and prepare the test set—
— To clean and prepare new data instances once your solution is live—
— To make it easy to treat your preparation choices as hyperparameters—

1. Clean the data:1.
• Fix or remove outliers (optional).•
• Fill in missing values (e.g., with zero, mean, median…) or drop their rows (or•

columns).
2. Perform feature selection (optional):2.

• Drop the attributes that provide no useful information for the task.•
3. Perform feature engineering, where appropriate:3.

• Discretize continuous features.•
• Decompose features (e.g., categorical, date/time, etc.).•
• Add promising transformations of features (e.g., log(x), sqrt(x), x2, etc.).•
• Aggregate features into promising new features.•

Machine Learning Project Checklist | 781

4. Perform feature scaling:4.
• Standardize or normalize features.•

Shortlist Promising Models
Notes:

• If the data is huge, you may want to sample smaller training sets so you can train•
many different models in a reasonable time (be aware that this penalizes complex
models such as large neural nets or random forests).

• Once again, try to automate these steps as much as possible.•

1. Train many quick-and-dirty models from different categories (e.g., linear, naive1.
Bayes, SVM, random forest, neural net, etc.) using standard parameters.

2. Measure and compare their performance:2.
• For each model, use N-fold cross-validation and compute the mean and stan‐•

dard deviation of the performance measure on the N folds.
3. Analyze the most significant variables for each algorithm.3.
4. Analyze the types of errors the models make:4.

• What data would a human have used to avoid these errors?•
5. Perform a quick round of feature selection and engineering.5.
6. Perform one or two more quick iterations of the five previous steps.6.
7. Shortlist the top three to five most promising models, preferring models that7.

make different types of errors.

Fine-Tune the System
Notes:

• You will want to use as much data as possible for this step, especially as you move•
toward the end of fine-tuning.

• As always, automate what you can.•

1. Fine-tune the hyperparameters using cross-validation:1.
• Treat your data transformation choices as hyperparameters, especially when•

you are not sure about them (e.g., if you’re not sure whether to replace missing
values with zeros or with the median value, or to just drop the rows).

782 | Appendix A: Machine Learning Project Checklist

1 Jasper Snoek et al., “Practical Bayesian Optimization of Machine Learning Algorithms”, Proceedings of the 25th
International Conference on Neural Information Processing Systems 2 (2012): 2951–2959.

• Unless there are very few hyperparameter values to explore, prefer random•
search over grid search. If training is very long, you may prefer a Bayesian
optimization approach (e.g., using Gaussian process priors, as described by
Jasper Snoek et al.1).

2. Try ensemble methods. Combining your best models will often produce better2.
performance than running them individually.

3. Once you are confident about your final model, measure its performance on the3.
test set to estimate the generalization error.

Don’t tweak your model after measuring the generalization error:
you would just start overfitting the test set.

Present Your Solution
1. Document what you have done.1.
2. Create a nice presentation:2.

• Make sure you highlight the big picture first.•
3. Explain why your solution achieves the business objective.3.
4. Don’t forget to present interesting points you noticed along the way:4.

• Describe what worked and what did not.•
• List your assumptions and your system’s limitations.•

5. Ensure your key findings are communicated through beautiful visualizations5.
or easy-to-remember statements (e.g., “the median income is the number-one
predictor of housing prices”).

Launch!
1. Get your solution ready for production (plug into production data inputs, write1.

unit tests, etc.).
2. Write monitoring code to check your system’s live performance at regular inter‐2.

vals and trigger alerts when it drops:
• Beware of slow degradation: models tend to “rot” as data evolves.•

Machine Learning Project Checklist | 783

https://homl.info/134

• Measuring performance may require a human pipeline (e.g., via a crowdsourc‐•
ing service).

• Also monitor your inputs’ quality (e.g., a malfunctioning sensor sending ran‐•
dom values, or another team’s output becoming stale). This is particularly
important for online learning systems.

3. Retrain your models on a regular basis on fresh data (automate as much as3.
possible).

784 | Appendix A: Machine Learning Project Checklist

APPENDIX B

Autodiff

This appendix explains how TensorFlow’s autodifferentiation (autodiff) feature
works, and how it compares to other solutions.

Suppose you define a function f(x, y) = x2y + y + 2, and you need its partial derivatives
∂f/∂x and ∂f/∂y, typically to perform gradient descent (or some other optimization
algorithm). Your main options are manual differentiation, finite difference approxi‐
mation, forward-mode autodiff, and reverse-mode autodiff. TensorFlow implements
reverse-mode autodiff, but to understand it, it’s useful to look at the other options
first. So let’s go through each of them, starting with manual differentiation.

Manual Differentiation
The first approach to compute derivatives is to pick up a pencil and a piece of paper
and use your calculus knowledge to derive the appropriate equation. For the function
f(x, y) just defined, it is not too hard; you just need to use five rules:

• The derivative of a constant is 0.•
• The derivative of λx is λ (where λ is a constant).•
• The derivative of xλ is λxλ – 1, so the derivative of x2 is 2x.•
• The derivative of a sum of functions is the sum of these functions’ derivatives.•
• The derivative of λ times a function is λ times its derivative.•

785

From these rules, you can derive Equation B-1.

Equation B-1. Partial derivatives of f(x, y)

∂ f
∂x = ∂ x2y

∂x + ∂y
∂x + ∂2

∂x = y∂ x2

∂x + 0 + 0 = 2xy

∂ f
∂y = ∂ x2y

∂y + ∂y
∂y + ∂2

∂y = x2 + 1 + 0 = x2 + 1

This approach can become very tedious for more complex functions, and you run
the risk of making mistakes. Fortunately, there are other options. Let’s look at finite
difference approximation now.

Finite Difference Approximation
Recall that the derivative h′(x0) of a function h(x) at a point x0 is the slope of the
function at that point. More precisely, the derivative is defined as the limit of the
slope of a straight line going through this point x0 and another point x on the
function, as x gets infinitely close to x0 (see Equation B-2).

Equation B-2. Definition of the derivative of a function h(x) at point x0

ℎ′ x0 = lim
x x0

ℎ x − ℎ x0
x − x0

= lim
ε 0

ℎ x0 + ε − ℎ x0
ε

So, if we wanted to calculate the partial derivative of f(x, y) with regard to x at x = 3
and y = 4, we could compute f(3 + ε, 4) – f(3, 4) and divide the result by ε, using a
very small value for ε. This type of numerical approximation of the derivative is called
a finite difference approximation, and this specific equation is called Newton’s difference
quotient. That’s exactly what the following code does:

def f(x, y):
 return x**2*y + y + 2

def derivative(f, x, y, x_eps, y_eps):
 return (f(x + x_eps, y + y_eps) - f(x, y)) / (x_eps + y_eps)

df_dx = derivative(f, 3, 4, 0.00001, 0)
df_dy = derivative(f, 3, 4, 0, 0.00001)

Unfortunately, the result is imprecise (and it gets worse for more complicated func‐
tions). The correct results are respectively 24 and 10, but instead we get:

786 | Appendix B: Autodiff

>>> df_dx
24.000039999805264
>>> df_dy
10.000000000331966

Notice that to compute both partial derivatives, we have to call f() at least three times
(we called it four times in the preceding code, but it could be optimized). If there
were 1,000 parameters, we would need to call f() at least 1,001 times. When you are
dealing with large neural networks, this makes finite difference approximation way
too inefficient.

However, this method is so simple to implement that it is a great tool to check that
the other methods are implemented correctly. For example, if it disagrees with your
manually derived function, then your function probably contains a mistake.

So far, we have considered two ways to compute gradients: using manual differentia‐
tion and using finite difference approximation. Unfortunately, both are fatally flawed
for training a large-scale neural network. So let’s turn to autodiff, starting with
forward mode.

Forward-Mode Autodiff
Figure B-1 shows how forward-mode autodiff works on an even simpler function,
g(x, y) = 5 + xy. The graph for that function is represented on the left. After forward-
mode autodiff, we get the graph on the right, which represents the partial derivative
∂g/∂x = 0 + (0 × x + y × 1) = y (we could similarly obtain the partial derivative with
regard to y).

The algorithm will go through the computation graph from the inputs to the outputs
(hence the name “forward mode”). It starts by getting the partial derivatives of the
leaf nodes. The constant node (5) returns the constant 0, since the derivative of a
constant is always 0. The variable x returns the constant 1 since ∂x/∂x = 1, and the
variable y returns the constant 0 since ∂y/∂x = 0 (if we were looking for the partial
derivative with regard to y, it would be the reverse).

Now we have all we need to move up the graph to the multiplication node in function
g. Calculus tells us that the derivative of the product of two functions u and v is
∂(u × v)/∂x = ∂v/∂x × u + v × ∂u/∂x. We can therefore construct a large part of the
graph on the right, representing 0 × x + y × 1.

Finally, we can go up to the addition node in function g. As mentioned, the derivative
of a sum of functions is the sum of these functions’ derivatives, so we just need to
create an addition node and connect it to the parts of the graph we have already
computed. We get the correct partial derivative: ∂g/∂x = 0 + (0 × x + y × 1).

Autodiff | 787

Figure B-1. Forward-mode autodiff

However, this equation can be simplified (a lot). By applying a few pruning steps to
the computation graph to get rid of all the unnecessary operations, we get a much
smaller graph with just one node: ∂g/∂x = y. In this case simplification is fairly easy,
but for a more complex function forward-mode autodiff can produce a huge graph
that may be tough to simplify and lead to suboptimal performance.

Note that we started with a computation graph, and forward-mode autodiff produced
another computation graph. This is called symbolic differentiation, and it has two nice
features: first, once the computation graph of the derivative has been produced, we
can use it as many times as we want to compute the derivatives of the given function
for any value of x and y; second, we can run forward-mode autodiff again on the
resulting graph to get second-order derivatives if we ever need to (i.e., derivatives of
derivatives). We could even compute third-order derivatives, and so on.

But it is also possible to run forward-mode autodiff without constructing a graph
(i.e., numerically, not symbolically), just by computing intermediate results on the
fly. One way to do this is to use dual numbers, which are weird but fascinating
numbers of the form a + bε, where a and b are real numbers and ε is an infinitesimal
number such that ε2 = 0 (but ε ≠ 0). You can think of the dual number 42 + 24ε as
something akin to 42.0000⋯000024 with an infinite number of 0s (but of course this

788 | Appendix B: Autodiff

is simplified just to give you some idea of what dual numbers are). A dual number is
represented in memory as a pair of floats. For example, 42 + 24ε is represented by the
pair (42.0, 24.0).

Dual numbers can be added, multiplied, and so on, as shown in Equation B-3.

Equation B-3. A few operations with dual numbers

λ a + bε = λa + λbε
a + bε + c + dε = a + c + b + d ε

a + bε × c + dε = ac + ad + bc ε + bd ε2 = ac + ad + bc ε

Most importantly, it can be shown that h(a + bε) = h(a) + b × h′(a)ε, so computing
h(a + ε) gives you both h(a) and the derivative h′(a) in just one shot. Figure B-2
shows that the partial derivative of f(x, y) with regard to x at x = 3 and y = 4 (which
I will write ∂f/∂x (3, 4)) can be computed using dual numbers. All we need to do is
compute f(3 + ε, 4); this will output a dual number whose first component is equal to
f(3, 4) and whose second component is equal to ∂f/∂x (3, 4).

Figure B-2. Forward-mode autodiff using dual numbers

Autodiff | 789

To compute ∂f/∂y (3, 4) we would have to go through the graph again, but this time
with x = 3 and y = 4 + ε.

So, forward-mode autodiff is much more accurate than finite difference approxima‐
tion, but it suffers from the same major flaw, at least when there are many inputs and
few outputs (as is the case when dealing with neural networks): if there were 1,000
parameters, it would require 1,000 passes through the graph to compute all the partial
derivatives. This is where reverse-mode autodiff shines: it can compute all of them in
just two passes through the graph. Let’s see how.

Reverse-Mode Autodiff
Reverse-mode autodiff is the solution implemented by TensorFlow. It first goes
through the graph in the forward direction (i.e., from the inputs to the output) to
compute the value of each node. Then it does a second pass, this time in the reverse
direction (i.e., from the output to the inputs), to compute all the partial derivatives.
The name “reverse mode” comes from this second pass through the graph, where
gradients flow in the reverse direction. Figure B-3 represents the second pass. During
the first pass, all the node values were computed, starting from x = 3 and y = 4. You
can see those values at the bottom right of each node (e.g., x × x = 9). The nodes are
labeled n1 to n7 for clarity. The output node is n7: f(3, 4) = n7 = 42.

Figure B-3. Reverse-mode autodiff

790 | Appendix B: Autodiff

The idea is to gradually go down the graph, computing the partial derivative of f(x, y)
with regard to each consecutive node, until we reach the variable nodes. For this,
reverse-mode autodiff relies heavily on the chain rule, shown in Equation B-4.

Equation B-4. Chain rule

∂ f
∂x = ∂ f

∂ni
×

∂ni
∂x

Since n7 is the output node, f = n7 so ∂f / ∂n7 = 1.

Let’s continue down the graph to n5: how much does f vary when n5 varies? The
answer is ∂f / ∂n5 = ∂f / ∂n7 × ∂n7 / ∂n5. We already know that ∂f / ∂n7 = 1, so all we
need is ∂n7 / ∂n5. Since n7 simply performs the sum n5 + n6, we find that ∂n7 / ∂n5 = 1,
so ∂f / ∂n5 = 1 × 1 = 1.

Now we can proceed to node n4: how much does f vary when n4 varies? The answer is
∂f / ∂n4 = ∂f / ∂n5 × ∂n5 / ∂n4. Since n5 = n4 × n2, we find that ∂n5 / ∂n4 = n2, so ∂f / ∂n4
= 1 × n2 = 4.

The process continues until we reach the bottom of the graph. At that point we will
have calculated all the partial derivatives of f(x, y) at the point x = 3 and y = 4. In this
example, we find ∂f / ∂x = 24 and ∂f / ∂y = 10. Sounds about right!

Reverse-mode autodiff is a very powerful and accurate technique, especially when
there are many inputs and few outputs, since it requires only one forward pass plus
one reverse pass per output to compute all the partial derivatives for all outputs
with regard to all the inputs. When training neural networks, we generally want to
minimize the loss, so there is a single output (the loss), and hence only two passes
through the graph are needed to compute the gradients. Reverse-mode autodiff can
also handle functions that are not entirely differentiable, as long as you ask it to
compute the partial derivatives at points that are differentiable.

In Figure B-3, the numerical results are computed on the fly, at each node. However,
that’s not exactly what TensorFlow does: instead, it creates a new computation graph.
In other words, it implements symbolic reverse-mode autodiff. This way, the compu‐
tation graph to compute the gradients of the loss with regard to all the parameters in
the neural network only needs to be generated once, and then it can be executed over
and over again, whenever the optimizer needs to compute the gradients. Moreover,
this makes it possible to compute higher-order derivatives if needed.

Autodiff | 791

If you ever want to implement a new type of low-level TensorFlow
operation in C++, and you want to make it compatible with auto‐
diff, then you will need to provide a function that returns the par‐
tial derivatives of the function’s outputs with regard to its inputs.
For example, suppose you implement a function that computes the
square of its input: f(x) = x2. In that case you would need to provide
the corresponding derivative function: f′(x) = 2x.

792 | Appendix B: Autodiff

1 If you are not familiar with Unicode code points, please check out https://homl.info/unicode.

APPENDIX C

Special Data Structures

In this appendix we will take a very quick look at the data structures supported by
TensorFlow, beyond regular float or integer tensors. This includes strings, ragged
tensors, sparse tensors, tensor arrays, sets, and queues.

Strings
Tensors can hold byte strings, which is useful in particular for natural language
processing (see Chapter 16):

>>> tf.constant(b"hello world")
<tf.Tensor: shape=(), dtype=string, numpy=b'hello world'>

If you try to build a tensor with a Unicode string, TensorFlow automatically encodes
it to UTF-8:

>>> tf.constant("café")
<tf.Tensor: shape=(), dtype=string, numpy=b'caf\xc3\xa9'>

It is also possible to create tensors representing Unicode strings. Just create an array
of 32-bit integers, each representing a single Unicode code point:1

>>> u = tf.constant([ord(c) for c in "café"])
>>> u
<tf.Tensor: shape=(4,), [...], numpy=array([99, 97, 102, 233], dtype=int32)>

793

https://homl.info/unicode

In tensors of type tf.string, the string length is not part of the
tensor’s shape. In other words, strings are considered as atomic
values. However, in a Unicode string tensor (i.e., an int32 tensor),
the length of the string is part of the tensor’s shape.

The tf.strings package contains several functions to manipulate string tensors,
such as length() to count the number of bytes in a byte string (or the number of
code points if you set unit="UTF8_CHAR"), unicode_encode() to convert a Unicode
string tensor (i.e., int32 tensor) to a byte string tensor, and unicode_decode() to do
the reverse:

>>> b = tf.strings.unicode_encode(u, "UTF-8")
>>> b
<tf.Tensor: shape=(), dtype=string, numpy=b'caf\xc3\xa9'>
>>> tf.strings.length(b, unit="UTF8_CHAR")
<tf.Tensor: shape=(), dtype=int32, numpy=4>
>>> tf.strings.unicode_decode(b, "UTF-8")
<tf.Tensor: shape=(4,), [...], numpy=array([99, 97, 102, 233], dtype=int32)>

You can also manipulate tensors containing multiple strings:

>>> p = tf.constant(["Café", "Coffee", "caffè", "咖啡"])
>>> tf.strings.length(p, unit="UTF8_CHAR")
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([4, 6, 5, 2], dtype=int32)>
>>> r = tf.strings.unicode_decode(p, "UTF8")
>>> r
<tf.RaggedTensor [[67, 97, 102, 233], [67, 111, 102, 102, 101, 101], [99, 97,
102, 102, 232], [21654, 21857]]>

Notice that the decoded strings are stored in a RaggedTensor. What is that?

Ragged Tensors
A ragged tensor is a special kind of tensor that represents a list of arrays of different
sizes. More generally, it is a tensor with one or more ragged dimensions, meaning
dimensions whose slices may have different lengths. In the ragged tensor r, the
second dimension is a ragged dimension. In all ragged tensors, the first dimension is
always a regular dimension (also called a uniform dimension).

All the elements of the ragged tensor r are regular tensors. For example, let’s look at
the second element of the ragged tensor:

>>> r[1]
<tf.Tensor: [...], numpy=array([67, 111, 102, 102, 101, 101], dtype=int32)>

The tf.ragged package contains several functions to create and manipulate ragged
tensors. Let’s create a second ragged tensor using tf.ragged.constant() and concat‐
enate it with the first ragged tensor, along axis 0:

794 | Appendix C: Special Data Structures

>>> r2 = tf.ragged.constant([[65, 66], [], [67]])
>>> tf.concat([r, r2], axis=0)
<tf.RaggedTensor [[67, 97, 102, 233], [67, 111, 102, 102, 101, 101], [99, 97,
102, 102, 232], [21654, 21857], [65, 66], [], [67]]>

The result is not too surprising: the tensors in r2 were appended after the tensors in r
along axis 0. But what if we concatenate r and another ragged tensor along axis 1?

>>> r3 = tf.ragged.constant([[68, 69, 70], [71], [], [72, 73]])
>>> print(tf.concat([r, r3], axis=1))
<tf.RaggedTensor [[67, 97, 102, 233, 68, 69, 70], [67, 111, 102, 102, 101, 101,
71], [99, 97, 102, 102, 232], [21654, 21857, 72, 73]]>

This time, notice that the ith tensor in r and the ith tensor in r3 were concatenated.
Now that’s more unusual, since all of these tensors can have different lengths.

If you call the to_tensor() method, the ragged tensor gets converted to a regular
tensor, padding shorter tensors with zeros to get tensors of equal lengths (you can
change the default value by setting the default_value argument):

>>> r.to_tensor()
<tf.Tensor: shape=(4, 6), dtype=int32, numpy=
array([[67, 97, 102, 233, 0, 0],
 [67, 111, 102, 102, 101, 101],
 [99, 97, 102, 102, 232, 0],
 [21654, 21857, 0, 0, 0, 0]], dtype=int32)>

Many TF operations support ragged tensors. For the full list, see the documentation
of the tf.RaggedTensor class.

Sparse Tensors
TensorFlow can also efficiently represent sparse tensors (i.e., tensors containing
mostly zeros). Just create a tf.SparseTensor, specifying the indices and values of
the nonzero elements and the tensor’s shape. The indices must be listed in “read‐
ing order” (from left to right, and top to bottom). If you are unsure, just use
tf.sparse.reorder(). You can convert a sparse tensor to a dense tensor (i.e., a
regular tensor) using tf.sparse.to_dense():

>>> s = tf.SparseTensor(indices=[[0, 1], [1, 0], [2, 3]],
... values=[1., 2., 3.],
... dense_shape=[3, 4])
...
>>> tf.sparse.to_dense(s)
<tf.Tensor: shape=(3, 4), dtype=float32, numpy=
array([[0., 1., 0., 0.],
 [2., 0., 0., 0.],
 [0., 0., 0., 3.]], dtype=float32)>

Special Data Structures | 795

Note that sparse tensors do not support as many operations as dense tensors. For
example, you can multiply a sparse tensor by any scalar value, and you get a new
sparse tensor, but you cannot add a scalar value to a sparse tensor, as this would not
return a sparse tensor:

>>> s * 42.0
<tensorflow.python.framework.sparse_tensor.SparseTensor at 0x7f84a6749f10>
>>> s + 42.0
[...] TypeError: unsupported operand type(s) for +: 'SparseTensor' and 'float'

Tensor Arrays
A tf.TensorArray represents a list of tensors. This can be handy in dynamic models
containing loops, to accumulate results and later compute some statistics. You can
read or write tensors at any location in the array:

array = tf.TensorArray(dtype=tf.float32, size=3)
array = array.write(0, tf.constant([1., 2.]))
array = array.write(1, tf.constant([3., 10.]))
array = array.write(2, tf.constant([5., 7.]))
tensor1 = array.read(1) # => returns (and zeros out!) tf.constant([3., 10.])

By default, reading an item also replaces it with a tensor of the same shape but full of
zeros. You can set clear_after_read to False if you don’t want this.

When you write to the array, you must assign the output back to
the array, as shown in this code example. If you don’t, although
your code will work fine in eager mode, it will break in graph mode
(these modes are discussed in Chapter 12).

By default, a TensorArray has a fixed size that is set upon creation. Alternatively,
you can set size=0 and dynamic_size=True to let the array grow automatically when
needed. However, this will hinder performance, so if you know the size in advance,
it’s better to use a fixed-size array. You must also specify the dtype, and all elements
must have the same shape as the first one written to the array.

You can stack all the items into a regular tensor by calling the stack() method:

>>> array.stack()
<tf.Tensor: shape=(3, 2), dtype=float32, numpy=
array([[1., 2.],
 [0., 0.],
 [5., 7.]], dtype=float32)>

796 | Appendix C: Special Data Structures

Sets
TensorFlow supports sets of integers or strings (but not floats). It represents sets
using regular tensors. For example, the set {1, 5, 9} is just represented as the tensor
[[1, 5, 9]]. Note that the tensor must have at least two dimensions, and the sets
must be in the last dimension. For example, [[1, 5, 9], [2, 5, 11]] is a tensor
holding two independent sets: {1, 5, 9} and {2, 5, 11}.

The tf.sets package contains several functions to manipulate sets. For example, let’s
create two sets and compute their union (the result is a sparse tensor, so we call
to_dense() to display it):

>>> a = tf.constant([[1, 5, 9]])
>>> b = tf.constant([[5, 6, 9, 11]])
>>> u = tf.sets.union(a, b)
>>> u
<tensorflow.python.framework.sparse_tensor.SparseTensor at 0x132b60d30>
>>> tf.sparse.to_dense(u)
<tf.Tensor: [...], numpy=array([[1, 5, 6, 9, 11]], dtype=int32)>

You can also compute the union of multiple pairs of sets simultaneously. If some sets
are shorter than others, you must pad them with a padding value, such as 0:

>>> a = tf.constant([[1, 5, 9], [10, 0, 0]])
>>> b = tf.constant([[5, 6, 9, 11], [13, 0, 0, 0]])
>>> u = tf.sets.union(a, b)
>>> tf.sparse.to_dense(u)
<tf.Tensor: [...] numpy=array([[1, 5, 6, 9, 11],
 [0, 10, 13, 0, 0]], dtype=int32)>

If you prefer to use a different padding value, such as –1, then you must set
default_value=-1 (or your preferred value) when calling to_dense().

The default default_value is 0, so when dealing with string sets,
you must set this parameter (e.g., to an empty string).

Other functions available in tf.sets include difference(), intersection(), and
size(), which are self-explanatory. If you want to check whether or not a set contains
some given values, you can compute the intersection of that set and the values. If you
want to add some values to a set, you can compute the union of the set and the values.

Special Data Structures | 797

Queues
A queue is a data structure to which you can push data records, and later pull
them out. TensorFlow implements several types of queues in the tf.queue package.
They used to be very important when implementing efficient data loading and pre‐
processing pipelines, but the tf.data API has essentially rendered them useless (except
perhaps in some rare cases) because it is much simpler to use and provides all the
tools you need to build efficient pipelines. For the sake of completeness, though, let’s
take a quick look at them.

The simplest kind of queue is the first-in, first-out (FIFO) queue. To build it, you
need to specify the maximum number of records it can contain. Moreover, each
record is a tuple of tensors, so you must specify the type of each tensor, and option‐
ally their shapes. For example, the following code example creates a FIFO queue with
a maximum of three records, each containing a tuple with a 32-bit integer and a
string. Then it pushes two records to it, looks at the size (which is 2 at this point), and
pulls a record out:

>>> q = tf.queue.FIFOQueue(3, [tf.int32, tf.string], shapes=[(), ()])
>>> q.enqueue([10, b"windy"])
>>> q.enqueue([15, b"sunny"])
>>> q.size()
<tf.Tensor: shape=(), dtype=int32, numpy=2>
>>> q.dequeue()
[<tf.Tensor: shape=(), dtype=int32, numpy=10>,
 <tf.Tensor: shape=(), dtype=string, numpy=b'windy'>]

It is also possible to enqueue and dequeue multiple records at once using
enqueue_many() and dequeue_many() (to use dequeue_many(), you must specify the
shapes argument when you create the queue, as we did previously):

>>> q.enqueue_many([[13, 16], [b'cloudy', b'rainy']])
>>> q.dequeue_many(3)
[<tf.Tensor: [...], numpy=array([15, 13, 16], dtype=int32)>,
 <tf.Tensor: [...], numpy=array([b'sunny', b'cloudy', b'rainy'], dtype=object)>]

Other queue types include:

PaddingFIFOQueue

Same as FIFOQueue, but its dequeue_many() method supports dequeueing mul‐
tiple records of different shapes. It automatically pads the shortest records to
ensure all the records in the batch have the same shape.

PriorityQueue

A queue that dequeues records in a prioritized order. The priority must be a
64-bit integer included as the first element of each record. Surprisingly, records
with a lower priority will be dequeued first. Records with the same priority will
be dequeued in FIFO order.

798 | Appendix C: Special Data Structures

RandomShuffleQueue

A queue whose records are dequeued in random order. This was useful to
implement a shuffle buffer before tf.data existed.

If a queue is already full and you try to enqueue another record, the enqueue*()
method will freeze until a record is dequeued by another thread. Similarly, if a queue
is empty and you try to dequeue a record, the dequeue*() method will freeze until
records are pushed to the queue by another thread.

Special Data Structures | 799

APPENDIX D

TensorFlow Graphs

In this appendix, we will explore the graphs generated by TF functions (see
Chapter 12).

TF Functions and Concrete Functions
TF functions are polymorphic, meaning they support inputs of different types (and
shapes). For example, consider the following tf_cube() function:

@tf.function
def tf_cube(x):
 return x ** 3

Every time you call a TF function with a new combination of input types or shapes,
it generates a new concrete function, with its own graph specialized for this partic‐
ular combination. Such a combination of argument types and shapes is called an
input signature. If you call the TF function with an input signature it has already
seen before, it will reuse the concrete function it generated earlier. For example, if
you call tf_cube(tf.constant(3.0)), the TF function will reuse the same concrete
function it used for tf_cube(tf.constant(2.0)) (for float32 scalar tensors). But it
will generate a new concrete function if you call tf_cube(tf.constant([2.0])) or
tf_cube(tf.constant([3.0])) (for float32 tensors of shape [1]), and yet another for
tf_cube(tf.constant([[1.0, 2.0], [3.0, 4.0]])) (for float32 tensors of shape
[2, 2]). You can get the concrete function for a particular combination of inputs by
calling the TF function’s get_concrete_function() method. It can then be called
like a regular function, but it will only support one input signature (in this example,
float32 scalar tensors):

801

>>> concrete_function = tf_cube.get_concrete_function(tf.constant(2.0))
>>> concrete_function
<ConcreteFunction tf_cube(x) at 0x7F84411F4250>
>>> concrete_function(tf.constant(2.0))
<tf.Tensor: shape=(), dtype=float32, numpy=8.0>

Figure D-1 shows the tf_cube() TF function, after we called tf_cube(2) and
tf_cube(tf.constant(2.0)): two concrete functions were generated, one for each
signature, each with its own optimized function graph (FuncGraph) and its own
function definition (FunctionDef). A function definition points to the parts of the
graph that correspond to the function’s inputs and outputs. In each FuncGraph, the
nodes (ovals) represent operations (e.g., power, constants, or placeholders for argu‐
ments like x), while the edges (the solid arrows between the operations) represent
the tensors that will flow through the graph. The concrete function on the left is
specialized for x=2, so TensorFlow managed to simplify it to just output 8 all the
time (note that the function definition does not even have an input). The concrete
function on the right is specialized for float32 scalar tensors, and it could not be
simplified. If we call tf_cube(tf.constant(5.0)), the second concrete function will
be called, the placeholder operation for x will output 5.0, then the power operation
will compute 5.0 ** 3, so the output will be 125.0.

Figure D-1. The tf_cube() TF function, with its ConcreteFunctions and their
FuncGraphs

The tensors in these graphs are symbolic tensors, meaning they don’t have an actual
value, just a data type, a shape, and a name. They represent the future tensors that
will flow through the graph once an actual value is fed to the placeholder x and the
graph is executed. Symbolic tensors make it possible to specify ahead of time how to
connect operations, and they also allow TensorFlow to recursively infer the data types
and shapes of all tensors, given the data types and shapes of their inputs.

802 | Appendix D: TensorFlow Graphs

1 You can safely ignore it—it is only here for technical reasons, to ensure that TF functions don’t leak internal
structures.

Now let’s continue to peek under the hood, and see how to access function definitions
and function graphs and how to explore a graph’s operations and tensors.

Exploring Function Definitions and Graphs
You can access a concrete function’s computation graph using the graph attribute,
and get the list of its operations by calling the graph’s get_operations() method:

>>> concrete_function.graph
<tensorflow.python.framework.func_graph.FuncGraph at 0x7f84411f4790>
>>> ops = concrete_function.graph.get_operations()
>>> ops
[<tf.Operation 'x' type=Placeholder>,
 <tf.Operation 'pow/y' type=Const>,
 <tf.Operation 'pow' type=Pow>,
 <tf.Operation 'Identity' type=Identity>]

In this example, the first operation represents the input argument x (it is called a
placeholder), the second “operation” represents the constant 3, the third operation
represents the power operation (**), and the final operation represents the output of
this function (it is an identity operation, meaning it will do nothing more than copy
the output of the power operation1). Each operation has a list of input and output
tensors that you can easily access using the operation’s inputs and outputs attributes.
For example, let’s get the list of inputs and outputs of the power operation:

>>> pow_op = ops[2]
>>> list(pow_op.inputs)
[<tf.Tensor 'x:0' shape=() dtype=float32>,
 <tf.Tensor 'pow/y:0' shape=() dtype=float32>]
>>> pow_op.outputs
[<tf.Tensor 'pow:0' shape=() dtype=float32>]

This computation graph is represented in Figure D-2.

TensorFlow Graphs | 803

2 A popular binary format discussed in Chapter 13.

Figure D-2. Example of a computation graph

Note that each operation has a name. It defaults to the name of the operation (e.g.,
"pow"), but you can define it manually when calling the operation (e.g., tf.pow(x,
3, name="other_name")). If a name already exists, TensorFlow automatically adds
a unique index (e.g., "pow_1", "pow_2", etc.). Each tensor also has a unique name:
it is always the name of the operation that outputs this tensor, plus :0 if it is the
operation’s first output, or :1 if it is the second output, and so on. You can fetch
an operation or a tensor by name using the graph’s get_operation_by_name() or
get_tensor_by_name() methods:

>>> concrete_function.graph.get_operation_by_name('x')
<tf.Operation 'x' type=Placeholder>
>>> concrete_function.graph.get_tensor_by_name('Identity:0')
<tf.Tensor 'Identity:0' shape=() dtype=float32>

The concrete function also contains the function definition (represented as a protocol
buffer2), which includes the function’s signature. This signature allows the concrete
function to know which placeholders to feed with the input values, and which tensors
to return:

>>> concrete_function.function_def.signature
name: "__inference_tf_cube_3515903"
input_arg {
 name: "x"
 type: DT_FLOAT
}
output_arg {
 name: "identity"
 type: DT_FLOAT
}

804 | Appendix D: TensorFlow Graphs

Now let’s look more closely at tracing.

A Closer Look at Tracing
Let’s tweak the tf_cube() function to print its input:

@tf.function
def tf_cube(x):
 print(f"x = {x}")
 return x ** 3

Now let’s call it:

>>> result = tf_cube(tf.constant(2.0))
x = Tensor("x:0", shape=(), dtype=float32)
>>> result
<tf.Tensor: shape=(), dtype=float32, numpy=8.0>

The result looks good, but look at what was printed: x is a symbolic tensor! It has a
shape and a data type, but no value. Plus it has a name ("x:0"). This is because the
print() function is not a TensorFlow operation, so it will only run when the Python
function is traced, which happens in graph mode, with arguments replaced with
symbolic tensors (same type and shape, but no value). Since the print() function
was not captured into the graph, the next times we call tf_cube() with float32 scalar
tensors, nothing is printed:

>>> result = tf_cube(tf.constant(3.0))
>>> result = tf_cube(tf.constant(4.0))

But if we call tf_cube() with a tensor of a different type or shape, or with a new
Python value, the function will be traced again, so the print() function will be called:

>>> result = tf_cube(2) # new Python value: trace!
x = 2
>>> result = tf_cube(3) # new Python value: trace!
x = 3
>>> result = tf_cube(tf.constant([[1., 2.]])) # new shape: trace!
x = Tensor("x:0", shape=(1, 2), dtype=float32)
>>> result = tf_cube(tf.constant([[3., 4.], [5., 6.]])) # new shape: trace!
x = Tensor("x:0", shape=(None, 2), dtype=float32)
>>> result = tf_cube(tf.constant([[7., 8.], [9., 10.]])) # same shape: no trace

If your function has Python side effects (e.g., it saves some logs to
disk), be aware that this code will only run when the function is
traced (i.e., every time the TF function is called with a new input
signature). It’s best to assume that the function may be traced (or
not) any time the TF function is called.

TensorFlow Graphs | 805

In some cases, you may want to restrict a TF function to a specific input signature.
For example, suppose you know that you will only ever call a TF function with
batches of 28 × 28–pixel images, but the batches will have very different sizes. You
may not want TensorFlow to generate a different concrete function for each batch
size, or count on it to figure out on its own when to use None. In this case, you can
specify the input signature like this:

@tf.function(input_signature=[tf.TensorSpec([None, 28, 28], tf.float32)])
def shrink(images):
 return images[:, ::2, ::2] # drop half the rows and columns

This TF function will accept any float32 tensor of shape [*, 28, 28], and it will reuse
the same concrete function every time:

img_batch_1 = tf.random.uniform(shape=[100, 28, 28])
img_batch_2 = tf.random.uniform(shape=[50, 28, 28])
preprocessed_images = shrink(img_batch_1) # works fine, traces the function
preprocessed_images = shrink(img_batch_2) # works fine, same concrete function

However, if you try to call this TF function with a Python value, or a tensor of an
unexpected data type or shape, you will get an exception:

img_batch_3 = tf.random.uniform(shape=[2, 2, 2])
preprocessed_images = shrink(img_batch_3) # ValueError! Incompatible inputs

Using AutoGraph to Capture Control Flow
If your function contains a simple for loop, what do you expect will happen? For
example, let’s write a function that will add 10 to its input, by just adding 1 10 times:

@tf.function
def add_10(x):
 for i in range(10):
 x += 1
 return x

It works fine, but when we look at its graph, we find that it does not contain a loop: it
just contains 10 addition operations!

>>> add_10(tf.constant(0))
<tf.Tensor: shape=(), dtype=int32, numpy=15>
>>> add_10.get_concrete_function(tf.constant(0)).graph.get_operations()
[<tf.Operation 'x' type=Placeholder>, [...],
 <tf.Operation 'add' type=AddV2>, [...],
 <tf.Operation 'add_1' type=AddV2>, [...],
 <tf.Operation 'add_2' type=AddV2>, [...],
 [...]
 <tf.Operation 'add_9' type=AddV2>, [...],
 <tf.Operation 'Identity' type=Identity>]

806 | Appendix D: TensorFlow Graphs

This actually makes sense: when the function got traced, the loop ran 10 times, so the
x += 1 operation was run 10 times, and since it was in graph mode, it recorded this
operation 10 times in the graph. You can think of this for loop as a “static” loop that
gets unrolled when the graph is created.

If you want the graph to contain a “dynamic” loop instead (i.e., one that runs when
the graph is executed), you can create one manually using the tf.while_loop() oper‐
ation, but it is not very intuitive (see the “Using AutoGraph to Capture Control Flow”
section of the Chapter 12 notebook for an example). Instead, it is much simpler to
use TensorFlow’s AutoGraph feature, discussed in Chapter 12. AutoGraph is actually
activated by default (if you ever need to turn it off, you can pass autograph=False
to tf.function()). So if it is on, why didn’t it capture the for loop in the add_10()
function? It only captures for loops that iterate over tensors of tf.data.Dataset
objects, so you should use tf.range(), not range(). This is to give you the choice:

• If you use range(), the for loop will be static, meaning it will only be executed•
when the function is traced. The loop will be “unrolled” into a set of operations
for each iteration, as we saw.

• If you use tf.range(), the loop will be dynamic, meaning that it will be included•
in the graph itself (but it will not run during tracing).

Let’s look at the graph that gets generated if we just replace range() with tf.range()
in the add_10() function:

>>> add_10.get_concrete_function(tf.constant(0)).graph.get_operations()
[<tf.Operation 'x' type=Placeholder>, [...],
 <tf.Operation 'while' type=StatelessWhile>, [...]]

As you can see, the graph now contains a While loop operation, as if we had called the
tf.while_loop() function.

Handling Variables and Other Resources in TF Functions
In TensorFlow, variables and other stateful objects, such as queues or datasets, are
called resources. TF functions treat them with special care: any operation that reads or
updates a resource is considered stateful, and TF functions ensure that stateful opera‐
tions are executed in the order they appear (as opposed to stateless operations, which
may be run in parallel, so their order of execution is not guaranteed). Moreover, when
you pass a resource as an argument to a TF function, it gets passed by reference, so
the function may modify it. For example:

TensorFlow Graphs | 807

counter = tf.Variable(0)

@tf.function
def increment(counter, c=1):
 return counter.assign_add(c)

increment(counter) # counter is now equal to 1
increment(counter) # counter is now equal to 2

If you peek at the function definition, the first argument is marked as a resource:

>>> function_def = increment.get_concrete_function(counter).function_def
>>> function_def.signature.input_arg[0]
name: "counter"
type: DT_RESOURCE

It is also possible to use a tf.Variable defined outside of the function, without
explicitly passing it as an argument:

counter = tf.Variable(0)

@tf.function
def increment(c=1):
 return counter.assign_add(c)

The TF function will treat this as an implicit first argument, so it will actually end
up with the same signature (except for the name of the argument). However, using
global variables can quickly become messy, so you should generally wrap variables
(and other resources) inside classes. The good news is @tf.function works fine with
methods too:

class Counter:
 def __init__(self):
 self.counter = tf.Variable(0)

 @tf.function
 def increment(self, c=1):
 return self.counter.assign_add(c)

Do not use =, +=, -=, or any other Python assignment operator with
TF variables. Instead, you must use the assign(), assign_add(),
or assign_sub() methods. If you try to use a Python assignment
operator, you will get an exception when you call the method.

A good example of this object-oriented approach is, of course, Keras. Let’s see how to
use TF functions with Keras.

808 | Appendix D: TensorFlow Graphs

Using TF Functions with Keras (or Not)
By default, any custom function, layer, or model you use with Keras will automatically
be converted to a TF function; you do not need to do anything at all! However, in
some cases you may want to deactivate this automatic conversion—for example, if
your custom code cannot be turned into a TF function, or if you just want to debug
your code (which is much easier in eager mode). To do this, you can simply pass
dynamic=True when creating the model or any of its layers:

model = MyModel(dynamic=True)

If your custom model or layer will always be dynamic, you can instead call the base
class’s constructor with dynamic=True:

class MyDense(tf.keras.layers.Layer):
 def __init__(self, units, **kwargs):
 super().__init__(dynamic=True, **kwargs)
 [...]

Alternatively, you can pass run_eagerly=True when calling the compile() method:

model.compile(loss=my_mse, optimizer="nadam", metrics=[my_mae],
 run_eagerly=True)

Now you know how TF functions handle polymorphism (with multiple concrete
functions), how graphs are automatically generated using AutoGraph and tracing,
what graphs look like, how to explore their symbolic operations and tensors, how to
handle variables and resources, and how to use TF functions with Keras.

TensorFlow Graphs | 809

Index

Symbols
@ operator (matrix multiplication), 135
β (momentum), 380
γ (gamma) value, 182
ε (tolerance), 144, 183
ε greedy policy, 706
ε neighborhood, 279
ε sensitive, 184
χ² test, 202
ℓ₀ norm, 45
ℓ₁ norm, 45
ℓ₂ norm, 45
ℓₖ norm, 45

A
A/B experiments, 721
accelerated k-means, 268
accelerated linear algebra (XLA), 434
accuracy performance measure, 4, 107
ACF (autocorrelation function), 551
action advantage, reinforcement learning, 694
action potentials (APs), 301
actions, in reinforcement learning, 684,

693-694
activation functions, 306, 312-313

for Conv2D layer, 490
custom models, 415
ELU, 363-366
GELU, 365-367
hyperbolic tangent (htan), 312, 565
hyperparameters, 352
initialization parameters, 360
leakyReLU, 361-363
Mish, 366

PReLU, 362
ReLU (see ReLU)
RReLU, 362
SELU, 364, 397
sigmoid, 164, 312, 358, 651
SiLU, 366
softmax, 170, 315, 320, 600
softplus, 314
Swish, 366

active learning, 278
actor-critic, 717
actual class, 109
actual versus estimated probabilities, 118
AdaBoost, 222-226
AdaGrad, 382
Adam optimization, 384, 394
AdaMax, 385
AdamW, 386, 394
adaptive boosting (AdaBoost), 222-226
adaptive instance normalization (AdaIN), 671
adaptive learning rate algorithms, 382-387
adaptive moment estimation (Adam), 384
additive attention, 606
advantage actor-critic (A2C), 717
adversarial learning, 534, 636
affine transformations, 671
affinity function, 261
affinity propagation, 283
agents, reinforcement learning, 16, 684, 699,

705
agglomerative clustering, 282
Akaike information criterion (AIC), 289
AlexNet, 499
algorithms, preparing data for, 67-88

811

alignment model, 606
AllReduce algorithm, 760
alpha dropout, 397
AlphaGo, 17, 683, 716
anchor priors, 528
ANNs (see artificial neural networks)
anomaly detection, 8, 13

clustering for, 262
GMM, 288-289
isolation forest, 293

AP (average precision), 529
APs (action potentials), 301
area under the curve (AUC), 116
argmax(), 171
ARIMA model, 550-551
ARMA model family, 549-551
artificial neural networks (ANNs), 299-353

autoencoders (see autoencoders)
backpropagation, 309-312
biological neurons as background to,

301-302
evolution of, 300-301
hyperparameter fine-tuning, 344-353
implementing MLPs with Keras, 317-344
logical computations with neurons, 303-303
perceptrons (see multilayer perceptrons)
reinforcement learning policies, 691

artificial neuron, 303
association rule learning, 14
assumptions, checking in model building, 37,

46
asynchronous advantage actor-critic (A3C),

717
asynchronous gang scheduling, 764
asynchronous updates, with centralized param‐

eters, 761
à-trous convolutional layer, 533
attention mechanisms, 578, 604-619, 625

(see also transformer models)
attributes, 52-55

categorical, 71, 74
combinations of, 66-67
preprocessed, 55
target, 55
unsupervised learning, 11

AUC (area under the curve), 116
autocorrelated time series, 545
autocorrelation function (ACF), 551
autodiff (automatic differentiation), 785-791

for computing gradients, 426-430
finite difference approximation, 786
forward-mode, 787-790
manual differentiation, 785
reverse-mode, 790-791

autoencoders, 635-659
convolutional, 648-649
denoising, 649-650
efficient data representations, 637-638
overcomplete, 649
PCA with undercomplete linear autoen‐

coder, 639-640
sparse, 651-654
stacked, 640-648
training one at a time, 646-648
undercomplete, 638
variational, 654-658

Autograph, 435
AutoGraph, 806
AutoML service, 349, 775
autoregressive integrated moving average

(ARIMA) model, 550-551
autoregressive model, 549
autoregressive moving average (ARMA) model

family, 549-551
auxiliary task, pretraining on, 378
average absolute deviation, 45
average pooling layer, 493
average precision (AP), 529

B
backbone, model, 504
backpropagation, 309-312, 358, 429, 660
backpropagation through time (BPTT), 542
bagging (bootstrap aggregating), 215-219
Bahdanau attention, 606
balanced iterative reducing and clustering using

hierarchies (BIRCH), 282
bandwidth saturation, 763-765
BaseEstimator, 80
batch gradient descent, 142-144, 156
batch learning, 18-19
batch normalization (BN), 367-372, 565
batch predictions, 731, 732, 739
Bayesian Gaussian mixtures, 292
Bayesian information criterion (BIC), 289
beam search, 603-604
Bellman optimality equation, 701
bias, 155

812 | Index

bias and fairness, NLP transformers, 630
bias term constant, 132, 137
bias/variance trade-off, 155
BIC (Bayesian information criterion), 289
bidirectional recurrent layer, 601
binary classifiers, 106, 164
binary logarithm, 200
binary trees, 198, 282
biological neural networks (BNNs), 301-302
BIRCH (balanced iterative reducing and clus‐

tering using hierarchies), 282
black box models, 199
blending, in stacking, 232
BN (batch normalization), 367, 565
BNNs (biological neural networks), 301-302
boosting, 222-231
bootstrap aggregating (bagging), 215-219
bootstrapping, 215
bottleneck layers, 503
bounding boxes, image identification, 521-530
BPTT (backpropagation through time), 542
bucketizing a feature, 77
byte pair encoding (BPE), 588

C
California Housing Prices dataset, 40-46
callbacks, 338-340
CART (Classification and Regression Tree)

algorithm, 198, 200, 205
catastrophic forgetting, 712
categorical attributes, 71, 74
categorical features, encoding, 466-471
CategoryEncoding layer, 463
causal model, 563, 601
centralized parameters, 760-762
centroid, cluster, 262, 264, 265-268
chain rule, 311
chain-of-thought prompting, 623
ChainClassifier, 126
chaining transformations, 443-445
char-RNN model, 578-586
chatbot or personal assistant, 8
check_estimator(), 82
chi-squared (χ²) test, 202
classification, 103-128

application examples of, 8-9
binary classifier, 106, 164
CNNs, 521-530
error analysis, 122-125

hard margin, 176, 187
hard voting classifiers, 212
image (see images)
logistic regression (see logistic regression)
MLPs for, 315-316
MNIST dataset, 103-105
multiclass, 119-121, 315-316
multilabel, 125-127
multioutput, 127-128
performance measures, 107-119
and regression, 10, 127
soft margin, 177-178
softmax regression, 170-173
SVMs (see support vector machines)
text, 587-595
voting classifiers, 212-215

Classification and Regression Tree (CART)
algorithm, 198, 200, 205

clone(), 163
closed-form equation/solution, 131, 134, 157,

166
cloud platform deployment with Vertex AI,

732-739
clustering algorithms, 9, 11, 260-283

affinity propagation, 283
agglomerative clustering, 282
applications for, 261-262
BIRCH, 282
DBSCAN, 279-281
GMM, 283-294
image segmentation, 262, 273-275
k-means (see k-means algorithm)
mean-shift, 282
responsibilities of clusters for instances, 285
semi-supervised learning with, 275-278
spectral clustering, 283

CNNs (see convolutional neural networks)
Colab, 46-48
color channels, 486
color segmentation, images, 273
column vectors, 133
ColumnTransformer, 85
complex models with functional API, 329-335
compound scaling, 513
compressed TFRecord files, 454
compression and decompression, PCA,

249-250
computation graphs, 404
computational complexity

Index | 813

DBSCAN, 281
decision trees, 200
Gaussian mixture model, 288
histogram-based gradient boosting, 230
k-means algorithm, 265
Normal equation, 138
and SVM classes, 183

concatenative attention, 606
concrete function, 801-805
conditional GAN, 668
conditional probability, 603
confidence interval, 96
confusion matrix (CM), 108-110, 122-125
ConfusionMatrixDisplay, 122
connectionism, 300
constrained optimization, 187
constraints, custom models, 415
convergence rate, 144
convex function, 141
convex quadratic optimization, 188
convolution kernels (kernels), 484, 496
convolutional neural networks (CNNs),

479-535
architectures, 495-515
autoencoders, 648-649
classification and localization, 521-530
convolutional layers, 481-491, 531-535, 573,

574-575, 591
evolution of, 479
GANs, 665-667
object detection, 523-530
object tracking, 530
pooling layers, 491-495
pretrained models from Keras, 516-518
ResNet-34 CNN using Keras, 515
semantic segmentation, 8, 273, 531-535
splitting across devices, 757
transfer learning pretrained models,

518-521
U-Net, 678
and vision transformers, 624
visual cortex architecture, 480
WaveNet, 574-575

copy.deepcopy(), 163
core instance, 279
correlation coefficient, 63-66
cost function, 24, 45

in AdaBoost, 223
in autoencoders, 639

in bounding box prediction model, 522
in CART training algorithm, 200, 205
in elastic net, 161
in gradient descent, 132, 138-142, 145-148,

358
in lasso regression, 158-161
in Nesterov accelerated gradient, 381
in linear regression, 134
in logistic regression, 165-166
in momentum optimization, 379
in ridge regression, 156
in variational autoencoders, 656

credit assignment problem, 693-694
cross entropy, 171
cross-validation, 35, 89-91, 97, 107-108,

152-155
cross_val_predict(), 108, 113, 117, 122, 232
cross_val_score(), 90, 107
CUDA library, 747
curiosity-based exploration, 718
curriculum learning, 719
custom models and training algorithms,

412-433
activation functions, 415
autodiff for computing gradients, 426-430
constraints, 415
initializers, 415
layers, 419-422
loss functions, 412, 424-426
metrics, 416-419, 424-426
models, 422-424
regularizers, 415
saving and loading models, 413-415
training loops, 430-433

custom transformers, 79-83
customer segmentation, 261

D
DALL-E, 628
data

downloading, 48-49
efficient data representations, 637-638
enqueuing and dequeuing, 798
finding correlations in, 63-66
making assumptions about, 37
overfitting (see overfitting of data)
preparing for ML algorithms, 67-88
preparing for ML models, 552-555

814 | Index

preprocessing (see loading and preprocess‐
ing data)

shuffling of, 445
test data (see test set)
time series (see time series data)
training data (see training set)
underfitting of, 89, 151-155, 180
unreasonable effectiveness, 27
visualizing (see visualization)
working with real data, 39-40

data analysis, clustering for, 261
data augmentation, 129, 500, 519
data cleaning, 68-71
data drift, 18
data mining, 7
data mismatch, 35
data parallelism, 759-765
data pipeline, 42
data snooping bias, 56
data structure, 51-55, 793-799
data-efficient image transformers (DeiT), 627
DataFrame, 68, 74, 78
Dataquest, xxi
Datasets library, 475
DBSCAN, 279-281
DCGANs (deep convolutional GANS), 665-667
DDPM (denoising diffusion probabilistic

model), 636, 674-681
DDQN (dueling DQN), 715
decision boundaries, 167-169, 172, 198, 207,

264
decision function, 111, 186-189
decision stumps, 226
decision threshold, 111-115
decision trees, 195-208, 211

(see also ensemble learning)
bagging and pasting, 217
CART training algorithm, 200
class probability estimates, 199
computational complexity, 200
and decision boundaries, 198
GINI impurity or entropy measures, 201
high variance with, 207
predictions, 197-200
regression tasks, 204-205
regularization hyperparameters, 201-203
sensitivity to axis orientation, 206
training and visualizing, 195-196
in training the model, 89-91

DecisionTreeClassifier, 195, 201, 202, 207, 220
DecisionTreeRegressor, 89, 195, 204, 226
decision_function(), 112
deconvolution layer, 532
deep autoencoders (see stacked autoencoders)
deep convolutional GANS (DCGANs), 665-667
deep Gaussian process, 397
deep learning, xv

(see also deep neural networks; reinforce‐
ment learning)

deep neural networks (DNNs), 357-401
CNNs (see convolutional neural networks)
default configuration, 400
faster optimizers for, 379-387
learning rate scheduling, 388-392
MLPs (see multilayer perceptrons)
regularization, 392-400
reusing pretrained layers, 373-379
RNNs (see recurrent neural networks)
and transfer learning, 16
unstable gradients, 358
vanishing and exploding gradients, 358-373

deep neuroevolution, 349
deep Q-learning, 707-716
deep Q-networks (DQNs) (see Q-learning algo‐

rithm)
deepcopy(), 163
DeepMind, 17
degrees of freedom, 32, 155
DeiT (data-efficient image transformers), 627
denoising autoencoders, 649-650
denoising diffusion probabilistic model

(DDPM), 636, 674-681
Dense layer, 305, 320, 321, 332
dense matrix, 76, 86
density estimation, 260, 279-281, 286
density threshold, 288
depth concatenation layer, 502
depthwise separable convolution layer, 509
deque, 709
describe(), 53
development set (dev set), 35
differencing, time series forecasting, 545, 548,

549
diffusion models, 635, 673-681
dilated filter, 533
dilation rate, 533
dimensionality reduction, 12, 237-257

approaches to, 239-242

Index | 815

autoencoders, 635, 638-640
choosing the right number of dimensions,

247
clustering, 261
curse of dimensionality, 238-239
for data visualization, 238
information loss from, 237
Isomap, 256
linear discriminant analysis, 257
LLE, 254-256
multidimensional scaling, 256
PCA (see principal component analysis)
random projection algorithm, 252-254
t-distributed stochastic neighbor embed‐

ding, 256, 643
discount factor γ in reward system, 693
discounted rewards, 693, 696
Discretization layer, 463
discriminator, GAN, 636, 660-665
DistilBERT model, 622, 631-633
distillation, 622
distribution strategies API, 765
Docker container, 726
dot product, 607
Dota 2, 718
Double DQN, 714
downloading data, 48-49
DQNs (deep Q-networks) (see Q-learning algo‐

rithm)
drop(), 68
dropna(), 68
Dropout, 649
dropout rate, 394
dropout regularization, 394-397
dual numbers, 788
dual problem, 189-193
dueling DQN (DDQN), 715
dummy attributes, 72
dying ReLU problem, 361
dynamic models with subclassing API, 336-337
dynamic programming, 701

E
eager execution (eager mode), 436
early stopping regularization, 162-163, 229, 555
edge computing, 741
efficient data representations, autoencoders,

637-638
elastic net, 161

EllipticEnvelope, 293
ELMo (Embeddings from Language Models),

593
ELU (exponential linear unit), 363-366
EM (expectation-maximization), 284
embedded device, deploying model to, 741-744
embedded Reber grammars, 633
embedding matrix, 468, 600
embedding size, 599, 613
embeddings, 74

encoding categorical features using, 466-471
reusing pretrained, 593-595
sentiment analysis, 589

Embeddings from Language Models (ELMo),
593

encoder, 637
(see also autoencoders)

encoder–decoder models, 541, 578, 595-604
(see also attention mechanisms)

end-to-end ML project exercise, 39-100
building the model, 41-46
discovering and visualizing data, 60-67
fine-tuning your model, 91-97
getting the data, 46-60
preparing data for ML algorithms, 67-88
real data, advantages of working with, 39-40
selecting and training a model, 88-89

endpoint, deploying model on GCP, 738
ensemble learning, 211-235

bagging and pasting, 215-219
boosting, 222-231
cross-validation, 90
fine-tuning the system, 95
random forests (see random forests)
stacking, 232-235
voting classifiers, 212-215

entailment, 620
entropy impurity measure, 201
environments, reinforcement learning, 684,

687-691
epochs, 143
equalized learning rate, GAN, 670
equivariance, 493
error analysis, classification, 122-125
estimated versus actual probabilities, 118
estimators, 70, 84, 214
Euclidean norm, 45
event files, TensorBoard, 340
Example protobuf, 456

816 | Index

exclusive or (XOR) problem, 307
exemplars, affinity propagation, 283
expectation-maximization (EM), 284
experience replay, 664
explainability, attention mechanisms, 625
explained variance ratio, 246
explained variance, plotting, 247-249
exploding gradients, 358

(see also vanishing and exploding gradients)
exploration policies, 703, 706
exploration/exploitation dilemma, reinforce‐

ment learning, 692
exponential linear unit (ELU), 363-366
exponential scheduling, 389, 392
export_graphviz(), 196
extra-trees, random forest, 220
extremely randomized trees ensemble (extra-

trees), 221

F
face-recognition classifier, 125
false negatives, confusion matrix, 109
false positive rate (FPR) or fall-out, 115
false positives, confusion matrix, 109
fan-in/fan-out, 359
fast-MCD, 293
FCNs (fully convolutional networks), 525-526,

532
feature engineering, 30, 262
feature extraction, 12, 30
feature maps, 485-487, 488, 508, 511
feature scaling, 75-79, 141, 176
feature selection, 30, 95, 159, 221
feature vectors, 45, 133, 186
features, 11
federated learning, 746
feedforward neural network (FNN), 309, 538
fetch_openml(), 104
fillna(), 68
filters, convolutional layers, 484, 487, 497, 509
first moment (mean of gradient), 384
first-order partial derivatives (Jacobians), 386
fit()

and custom transformers, 80, 84
data cleaning, 69
versus partial_fit(), 148
using only with training set, 75

fitness function, 24
fit_transform(), 70, 75, 80, 84

fixed Q-value targets, 713
flat dataset, 553
flowers dataset, 518-519
FNN (feedforward neural network), 309, 538
folds, 90, 105, 107, 108
forecasting time series (see time series data)
forget gate, LSTM, 569
forward pass, in backpropagation, 311
forward process, diffusion model, 674-676
FPR (false positive rate) or fall-out, 115
from_predictions(), 122
full gradient descent, 143
fully connected layer, 305, 481, 491
fully convolutional networks (FCNs), 525-526,

532
function definition (FuncDef), 802
function graph (FuncGraph), 802
functional API, complex models with, 329-335
FunctionTransformer, 79
F₁ score, 111

G
game play (see reinforcement learning)
gamma (γ) value, 182
GANs (see generative adversarial networks)
gate controllers, LSTM, 570
gated activation units, 574
gated recurrent unit (GRU) cell, 571-572, 591
Gaussian distribution, 76, 166, 656-657
Gaussian mixture model (GMM), 283-294

anomaly detection, 288-289
Bayesian Gaussian mixtures, 292
fast-MCD, 293
inverse_transform() with PCA, 294
isolation forest, 293
and k-means limitations, 272
local outlier factor, 293
one-class SVM, 294
selecting number of clusters, 289-291

Gaussian process, 348
Gaussian RBF kernel, 80, 181-184, 192
GBRT (gradient boosted regression trees), 226,

227-231
GCP (Google Cloud Platform), 732-737
GCS (Google Cloud Storage), 736
GD (see gradient descent)
GELU, 365-367
generalization error, 34-35

Index | 817

generative adversarial networks (GANs),
659-673
deep convolutional, 665-667
progressive growing of, 668-671
StyleGANs, 671-673
training difficulties, 663-665

generative autoencoders, 654
generative models, 635

(see also Gaussian mixture model)
generator, GAN, 636, 659-665
genetic algorithm, 686
geodesic distance, 256
geographic data, visualizing, 61-62
get_dummies(), 73
get_feature_names_out(), 81
get_params(), 80
GINI impurity, 197, 201
global average pooling layer, 495
global versus local minimum, gradient descent,

140
Glorot initialization, 359-361
GMM (see Gaussian mixture model)
Google Cloud Platform (GCP), 732-737
Google Cloud Storage (GCS), 736
Google Colab, 46-48
Google Vertex AI (see Vertex AI)
GoogLeNet, 502-505, 509
GPU implementation, 148, 746-756, 765

getting your own GPU, 747-749
managing RAM, 749-752
operations handling, 754
parallel execution across multiple devices,

753-756
placing operations and variables on devices,

752-753
gradient ascent, 687
gradient boosted regression trees (GBRT), 226,

227-231
gradient boosting, 226-230
gradient clipping, 372
gradient descent (GD), 132, 138-149

algorithm comparisons, 148
batch gradient descent, 142-144, 156
local versus global minimum, 140
mini-batch gradient descent, 148-149
minimizing hinge loss, 188
versus momentum optimization, 380
with optimizers, 379-387
shuffling data, 445

stochastic gradient descent, 145-148
gradient tree boosting, 226
gradients

autodiff for computing, 426-430
bandwidth saturation issue, 763
PG algorithm, 687, 694-698
stale, 761
unstable (see vanishing and exploding gra‐

dients)
graph mode, 436
graphical processing units (see GPU implemen‐

tation)
graphs and functions, TensorFlow, 404,

433-438, 801-809
Graphviz, 196
greedy algorithm, CART as, 200
greedy decoding, 582
greedy layer-wise pretraining, 377, 647, 668
grid search, 91-93
GridSearchCV, 91-93
gRPC API, querying through, 729
GRU (gated recurrent unit) cell, 571-572, 591

H
hard clustering, 264
hard margin classification, 176, 187
hard voting classifiers, 212
harmonic mean, 111
hashing collision, 466
Hashing layer, 466
hashing trick, 466
HDBSCAN (hierarchical DBSCAN), 281
He initialization, 359-361
Heaviside step function, 304
heavy tail, feature distribution, 76
Hebb's rule, 306
Hebbian learning, 306
Hessians, 386
hidden layers

neurons per layer, 350
number of, 349
stacked autoencoders, 640-648

hierarchical clustering, 11
hierarchical DBSCAN (HDBSCAN), 281
high variance, with decision trees, 207
hinge loss function, 188
histogram-based gradient boosting (HGB),

230-231
histograms, 54

818 | Index

hold-out sets, 34
holdout validation, 34
housing dataset, 40-46
Huber loss, 314, 412, 416, 555
Hugging Face, 629-633
Hungarian algorithm, 531
Hyperband tuner, 347
hyperbolic tangent (htan), 312, 565
hyperparameters, 32, 344-353

activation function, 352
batch size, 352
CART algorithm, 200
convolutional layers, 490
in custom transformations, 80
decision tree, 228
dimensionality reduction, 248
gamma (γ) value, 182
GAN challenges, 664
Keras Tuner, 775
learning rate, 139, 351
momentum β, 380
Monte Carlo samples, 399
neurons per hidden layer, 350
and normalization, 76
number of hidden layers, 349
number of iterations, 352
optimizer, 352
PG algorithms, 697
preprocessor and model interaction, 92
randomized search, 344-346
saving along with model, 416
SGDClassifier, 183
subsample, 230
SVM classifiers with polynomial kernel, 180
tolerance (ε), 183
tuning of, 34-35, 91-93, 97, 327, 772-776

hypothesis, 45
hypothesis boosting (see boosting)
hypothesis function, 133

I
identity matrix, 157
IID (see independent and identically dis‐

tributed)
image generation, 534, 671, 673
image segmentation, 262, 273-275
images, classifying and generating, 8

autoencoders (see autoencoders)
CNNs (see convolutional neural networks)

diffusion models, 673-681
generating with GANs, 659-673
implementing MLPs, 318-328
labels, 521
loading and preprocessing data, 474
representative images, 276
semantic segmentation, 273
tuning hyperparameters, 344

importance sampling (IS), 714
impurity measures, 197, 201
imputation, 68
incremental learning, 20
incremental PCA (IPCA), 250-251
independent and identically distributed (IID),

training instances as, 147
inductive bias, 626
inertia, model, 267, 269
inference, 26
info(), 52
information theory, 171, 201
inliers, 260
input and output sequences, RNNs, 541-542
input gate, LSTM, 569
input layer, neural network, 305, 320, 331

(see also hidden layers)
input signature, 801
instance segmentation, 273, 534
instance-based learning, 21, 26
inter-op thread pool, 754
intercept term constant, 132
interleaving lines from multiple files, 446-447
interpretable ML, 199
invariance, max pooling layer, 492
inverse_transform(), 78, 81, 249, 294
IPCA (incremental PCA), 250-251
iris dataset, 167
irreducible error, 155
IS (importance sampling), 714
isolation forest, 293
Isomap, 256
isotropic noise, 674
IterativeImputer, 69

J
Jacobians, 386
joblib library, 97-98
JSON Lines, 739, 741
Jupyter, 46

Index | 819

K
k-fold cross-validation, 90, 107, 108
k-means algorithm, 82, 263-273

accelerated k-means, 268
centroid initialization methods, 267-268
finding optimal number of clusters, 269-271
limitations of, 272
mini-batch k-means, 268
workings of, 265-266

k-means++, 267
k-nearest neighbors regression, 26
Kaiming initialization, 360
Kalman Filters, 530
Keras API, xvi, 405

(see also artificial neural networks)
and accessing TensorFlow API directly, 475
activation function support, 362, 363, 367
convolutional layer implementation,

487-490
custom functions in, 435
gradient clipping, 373
image preprocessing layers, 474
implementing MLPs with, 317-344
initialization handling, 360
initializers, 322
layer preprocessing, 459-474
learning rate scheduling, 390-392
loading a dataset, 318
PG algorithm, 694-698
pool layer implementation, 493-495
pretrained CNN models, 516-518
ResNet-34 CNN with, 515
saving models, 724, 742
stacked encoder implementation, 641
tf.data API dataset, 452-453
tf.keras library, 318
tf.keras.activations.get(), 420
tf.keras.activations.relu(), 320
tf.keras.applications module, 516
tf.keras.applications.xception.prepro‐

cess_input(), 519
tf.keras.backend module, 408
tf.keras.callbacks.EarlyStopping, 339
tf.keras.callbacks.LearningRateScheduler,

390
tf.keras.callbacks.ModelCheckpoint, 338
tf.keras.callbacks.TensorBoard, 341, 592
tf.keras.datasets.imdb.load_data(), 587
tf.keras.initializers.VarianceScaling, 360

tf.keras.layers.ActivityRegularization, 652
tf.keras.layers.AdditiveAttention, 608
tf.keras.layers.Attention, 608
tf.keras.layers.AvgPool2D, 495
tf.keras.layers.BatchNormalization, 369,

370-372, 566
tf.keras.layers.Bidirectional, 602
tf.keras.layers.CategoryEncoding, 463
tf.keras.layers.CenterCrop, 474
tf.keras.layers.Concatenate, 331, 332, 502
tf.keras.layers.Conv1D, 533, 592
tf.keras.layers.Conv2D, 487
tf.keras.layers.Conv2DTranspose, 532
tf.keras.layers.Conv3D, 533
tf.keras.layers.Dense, 331, 332, 420-421, 471,

646, 657
tf.keras.layers.Discretization, 463
tf.keras.layers.Dropout, 396
tf.keras.layers.Embedding, 468, 581, 589,

613
tf.keras.layers.GlobalAvgPool2D, 495
tf.keras.layers.GRU, 572
tf.keras.layers.GRUCell, 572
tf.keras.layers.Hashing, 466
tf.keras.layers.Input, 331
tf.keras.layers.Lambda, 419, 582
tf.keras.layers.LayerNormalization, 566
tf.keras.layers.LeakyReLU, 362
tf.keras.layers.LSTM, 568
tf.keras.layers.Masking, 591
tf.keras.layers.MaxPool2D, 493
tf.keras.layers.MultiHeadAttention, 617
tf.keras.layers.Normalization, 329, 331,

460-462
tf.keras.layers.PReLU, 362
tf.keras.layers.Rescaling, 474
tf.keras.layers.Resizing, 474, 517
tf.keras.layers.RNN, 568
tf.keras.layers.SeparableConv2D, 510
tf.keras.layers.StringLookup, 465
tf.keras.layers.TextVectorization, 471-473,

579, 582, 588, 589-599
tf.keras.layers.TimeDistributed, 564
tf.keras.losses.Huber, 412
tf.keras.losses.kullback_leibler_diver‐

gence(), 653
tf.keras.losses.Loss, 413
tf.keras.losses.sparse_categorical_crossen‐

tropy(), 323, 497, 582, 596, 632

820 | Index

tf.keras.metrics.MeanIoU, 522
tf.keras.metrics.Metric, 418
tf.keras.metrics.Precision, 417
tf.keras.Model, 331
tf.keras.models.clone_model(), 337, 375
tf.keras.models.load_model(), 338, 413-415,

423, 766
tf.keras.optimizers.Adam, 329, 386
tf.keras.optimizers.Adamax, 386
tf.keras.optimizers.experimental.AdamW,

386
tf.keras.optimizers.Nadam, 386
tf.keras.optimizers.schedules, 391
tf.keras.optimizers.SGD, 380
tf.keras.preprocessing.image.ImageData‐

Generator, 519
tf.keras.regularizers.l1_l2(), 393
tf.keras.Sequential, 319, 329, 497
tf.keras.utils.get_file(), 579
tf.keras.utils.set_random_seed(), 319
tf.keras.utils.timeseries_data‐

set_from_array(), 552, 555
tf.keras.utils.to_categorical(), 324
time series forecasting for RNN, 556-558
transfer learning with, 375-377
using TF functions (or not), 809

Keras session, 322
Keras Tuner, 775
kernel trick, 180-184, 190-193
kernelized SVMs, 190-193
kernels (convolution kernels), 484, 496
kernels (runtimes), 48
KL (Kullback-Leibler) divergence, 172, 653
KLDivergenceRegularizer, 653
KMeans, 81
KNeighborsClassifier, 125, 128
KNNImputer, 69
Kullback-Leibler (KL) divergence, 172, 652

L
label propagation, 277-278
labels, 43

in clustering, 263
image classification, 521
supervised learning, 11
unlabeled data issue, 645

landmarks, 181
language models, 578

(see also natural language processing)

large margin classification, 175
Lasso, 161
lasso regression, 158-161
latent diffusion models, 680
latent loss, 656
latent representation of inputs, 627, 635, 637,

667
latent space, 656
law of large numbers, 213
layer normalization, 439, 537, 566
LDA (linear discriminant analysis), 257
leaf node, decision tree, 197, 199, 202
leakyReLU, 361-363
learning curves, overfit or underfit analysis,

152-155
learning rate, 20, 139, 143, 145, 351, 705
learning rate schedules, 388-392
learning schedules, 145
LeCun initialization, 360
LeNet-5, 481, 498
Levenshtein distance, 182
liblinear library, 183
libsvm library, 183
life satisfaction dataset, 22
likelihood function, 290-291
linear discriminant analysis (LDA), 257
linear models

forecasting time series, 555
linear regression (see linear regression)
regularized, 156-163
SVM, 175-178
training and running example, 23

linear regression, 24-26, 132-149
comparison of algorithms, 149
computational complexity, 138
gradient descent in, 138-149
learning curves in, 151-155
Normal equation, 134-137
regularizing models (see regularization)
ridge regression, 156-158, 161
training set evaluation, 88
using stochastic gradient descent, 147

linear SVM classification, 175-178, 186-193
linear threshold units (LTUs), 304
linearly separable, SVM classes, 175-176, 181
LinearRegression, 71, 79, 88, 137, 138, 150
LinearSVC, 177, 183, 188
LinearSVR, 184-186
Lipschitz continuous, derivative as, 141

Index | 821

LLE (locally linear embedding), 254-256
loading and preprocessing data, 441-477

image preprocessing layers, 474
layer preprocessing in Keras, 442, 459-474
tf.data API, 441-453
TFDS project, 475-477
TFRecord format, 441, 453-459

local outlier factor (LOF), 293
local receptive field, 480
local response normalization (LRN), 501
local versus global minimum, gradient descent,

140
locality sensitive hashing (LSH), 254
localization, CNNs, 521-525
locally linear embedding (LLE), 254-256
LOF (local outlier factor), 293
log loss, 166
log-odds function, 165
log-transformer, 79
logical GPU device, 750
logistic function, 164
logistic regression, 10, 78, 164-173

decision boundaries illustration, 167-169
estimating probabilities, 164-165
softmax regression model, 170-173
training and cost function, 165-166

LogisticRegression, 168, 172
logit function, 165
long sequences, training RNN on, 565-575

short-term memory problem, 568-575
unstable gradients problem, 565-568

long short-term memory (LSTM) cell, 568-571,
591, 599, 602

loss functions
based on model internals, 424-426
custom, 412
versus metrics, 416
output, 334

LRN (local response normalization), 501
LSH (locality sensitive hashing), 254
LSTM (long short-term memory) cell, 568-571,

591, 599, 602
LTUs (linear threshold units), 304
Luong attention, 607

M
machine learning (ML), 4

application/technique examples, 8-9
challenges of, 27-33

notations, 44-45
project checklist, 41

(see also end-to-end ML project exer‐
cise)

reasons for using, 5-7
resources on, xxi-xxii
spam filter example, 3-7
testing and validating, 34-37
types of systems, 9-26

MAE (mean absolute error), 45
majority-vote predictions, 209
make_column_selector(), 86
make_column_transformer(), 86
make_pipeline(), 84, 154
Manhattan norm, 45
manifold hypothesis, 242
manifold learning, dimension reduction,

241-242
MAP (maximum a-posteriori) estimation, 291
mAP (mean average precision), 528
MAPE (mean absolute percentage error), 546
mapping network, StyleGANs, 671
MapReduce, 43
margin violations, 177, 187
Markov chains, 699
Markov decision processes (MDPs), 699-703,

706
mask R-CNN, 534
mask tensor, 590
masked language model (MLM), 620
masked multi-head attention layer, 612
masking, 590-593, 617
Matching Engine service, Vertex AI, 732
Matplotlib, 46
max pooling layer, 491, 497
max-norm regularization, 399
maximization step, Gaussian mixtures, 284
maximum a-posteriori (MAP) estimation, 291
maximum likelihood estimate (MLE), 291
MC (Monte Carlo) dropout regularization,

397-399
MCTS (Monte Carlo tree search), 716
MDPs (Markov decision processes), 699-703,

706
MDS (multidimensional scaling), 256
mean absolute error (MAE), 45
mean absolute percentage error (MAPE), 546
mean average precision (mAP), 528
mean squared error (MSE), 133, 656

822 | Index

mean-shift, clustering algorithms, 282
mean_squared_error(), 88
measure of similarity, 21
memory bandwidth, GPU card, 451
memory cells (cells), RNNs, 540, 568-575
memory requirements, convolutional layers,

490
Mercer's theorem, 192
meta learner, 232
metagraphs, SavedModel, 724
min-max scaling, 75
mini-batch discrimination, 664
mini-batch gradient descent, 148-149, 163
mini-batch k-means, 268
mini-batches, 19, 669
MinMaxScaler, 76
mirrored strategy, data parallelism, 759, 765,

768
Mish activation function, 366
mixing regularization, StyleGAN, 673
ML (see machine learning)
ML Operations (MLOps), 100
MLE (maximum likelihood estimate), 291
MLM (masked language model), 620
MLPs (see multilayer perceptrons)
MNIST dataset, 103-105
mobile device, deploying model to, 741-744
mode collapse, 628, 664
model parallelism, 756-758
model parameters, 23

early stopping regularization, 166
in gradient descent, 142, 144
linear SVM classifier mechanics, 186
and variable updating, 410
weight matrix shape, 323

model rot, 18
model selection, 23, 34-35
model server (see TensorFlow Serving)
model warmup, 730
model-based learning, 22-26
modes, 77
momentum optimization, 379
momentum β, 380
Monte Carlo (MC) dropout, 397-399
Monte Carlo tree search (MCTS), 716
MSE (mean squared error), 133, 656
multi-head attention layer, 611, 615-619
multi-hot encoding, 464

multiclass (multinomial) classification,
119-121, 315-316

multidimensional scaling (MDS), 256
multilabel classifiers, 125-127
multilayer perceptrons (MLPs), 299, 308-344

and autoencoders, 638, 639
and backpropagation, 309-312
callbacks, 338-340
classification MLPs, 315-316
complex models, 329-335
dynamic models, 336-337
image classifier, 318-328
regression MLPs, 313-314, 328
saving and restoring a model, 337-338
visualization with TensorBoard, 340-344

multimodal distribution, 77
multimodal transformers, 627
multinomial logistic regression, 170-173
multioutput classifiers, 127-128
multiple regression, 43
multiplicative attention, 607
multitask classification, 333
multivariate regression, 43
multivariate time series, 545, 559-560

N
Nadam, 386
NAG (Nesterov accelerated gradient), 381, 386
naive forecasting, 545
Nash equilibrium, 663
natural language processing (NLP), 577-633

char-RNN model to generate text, 578-586
encoder–decoder network for machine

translation, 595-601
machine learning examples, 8
sentiment analysis, 587-595
text classification, 587-595
text encoding, 471-474
text summarization, 8
transformer models (see transformer mod‐

els)
word embeddings, 467

natural language understanding (NLU), 8
NCCL (Nvidia collective communications

library), 766
NEAT (neuroevolution of augmenting topolo‐

gies), 686
negative class, 109, 164
nested dataset, 553

Index | 823

Nesterov accelerated gradient (NAG), 381, 386
Nesterov momentum optimization, 381, 386
neural machine translation (NMT), 595-619

and attention mechanisms, 604-619
with transformers, 620-624

neural networks (see artificial neural networks)
neuroevolution of augmenting topologies

(NEAT), 686
next sentence prediction (NSP), 621
NLU (natural language understanding), 8
NMT (see neural machine translation)
No Free Lunch theorem, 37
non-max suppression, bounding boxes, 524
nonlinear dimensionality reduction (NLDR),

254-256
nonlinear SVM classifiers, 178-184
nonparametric models, 201
nonrepresentative training data, 28
nonresponse bias, 29
normal distribution, 358, 360
Normal equation, 134-137
normalization, 76, 367-372, 565
Normalization layer, 460-462
normalized exponential (softmax function),

170
notations, 44-45, 134
novelty detection, 13, 288
NP-Complete problem, CART as, 200
NSP (next sentence prediction), 621
nucleus sampling, 584
null hypothesis, 202
number of inputs, 323, 359
number of neurons per hidden layer, 350
NumPy, 46
NumPy arrays, 71, 79, 407-411
Nvidia collective communications library

(NCCL), 766
Nvidia GPU card, 748-749

O
OAuth 2.0, 734
object detection, CNNs, 523-530
object tracking, CNNs, 530
objectness score, 523
observation space, reinforcement learning, 684,

693
observations, 689-690
OCR (optical character recognition), 3
OEL (open-ended learning), 719

off-policy algorithm, 706
offline learning, 18
on-policy algorithm, 706
one-class SVM, 294
one-hot encoding, 72-74, 464, 471
one-versus-all (OvA) strategy, 119-121
one-versus-one (OvO) strategy, 119-121
one-versus-the-rest (OvR) strategy, 119-121
1cycle scheduling, 389, 392
1D convolutional layers, 533, 573
OneHotEncoder, 72-74, 77, 86
online kernelized SVMs, 193
online learning, 19-20
online model, DQN, 713
OOB (out-of-bag) evaluation, 218-219
open-ended learning (OEL), 719
OpenAI Gym, 687-691
operations (ops) and tensors, 404, 407-408
optical character recognition (OCR), 3
optimal state value, MDP, 701
optimizers, 379-387

AdaGrad, 382
Adam optimization, 384
AdaMax, 385
AdamW, 386
hyperparameters, 352
momentum optimization, 379
Nadam, 386
Nesterov accelerated gradient, 381
output layer, 600
RMSProp, 383

oracle, 346
order of integration (d) hyperparameter, 549
OrdinalEncoder, 71
orthogonal matrix, 600
out-of-bag (OOB) evaluation, 218-219
out-of-core learning, 19
out-of-sample error, 34
outlier detection (see anomaly detection)
outliers, 260
output gate, LSTM, 569
output layer, neural network, 600
OvA (one-versus-all) strategy, 119-121
overcomplete autoencoder, 649
overfitting of data, 30-33, 55

avoiding through regularization, 392-400
and decision trees, 201, 205
and dropout regularization, 396
gamma (γ) hyperparameter to adjust, 182

824 | Index

image classification, 324
learning curves to assess, 152-155
number of neurons per hidden layer, 351
polynomial regression, 132
SVM model, 177

OvO (one-versus-one) strategy, 119-121
OvR (one-versus-the-rest) strategy, 119-121

P
p-value, 202
PACF (partial autocorrelation function), 551
padding options, convolutional layer, 488-489
PaLM (Pathways language model), 623
Pandas, 46, 64-66, 73, 78
parallelism, training models across devices,

756-776
data parallelism, 759-765
distribution strategies API, 765
with GPU, 753-756
hyperparameter tuning, 772-776
model parallelism, 756-758
on TensorFlow cluster, 767-770
Vertex AI for running large jobs, 770-772

parameter efficiency, 349
parameter matrix, 170
parameter servers, 760
parameter space, 142
parameter vector, 133, 138, 165, 170
parametric leaky ReLU (PReLU), 362
parametric models, 202
partial autocorrelation function (PACF), 551
partial derivative, 142
partial_fit(), 148
Pathways language model (PaLM), 623
PCA (see principal component analysis)
PDF (probability density function), 260, 291
Pearson's r, 63
penalties, reinforcement learning, 16
PER (prioritized experience replay), 714
Perceiver, 627
percentiles, 54
perceptrons, 299, 304-316

(see also multilayer perceptrons)
performance measures, 107-119

confusion matrix, 108-110
cross-validation to measure accuracy,

107-108
precision and recall, 110-115
ROC curve, 115-119

selecting, 43-45
performance scheduling, 389, 392
permutation(), 56
PG (policy gradients) algorithm, 687, 694-698
piecewise constant scheduling, 389, 391
PipeDream, 763
Pipeline class, 83
Pipeline constructor, 84-87
pipelines, 42, 83-88, 154, 177
pixelwise normalization layer, 670
placeholders, function definitions, 803
POET algorithm, 719
policy gradients (PG) algorithm, 687, 694-698
policy parameters, 686
policy space, 686
policy, reinforcement learning, 16, 685, 691
polynomial features, SVM classifiers, 180
polynomial kernel, 180, 190
polynomial regression, 132, 149-151
polynomial time, 200
PolynomialFeatures, 150, 179
pooling kernel, 491
pooling layers, 491-495
positional encodings, 612-614
positive class, 109, 164
post-training quantization, 743
posterior distribution, 654
power law distribution, 76
power scheduling, 389
PPO (proximal policy optimization), 718
precision and recall, classifier metrics, 110-115
precision/recall curve (PR), 113, 117
precision/recall trade-off, 111-115
predict(), 71, 81, 84
predicted class, 109
prediction service, on Vertex AI, 732-741
predictions

backpropagation, 312
confusion matrix, 108-110
cross-validation to measure accuracy,

107-108
decision trees, 197-200
with linear SVM classifier, 186

predictors, 11
(see also ensemble learning)

predict_log_proba(), 178
predict_proba(), 178
prefetching of data, 450-452
PReLU (parametric leaky ReLU), 362

Index | 825

preprocessed attributes, 55
preprocessing data (see loading and prepro‐

cessing data)
preprocessing mismatch, 460
pretraining and pretrained layers

on auxiliary task, 378
CNNs, 516-521
greedy layer-wise pretraining, 377, 647, 668
language model components, 473
reusing embeddings, 593-595
reusing layers, 373-379
in unsupervised learning, 377, 593, 620, 644

primal problem, 189
principal component (PC), 244-245
principal component analysis (PCA), 243-251

choosing number of dimensions, 247-249
for compression, 249-250
explained variance ratio, 246
finding principal components, 245
incremental PCA, 250-251
preserving variance, 243
projecting down to d dimensions, 245
randomized PCA, 250
for scaling data in decision trees, 206
with undercomplete linear autoencoder,

639-640
using Scikit_Learn for, 246

prior distribution, 654
prioritized experience replay (PER), 714
probabilistic autoencoders, 654
probabilities, estimating, 164-165, 199, 215
probability density function (PDF), 260, 291
probability versus likelihood, 290-291
profiling the network, with TensorBoard, 340
progressive web app (PWA), 745
projection, dimensionality reduction, 239-240
propositional logic, 300
protocol buffers (protobuf), 454-457, 459, 729
proximal policy optimization (PPO), 718
pruning of decision tree nodes, 202
pseudoinverse, 137
PWA (progressive web app), 745
Python API, 46

Q
Q-learning algorithm, 704-716

approximate Q-learning, 707
exploration policies, 706
implementing deep Q-learning, 708-712

variants in deep Q-learning, 713-716
Q-value iteration algorithm, 702-703
Q-values, 702-703
quadratic equation, 150
quadratic programming (QP) problems, 188
quantization-aware training, 744
quartiles, 54
queries per second (QPS), 721, 738
question-answering modules, 8
queues, 411, 798

R
radial basis function (RBF), 77
ragged dimensions, 411
Rainbow agent, 716
random forests, 90, 211, 220-222

analysis of models and their errors, 95
decision trees (see decision trees)
extra-trees, 221
feature importance measurement, 221

random initialization, 138, 140
random patches, 219
random projection algorithm, 252-254
random subspaces, 219
RandomForestClassifier, 117-119
RandomForestRegressor, 90
randomized leaky ReLU (RReLU), 362
randomized PCA, 250
randomized search, 93-94, 344-346
RBF (radial basis function), 77
rbf_kernel(), 77, 80
recall metric, 110
receiver operating characteristic (ROC) curve,

115-119
recognition network, 637

(see also autoencoders)
recommender system, 9
reconstruction error, 249, 646
reconstruction loss, 424, 638
rectified linear units (ReLU) (see ReLU)
recurrent dropout, 537
recurrent layer normalization, 537, 566
recurrent neural networks (RNNs), 537-604

bidirectional, 601
deep RNN, 557
forecasting time series (see time series data)
gradient clipping, 372
handling long sequences, 565-575
input and output sequences, 541-542

826 | Index

memory cells, 540, 568-575
NLP (see natural language processing)
and Perceiver, 627
splitting across devices, 758
stateful, 578, 584-586
stateless, 578, 586
training, 542
and vision transformers, 624

recurrent neurons, 538
reduce operation, 760
region proposal network (RPN), 530
regression MLPs, 313-314
regression models

and classification, 10, 127
decision tree tasks, 204-205
forecasting example, 8
lasso regression, 158-161
linear regression (see linear regression)
logistic regression (see logistic regression)
multiple regression, 43
multivariate regression, 43
polynomial regression, 132, 149-151
regression MLPs, 328
ridge regression, 156-158, 161
softmax regression, 170-173
SVM, 184-186
univariate regression, 43

regression to the mean, 10
regularization, 32, 392-400

custom regularizers, 415
decision trees, 203
dropout, 394-397
early stopping, 162-163, 229, 555
elastic net, 161
hyperparameters, 201-203
lasso regression, 158-161
linear models, 156-163
max-norm, 399
MC dropout, 397-399
ridge, 157
shrinkage, 228
subword, 588
Tikhonov, 156-158
weight decay, 386
ℓ₁ and ℓ₂ regularization, 393

REINFORCE algorithms, 694
reinforcement learning (RL), 16, 683-719

actions, 693-694
credit assignment problem, 693-694

examples of, 9, 684
learning in order to optimizing rewards, 684
Markov decision processes, 699-703
neural network policies, 691
OpenAI Gym, 687-691
PG algorithms, 694-698
policy search, 685
Q-learning, 704-716
TD learning, 703

ReLU (rectified linear units)
and backpropagation, 312
in CNN architectures, 495
as default for simple tasks, 366
leakyReLU, 361-363
and MLPS, 314
RNN unstable gradients problem, 565
RReLU, 362
tuning hyperparameters, 345

replay buffer, 709
representation learning, 74

(see also autoencoders)
residual block, 423-424
residual errors, 226-230
residual learning, 505
residual network (ResNet), 505-509
residual units, 506
ResNet-152, 508
ResNet-34, 508, 515
ResNet-50, 517
ResNeXt, 512
REST API, querying through, 727
return, in reinforcement learning, 696
reverse process, diffusion model, 675-677
reverse-mode autodiff, 310, 428
rewards, reinforcement learning, 16, 684
Ridge, 157
ridge regression, 156-158, 161
ridge regularization, 157
RidgeCV, 158
RL (see reinforcement learning)
RMSProp, 383
ROC (receiver operating characteristic) curve,

115-119
root mean square error (RMSE), 43-45, 88, 133,

162
root node, decision tree, 197, 198
RPN (region proposal network), 530
RReLU (randomized leaky ReLU), 362

Index | 827

S
SAC (soft actor-critic), 717
“same” padding, computer vision, 488
SAMME, 225
sample inefficiency, 698
sampled softmax, 600
sampling bias, 29, 57
sampling noise, 29
SARIMA model, 550-551
SavedModel, 723-725
saving, loading, and restoring models, 337-338,

413-415
scaled dot-product attention layer, 616
scatter matrix, 64-65
Scikit-Learn, xvi

bagging and pasting in, 217
CART algorithm, 199, 205
cross-validation, 89-91
design principles, 70-71
PCA implementation, 246
Pipeline constructor, 84-87
sklearn.base.BaseEstimator, 80
sklearn.base.clone(), 163
sklearn.base.TransformerMixin, 80
sklearn.cluster.DBSCAN, 279
sklearn.cluster.KMeans, 81, 263
sklearn.cluster.MiniBatchKMeans, 268
sklearn.compose.ColumnTransformer, 85
sklearn.compose.TransformedTargetRegres‐

sor, 79
sklearn.datasets.load_iris(), 167
sklearn.datasets.make_moons(), 179
sklearn.decomposition.IncrementalPCA,

251
sklearn.decomposition.PCA, 246
sklearn.ensemble.AdaBoostClassifier, 226
sklearn.ensemble.BaggingClassifier, 217
sklearn.ensemble.GradientBoostingRegres‐

sor, 227-230
sklearn.ensemble.HistGradientBoosting‐

Classifier, 230
sklearn.ensemble.HistGradientBoostingRe‐

gressor, 230
sklearn.ensemble.RandomForestClassifier,

117-119, 214, 220, 221, 248
sklearn.ensemble.RandomForestRegressor,

90, 220
sklearn.ensemble.StackingClassifier, 234
sklearn.ensemble.StackingRegressor, 234

sklearn.ensemble.VotingClassifier, 214
sklearn.externals.joblib, 97-98
sklearn.feature_selection.SelectFromModel,

95
sklearn.impute.IterativeImputer, 69
sklearn.impute.KNNImputer, 69
sklearn.impute.SimpleImputer, 68
sklearn.linear_model.ElasticNet, 162
sklearn.linear_model.Lasso, 161
sklearn.linear_model.LinearRegression, 25,

71, 79, 137, 138, 150
sklearn.linear_model.LogisticRegression,

168, 172, 275
sklearn.linear_model.Perceptron, 307
sklearn.linear_model.Ridge, 157
sklearn.linear_model.RidgeCV, 158
sklearn.linear_model.SGDClassifier, 106,

111, 112, 117-119, 121, 183, 188, 307
sklearn.linear_model.SGDRegressor, 147,

163
sklearn.manifold.LocallyLinearEmbedding,

254
sklearn.metrics.ConfusionMatrixDisplay,

122
sklearn.metrics.confusion_matrix(), 109,

122
sklearn.metrics.f1_score(), 111, 126
sklearn.metrics.mean_squared_error(), 88
sklearn.metrics.precision_recall_curve(),

113, 117
sklearn.metrics.precision_score(), 110
sklearn.metrics.recall_score(), 110
sklearn.metrics.roc_auc_score(), 116
sklearn.metrics.roc_curve(), 115
sklearn.metrics.silhouette_score(), 271
sklearn.mixture.BayesianGaussianMixture,

292
sklearn.mixture.GaussianMixture, 283
sklearn.model_selection.cross_val_pre‐

dict(), 108, 113, 117, 122, 232
sklearn.model_selection.cross_val_score(),

90, 107
sklearn.model_selection.GridSearchCV,

91-93
sklearn.model_selection.learning_curve(),

152
sklearn.model_selection.Randomized‐

SearchCV, 248

828 | Index

sklearn.model_selection.StratifiedKFold,
108

sklearn.model_selection.StratifiedShuffleS‐
plit, 59

sklearn.model_selection.train_test_split(),
57, 59, 89

sklearn.multiclass.OneVsOneClassifier, 120
sklearn.multiclass.OneVsRestClassifier, 120
sklearn.multioutput.ChainClassifier, 126
sklearn.neighbors.KNeighborsClassifier,

125, 128, 280
sklearn.neighbors.KNeighborsRegressor, 26
sklearn.neural_network.MLPClassifier, 316
sklearn.neural_network.MLPRegressor, 313
sklearn.pipeline.make_pipeline(), 154
sklearn.pipeline.Pipeline, 83
sklearn.preprocessing.FunctionTransformer,

79
sklearn.preprocessing.MinMaxScaler, 76
sklearn.preprocessing.OneHotEncoder,

72-74, 77, 86
sklearn.preprocessing.OrdinalEncoder, 71,

231
sklearn.preprocessing.PolynomialFeatures,

150, 179
sklearn.preprocessing.StandardScaler, 76,

141, 156, 179
sklearn.random_projection.GaussianRan‐

domProjection, 253
sklearn.random_projection.SparseRandom‐

Projection, 253
sklearn.semi_supervised.LabelPropagation,

278
sklearn.semi_supervised.LabelSpreading,

278
sklearn.semi_supervised.SelfTrainingClassi‐

fier, 278
sklearn.svm.LinearSVC, 177, 183, 188
sklearn.svm.SVC, 120, 180, 183, 188
sklearn.svm.SVR, 185
sklearn.tree.DecisionTreeClassifier, 195,

201, 202, 207, 220
sklearn.tree.DecisionTreeRegressor, 89, 195,

204, 226
sklearn.tree.export_graphviz(), 196
sklearn.tree.ExtraTreesClassifier, 221
sklearn.utils.estimator_checks, 82
sklearn.utils.validation module, 80
SVM classification classes, 183

score(), 71
search engines, clustering for, 262
search space, 93
seasonality, time series modeling, 545
second moment (variance of gradient), 384
second-order partial derivatives (Hessians), 386
segment embedding, 621
SelectFromModel, 95
self-attention layers, 612, 618, 627
self-distillation, 627
self-normalization, 364, 397, 401
self-supervised learning, 15-16
SELU (scaled ELU) activation function, 364,

397
semantic interpolation, 659
semantic segmentation, 8, 273, 531-535
semi-supervised learning, 14, 262, 275-278
SENet, 510-512
sensitivity (recall), ROC curve, 115
sensitivity metric, 110
sensors, 684
sentence encoder, 474, 594
SentencePiece project, 588
sentiment analysis, 587-595
sentiment neuron, 586
separable convolution layer, 509
sequence length, 573, 612
sequence-to-sequence (seq2seq) network, 541,

562-564
sequence-to-vector network, 541
SequenceExample protobuf, 459
sequential API, image classifier with, 318-328
service account, GCP, 735
service worker, 745
sets, 797
set_params(), 80
SGD (see stochastic gradient descent)
SGDClassifier, 106, 111, 112, 117-119, 121, 183,

188, 188
SGDRegressor, 147, 163
sharpening, NLP transformers, 628
shrinkage, 228
shuffle_and_split_data(), 57, 57
shuffling data, 146, 445-446
Siamese neural network, 756
sigmoid activation function, 164, 312, 358, 651
signals, 301
silhouette coefficient, 270
silhouette diagram, 271

Index | 829

SiLU activation function, 366
similarity features, SVM, 181
SimpleImputer, 68
simulated annealing, 145
simulated environments, 687-691
single program, multiple data (SPMD), 759-765
single-shot learning, 534
singular value decomposition (SVD), 137, 245,

250
skewed datasets, 108
skewed left/right, 55
skip connections, 364, 505
slack variable, 188
smoothing terms, 368, 382
SMOTE (synthetic minority oversampling

technique), 500
soft actor-critic (SAC), 717
soft clustering, 264
soft margin classification, 177-178, 188
soft voting, 215
softmax activation function, 170, 315, 320, 600
softmax regression, 170-173
softplus activation function, 314
spam filters, 3-7, 9-10
sparse autoencoders, 651-654
sparse features, SVC class, 183
sparse matrix, 73, 76, 86
sparse models, 159, 387
sparse tensors, 795
sparsity loss, 652
specificity, ROC curve, 115
spectral clustering, 283
speech recognition, 6, 8
split node, decision tree, 197
SPMD (single program, multiple data), 759-765
squared hinge loss, 188
Stable Diffusion, 680
stacked autoencoders, 640-648
stacking (stacked generalization), 232-235
stale gradients, 761
standard correlation coefficient, 63
standard deviation, 53
standardization, 76
StandardScaler, 76, 141, 156, 179
state-action values (Q-Values), 702-703
stateful metric, 417
stateful RNN, 578, 584-586
stateless RNN, 578, 584, 586
stationary time series, 548

statistical mode, 216
statistical significance, 202
statsmodels library, 550
stemming, 130
step functions, TLU, 304
stochastic gradient boosting, 230
stochastic gradient descent (SGD), 145-148, 183

early stopping, 163
image classification, 324
and perceptron learning algorithm, 307
ridge regularization, 158
and TD learning, 704
training binary classifier, 106

stratified sampling, 58-60, 108
strat_train_set, 68
streaming metric, 417
strides, 482, 531, 573
string kernels, 182
string tensors, 411
StringLookup layer, 465
strings, 793-794
strong learners, 213
style mixing, StyleGAN, 673
style transfer, GANs, 671
StyleGANs, 671-673
subclassing API, 336-337
subgradient vector, 161
subsampling, pooling layer, 491
subword regularization, 588
super-convergence, 390
super-resolution, 534
supervised learning, 10
support vector machines (SVMs), 175-193

decision function, 186-189
dual problem, 189-193
kernelized SVMs, 190-193
linear classification, 175-178
mechanics of, 186-193
in multiclass classification, 120
nonlinear classifiers, 178
one-class SVM, 294
SVM regression, 184-186

support vectors, 176
SVC class, 180, 183
SVD (singular value decomposition), 137, 245,

250
SVMs (see support vector machines)
SVR class, 185
Swish activation function, 366

830 | Index

Swiss roll dataset, 241-242
symbolic differentiation, 788
symbolic tensors, 436, 802
synchronous updates, with centralized parame‐

ters, 761
synthetic minority oversampling technique

(SMOTE), 500

T
t-distributed stochastic neighbor embedding (t-

SNE), 256, 643
target attributes, 55
target distribution, transforming, 78
target model, DQN, 713
TD error, 704
TD target, 704
TD-Gammon, 683
teacher forcing, 595
temperature, Char-RNN model, 583
temporal difference (TD) learning, 703, 715
tensor arrays, 796
tensor processing units (TPUs), 404, 731, 744,

770
TensorBoard, 340-344, 406, 592, 770
TensorFlow, xvi, xvi, 403-477, 721-776

(see also Keras API)
architecture, 405
creating training function, 452
custom models (see custom models and

training algorithms)
deploying model to a mobile device,

741-744
functions and graphs, 801-809
GPU management with, 749-752, 753-756
graphs and functions, 404, 433-438, 801-809
hub.KerasLayer, 474
math operations, 408
with NumPy, 407-411
operations (ops) and tensors, 404, 407-409
parallelism to train models (see parallelism)
platforms and APIs available, 405
serving a model (see TensorFlow Serving)
special data structures, 793-799
tf.add(), 408
tf.autograph.to_code(), 437
tf.cast(), 409
tf.config.set_soft_device_placement, 753
tf.config.threading.set_inter_op_parallel‐

ism_threads(), 755

tf.config.threading.set_intra_op_parallel‐
ism_threads(), 755

tf.constant(), 407
tf.data API (see tf.data API)
tf.device(), 753
tf.distribute.experimental.CentralStorageS‐

trategy, 766
tf.distribute.experimental.TPUStrategy, 770
tf.distribute.MirroredStrategy, 766, 773
tf.distribute.MultiWorkerMirroredStrategy,

768
tf.float32, 409
tf.float32 data type, 418, 448
tf.function(), 433, 437
tf.int32 data type, 411
tf.io.decode_base64(), 741
tf.io.decode_csv(), 449
tf.io.decode_image(), 741
tf.io.decode_png(), 741
tf.io.decode_proto(), 456
tf.io.FixedLenFeature, 457
tf.io.parse_example(), 458
tf.io.parse_sequence_example(), 459
tf.io.parse_single_example(), 457
tf.io.parse_single_sequence_example(), 459
tf.io.parse_tensor(), 458
tf.io.serialize_tensor(), 458
tf.io.TFRecordOptions, 454
tf.io.TFRecordWriter, 453
tf.io.VarLenFeature, 457
tf.linalg.band_part(), 618
tf.lite.TFLiteConverter.from_keras_model(),

742
tf.make_tensor_proto(), 729
tf.matmul(), 408, 616
tf.nn.conv2d(), 487
tf.nn.embedding_lookup(), 475
tf.nn.local_response_normalization(), 501
tf.nn.moments(), 475
tf.nn.sampled_softmax_loss(), 600
tf.py_function(), 437, 724
tf.queue module, 411
tf.queue.FIFOQueue, 798
tf.RaggedTensor, 411
tf.random.categorical(), 583
tf.reduce_max(), 495
tf.reduce_mean(), 432
tf.reduce_sum(), 434
tf.saved_model_cli command, 724

Index | 831

tf.sets module, 411
tf.sort(), 437
tf.SparseTensor, 411
tf.stack(), 449, 585
tf.string data type, 411
tf.strings module, 411
tf.Tensor, 407, 410
tf.TensorArray, 411
tf.transpose(), 408
tf.Variable, 410
tf.Variable.assign(), 410
type conversions, 409
variables, 410
web page, running a model in, 745

TensorFlow cluster, 767-770
TensorFlow Datasets (TFDS) project, 475-477
TensorFlow Extended (TFX), 406
TensorFlow Hub, 406, 473, 594
TensorFlow Lite, 406
TensorFlow playground, 316
TensorFlow Serving (TF Serving), 722-741

batch prediction jobs on Vertex AI, 739
creating prediction service, 732-739
deploying new model version, 730-731
Docker container, 726
exporting SavedModels, 723-725
gRPC API, querying through, 729
installing and starting up, 725-727
REST API, querying through, 727

TensorFlow Text, 473, 589
TensorFlow.js (TFJS) JavaScript library, 745
tensors, 407-409
term-frequency x inverse-document-frequency

(TF-IDF), 472
terminal state, Markov chain, 699
test set, 34, 55-60
text attributes, 71
text processing (see natural language process‐

ing)
TF Serving (see TensorFlow Serving)
tf.data API, 442-453

chaining transformations, 443-445
interleaving lines from multiple files,

446-447
and Keras preprocessing layers, 462
prefetching, 450-452
preprocessing the data, 448-449
shuffling data, 445-446
tf.data.AUTOTUNE, 444

tf.data.Dataset.from_tensor_slices(),
442-444

tf.data.TFRecordDataset, 454, 454, 457
using dataset with Keras, 452-453

TFDS (TensorFlow Datasets) project, 475-477
TFJS (TensorFlow.js) JavaScript library, 745
TFLite, 742-744
TFRecord format, 441, 453-459
TFX (TensorFlow Extended), 406
theoretical information criterion, 289
3D convolutional layers, 533
threshold logic units (TLUs), 304, 309
Tikhonov regularization, 156-158, 161
time series data, forecasting, 537, 543-564

ARMA model family, 549-551
data preparation for ML models, 552-555
with deep RNN, 557
with linear model, 555
multivariate time series, 545, 559-560
with sequence-to-sequence model, 541,

562-564
several time steps ahead, 560-562
with simple RNN, 556-557

TLUs (threshold logic units), 304, 309
TNR (true negative rate), 115
tokenizers library, 589
tolerance (ε), 144, 183
TPR (true positive rate), 110, 115
TPUs (tensor processing units), 404, 731, 744,

770
train-dev set, 36
training, 24
training instance, 4
training loops, 430-433, 452
training models, 131-173

learning curves in, 151-155
linear regression, 131, 132-149
logistic regression, 164-173
perceptrons, 304-308
polynomial regression, 132, 149-151

training set, 4, 34
cost function of, 165-166
insufficient quantities, 27
irrelevant features, 30
min-max scaling, 75
nonrepresentative, 28
overfitting, 30-33
preparing for ML algorithms, 68
training and evaluating on, 88-89

832 | Index

transforming data, 79
underfitting, 33
visualizing data, 60

training set expansion, 129, 500, 519
training/serving skew, 442
train_test_split(), 59, 89
transfer learning, 16, 373, 375-377, 518-521
transform(), 71, 73, 75, 80
transformation of data

custom transformers, 79-83
estimator transformers, 70
and feature scaling, 75-79
transformer models (see transformer mod‐

els)
transformation pipelines, 83-88
TransformedTargetRegressor, 79
transformer, 609
transformer models

attention mechanisms, 609-619, 625
BERT, 620
DistilBERT, 622, 631-633
Hugging Face library, 629-633
Pathways language model, 623
vision transformers, 624-629

TransformerMixin, 80
transformers library, 629-632
translation, with RNNs, 578, 595-604

(see also transformer models)
transpose operator, 44
transposed convolutional layer, 532-534
true negative rate (TNR), 115
true negatives, confusion matrix, 109
true positive rate (TPR), 110, 115
true positives, confusion matrix, 109
trust region policy optimization (TRPO), 718
2D convolutional layers, 487
tying weights, 645
type I errors, confusion matrix, 109
type II errors, confusion matrix, 109

U
uncertainty sampling, 278
undercomplete, autoencoder as, 638-640
underfitting of data, 33, 89, 151-155, 182
univariate regression, 43
univariate time series, 545
Universal Sentence Encoder, 594-595
unreasonable effectiveness of data, 27
unrolling the network through time, 538

unstable gradients problem, 358, 565
(see also vanishing and exploding gradients)

unsupervised learning, 11-14, 259-294
anomaly detection, 13
association rule learning, 14
autoencoders (see autoencoders)
clustering (see clustering algorithms)
density estimation, 260
diffusion models, 673-681
dimensionality reduction (see dimensional‐

ity reduction)
GANs (see generative adversarial networks)
GMM, 283-294
k-means (see k-means algorithm)
novelty detection, 13
pretraining, 377, 593, 620, 644
stacked autoencoders, 644
transformer models, 621
visualization algorithms, 12-13

upsampling layer, 532
utility function, 24

V
VAEs (variational autoencoders), 654-658
“valid” padding, computer vision, 488
validation set, 35, 325-327
value_counts(), 53
vanishing and exploding gradients, 358-373

activation function improvements, 361-366
batch normalization, 367-372
Glorot and He initialization, 359-361
gradient clipping, 372
unstable gradients problem, 565-568

variables
handling in TF functions, 807-808
persistence of, 419
placing on GPUs, 752
in TensorFlow, 410

variance
bias/variance trade-off, 155
explained, 246-249
high variance with decision trees, 207
preserving, 243

variational autoencoders (VAEs), 654-658
vector-to-sequence network, 541
vectors, norms for measuring distance, 45
Vertex AI, 98, 732-739, 770-772
VGGNet, 505
virtual GPU device, 750

Index | 833

vision transformers (ViTs), 624-629
visual cortex architecture, 480
visualization of data, 9, 12-13, 60-67

decision trees, 195-196
dimensionality reduction, 238, 247
end-to-end exercise, 60-67
MLPs with TensorBoard, 340-344
stacked autoencoders, 642-643
t-SNE, 256

ViTs (vision transformers), 624-629
voting classifiers, 212-215

W
wall time, 370
warmup phase, asynchronous model updates,

762
WaveNet, 538, 574-575
weak learners, 213
web page, running a model in, 744
weight decay, 386
weight stashing, 764
weight-tying, 645
weights

boosting, 223-225
convolutional layers, 490
freezing reused layers, 374
of hidden layers, 319

in prioritized experience replay, 715
saving instead of whole model, 338

white box models, 199
Wide & Deep neural network, 329-333
window length, 581
wisdom of the crowd, 211
word embeddings, 467

neural machine translation, 595-604
sentiment analysis, 587-595

worker task type, 766
workers, 760

X
Xavier initialization, 359
Xception (Extreme Inception), 509-510,

518-521
XLA (accelerated linear algebra), 434
XOR (exclusive or) problem, 307

Y
You Only Look Once (YOLO), 527-530

Z
zero padding, 482, 488
zero-shot learning (ZSL), 622, 628
ZFNet, 501

834 | Index

About the Author
Aurélien Géron is a machine learning consultant and lecturer. A former Googler, he
led YouTube’s video classification team from 2013 to 2016. He’s been a founder of
and CTO at a few different companies: Wifirst, a leading wireless ISP in France; Poly‐
conseil, a consulting firm focused on telecoms, media, and strategy; and Kiwisoft, a
consulting firm focused on machine learning and data privacy.

Before all that Aurélien worked as an engineer in a variety of domains: finance
(JP Morgan and Société Générale), defense (Canada’s DOD), and healthcare (blood
transfusion). He also published a few technical books (on C++, WiFi, and internet
architectures) and lectured about computer science at a French engineering school.

A few fun facts: he taught his three children to count in binary with their fingers
(up to 1,023), he studied microbiology and evolutionary genetics before going into
software engineering, and his parachute didn’t open on the second jump.

Colophon
The animal on the cover of Hands-On Machine Learning with Scikit-Learn, Keras,
and TensorFlow is the fire salamander (Salamandra salamandra), an amphibian found
across most of Europe. Its black, glossy skin features large yellow spots on the head
and back, signaling the presence of alkaloid toxins. This is a possible source of this
amphibian’s common name: contact with these toxins (which they can also spray
short distances) causes convulsions and hyperventilation. Either the painful poisons
or the moistness of the salamander’s skin (or both) led to a misguided belief that these
creatures not only could survive being placed in fire but could extinguish it as well.

Fire salamanders live in shaded forests, hiding in moist crevices and under logs near
the pools or other freshwater bodies that facilitate their breeding. Though they spend
most of their lives on land, they give birth to their young in water. They subsist
mostly on a diet of insects, spiders, slugs, and worms. Fire salamanders can grow up
to a foot in length, and in captivity may live as long as 50 years.

The fire salamander’s numbers have been reduced by destruction of their forest habi‐
tat and capture for the pet trade, but the greatest threat they face is the susceptibility
of their moisture-permeable skin to pollutants and microbes. Since 2014, they have
become extinct in parts of the Netherlands and Belgium due to an introduced fungus.

Many of the animals on O’Reilly covers are endangered; all of them are important
to the world. The cover illustration is by Karen Montgomery, based on an engraving
from Wood’s Illustrated Natural History. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://www.oreilly.com/

	Copyright
	Table of Contents
	Preface
	The Machine Learning Tsunami
	Machine Learning in Your Projects
	Objective and Approach
	Code Examples
	Prerequisites
	Roadmap
	Changes Between the First and the Second Edition
	Changes Between the Second and the Third Edition
	Other Resources
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. The Fundamentals of Machine Learning
	Chapter 1. The Machine Learning Landscape
	What Is Machine Learning?
	Why Use Machine Learning?
	Examples of Applications
	Types of Machine Learning Systems
	Training Supervision
	Batch Versus Online Learning
	Instance-Based Versus Model-Based Learning

	Main Challenges of Machine Learning
	Insufficient Quantity of Training Data
	Nonrepresentative Training Data
	Poor-Quality Data
	Irrelevant Features
	Overfitting the Training Data
	Underfitting the Training Data
	Stepping Back

	Testing and Validating
	Hyperparameter Tuning and Model Selection
	Data Mismatch

	Exercises

	Chapter 2. End-to-End Machine Learning Project
	Working with Real Data
	Look at the Big Picture
	Frame the Problem
	Select a Performance Measure
	Check the Assumptions

	Get the Data
	Running the Code Examples Using Google Colab
	Saving Your Code Changes and Your Data
	The Power and Danger of Interactivity
	Book Code Versus Notebook Code
	Download the Data
	Take a Quick Look at the Data Structure
	Create a Test Set

	Explore and Visualize the Data to Gain Insights
	Visualizing Geographical Data
	Look for Correlations
	Experiment with Attribute Combinations

	Prepare the Data for Machine Learning Algorithms
	Clean the Data
	Handling Text and Categorical Attributes
	Feature Scaling and Transformation
	Custom Transformers
	Transformation Pipelines

	Select and Train a Model
	Train and Evaluate on the Training Set
	Better Evaluation Using Cross-Validation

	Fine-Tune Your Model
	Grid Search
	Randomized Search
	Ensemble Methods
	Analyzing the Best Models and Their Errors
	Evaluate Your System on the Test Set

	Launch, Monitor, and Maintain Your System
	Try It Out!
	Exercises

	Chapter 3. Classification
	MNIST
	Training a Binary Classifier
	Performance Measures
	Measuring Accuracy Using Cross-Validation
	Confusion Matrices
	Precision and Recall
	The Precision/Recall Trade-off
	The ROC Curve

	Multiclass Classification
	Error Analysis
	Multilabel Classification
	Multioutput Classification
	Exercises

	Chapter 4. Training Models
	Linear Regression
	The Normal Equation
	Computational Complexity

	Gradient Descent
	Batch Gradient Descent
	Stochastic Gradient Descent
	Mini-Batch Gradient Descent

	Polynomial Regression
	Learning Curves
	Regularized Linear Models
	Ridge Regression
	Lasso Regression
	Elastic Net Regression
	Early Stopping

	Logistic Regression
	Estimating Probabilities
	Training and Cost Function
	Decision Boundaries
	Softmax Regression

	Exercises

	Chapter 5. Support Vector Machines
	Linear SVM Classification
	Soft Margin Classification

	Nonlinear SVM Classification
	Polynomial Kernel
	Similarity Features
	Gaussian RBF Kernel
	SVM Classes and Computational Complexity

	SVM Regression
	Under the Hood of Linear SVM Classifiers
	The Dual Problem
	Kernelized SVMs

	Exercises

	Chapter 6. Decision Trees
	Training and Visualizing a Decision Tree
	Making Predictions
	Estimating Class Probabilities
	The CART Training Algorithm
	Computational Complexity
	Gini Impurity or Entropy?
	Regularization Hyperparameters
	Regression
	Sensitivity to Axis Orientation
	Decision Trees Have a High Variance
	Exercises

	Chapter 7. Ensemble Learning and Random Forests
	Voting Classifiers
	Bagging and Pasting
	Bagging and Pasting in Scikit-Learn
	Out-of-Bag Evaluation
	Random Patches and Random Subspaces

	Random Forests
	Extra-Trees
	Feature Importance

	Boosting
	AdaBoost
	Gradient Boosting
	Histogram-Based Gradient Boosting

	Stacking
	Exercises

	Chapter 8. Dimensionality Reduction
	The Curse of Dimensionality
	Main Approaches for Dimensionality Reduction
	Projection
	Manifold Learning

	PCA
	Preserving the Variance
	Principal Components
	Projecting Down to d Dimensions
	Using Scikit-Learn
	Explained Variance Ratio
	Choosing the Right Number of Dimensions
	PCA for Compression
	Randomized PCA
	Incremental PCA

	Random Projection
	LLE
	Other Dimensionality Reduction Techniques
	Exercises

	Chapter 9. Unsupervised Learning Techniques
	Clustering Algorithms: k-means and DBSCAN
	k-means
	Limits of k-means
	Using Clustering for Image Segmentation
	Using Clustering for Semi-Supervised Learning
	DBSCAN
	Other Clustering Algorithms

	Gaussian Mixtures
	Using Gaussian Mixtures for Anomaly Detection
	Selecting the Number of Clusters
	Bayesian Gaussian Mixture Models
	Other Algorithms for Anomaly and Novelty Detection

	Exercises

	Part II. Neural Networks and Deep Learning
	Chapter 10. Introduction to Artificial Neural
Networks with Keras
	From Biological to Artificial Neurons
	Biological Neurons
	Logical Computations with Neurons
	The Perceptron
	The Multilayer Perceptron and Backpropagation
	Regression MLPs
	Classification MLPs

	Implementing MLPs with Keras
	Building an Image Classifier Using the Sequential API
	Building a Regression MLP Using the Sequential API
	Building Complex Models Using the Functional API
	Using the Subclassing API to Build Dynamic Models
	Saving and Restoring a Model
	Using Callbacks
	Using TensorBoard for Visualization

	Fine-Tuning Neural Network Hyperparameters
	Number of Hidden Layers
	Number of Neurons per Hidden Layer
	Learning Rate, Batch Size, and Other Hyperparameters

	Exercises

	Chapter 11. Training Deep Neural Networks
	The Vanishing/Exploding Gradients Problems
	Glorot and He Initialization
	Better Activation Functions
	Batch Normalization
	Gradient Clipping

	Reusing Pretrained Layers
	Transfer Learning with Keras
	Unsupervised Pretraining
	Pretraining on an Auxiliary Task

	Faster Optimizers
	Momentum
	Nesterov Accelerated Gradient
	AdaGrad
	RMSProp
	Adam
	AdaMax
	Nadam
	AdamW

	Learning Rate Scheduling
	Avoiding Overfitting Through Regularization
	ℓ1 and ℓ2 Regularization
	Dropout
	Monte Carlo (MC) Dropout
	Max-Norm Regularization

	Summary and Practical Guidelines
	Exercises

	Chapter 12. Custom Models and Training with TensorFlow
	A Quick Tour of TensorFlow
	Using TensorFlow like NumPy
	Tensors and Operations
	Tensors and NumPy
	Type Conversions
	Variables
	Other Data Structures

	Customizing Models and Training Algorithms
	Custom Loss Functions
	Saving and Loading Models That Contain Custom Components
	Custom Activation Functions, Initializers, Regularizers,
and Constraints
	Custom Metrics
	Custom Layers
	Custom Models
	Losses and Metrics Based on Model Internals
	Computing Gradients Using Autodiff
	Custom Training Loops

	TensorFlow Functions and Graphs
	AutoGraph and Tracing
	TF Function Rules

	Exercises

	Chapter 13. Loading and Preprocessing Data with TensorFlow
	The tf.data API
	Chaining Transformations
	Shuffling the Data
	Interleaving Lines from Multiple Files
	Preprocessing the Data
	Putting Everything Together
	Prefetching
	Using the Dataset with Keras

	The TFRecord Format
	Compressed TFRecord Files
	A Brief Introduction to Protocol Buffers
	TensorFlow Protobufs
	Loading and Parsing Examples
	Handling Lists of Lists Using the SequenceExample Protobuf

	Keras Preprocessing Layers
	The Normalization Layer
	The Discretization Layer
	The CategoryEncoding Layer
	The StringLookup Layer
	The Hashing Layer
	Encoding Categorical Features Using Embeddings
	Text Preprocessing
	Using Pretrained Language Model Components
	Image Preprocessing Layers

	The TensorFlow Datasets Project
	Exercises

	Chapter 14. Deep Computer Vision Using Convolutional Neural Networks
	The Architecture of the Visual Cortex
	Convolutional Layers
	Filters
	Stacking Multiple Feature Maps
	Implementing Convolutional Layers with Keras
	Memory Requirements

	Pooling Layers
	Implementing Pooling Layers with Keras
	CNN Architectures
	LeNet-5
	AlexNet
	GoogLeNet
	VGGNet
	ResNet
	Xception
	SENet
	Other Noteworthy Architectures
	Choosing the Right CNN Architecture

	Implementing a ResNet-34 CNN Using Keras
	Using Pretrained Models from Keras
	Pretrained Models for Transfer Learning
	Classification and Localization
	Object Detection
	Fully Convolutional Networks
	You Only Look Once

	Object Tracking
	Semantic Segmentation
	Exercises

	Chapter 15. Processing Sequences Using RNNs and CNNs
	Recurrent Neurons and Layers
	Memory Cells
	Input and Output Sequences

	Training RNNs
	Forecasting a Time Series
	The ARMA Model Family
	Preparing the Data for Machine Learning Models
	Forecasting Using a Linear Model
	Forecasting Using a Simple RNN
	Forecasting Using a Deep RNN
	Forecasting Multivariate Time Series
	Forecasting Several Time Steps Ahead
	Forecasting Using a Sequence-to-Sequence Model

	Handling Long Sequences
	Fighting the Unstable Gradients Problem
	Tackling the Short-Term Memory Problem

	Exercises

	Chapter 16. Natural Language Processing with RNNs and Attention
	Generating Shakespearean Text Using a Character RNN
	Creating the Training Dataset
	Building and Training the Char-RNN Model
	Generating Fake Shakespearean Text
	Stateful RNN

	Sentiment Analysis
	Masking
	Reusing Pretrained Embeddings and Language Models

	An Encoder–Decoder Network for Neural Machine Translation
	Bidirectional RNNs
	Beam Search

	Attention Mechanisms
	Attention Is All You Need: The Original Transformer Architecture

	An Avalanche of Transformer Models
	Vision Transformers
	Hugging Face’s Transformers Library
	Exercises

	Chapter 17. Autoencoders, GANs, and Diffusion Models
	Efficient Data Representations
	Performing PCA with an Undercomplete Linear Autoencoder
	Stacked Autoencoders
	Implementing a Stacked Autoencoder Using Keras
	Visualizing the Reconstructions
	Visualizing the Fashion MNIST Dataset
	Unsupervised Pretraining Using Stacked Autoencoders
	Tying Weights
	Training One Autoencoder at a Time

	Convolutional Autoencoders
	Denoising Autoencoders
	Sparse Autoencoders
	Variational Autoencoders
	Generating Fashion MNIST Images
	Generative Adversarial Networks
	The Difficulties of Training GANs
	Deep Convolutional GANs
	Progressive Growing of GANs
	StyleGANs

	Diffusion Models
	Exercises

	Chapter 18. Reinforcement Learning
	Learning to Optimize Rewards
	Policy Search
	Introduction to OpenAI Gym
	Neural Network Policies
	Evaluating Actions: The Credit Assignment Problem
	Policy Gradients
	Markov Decision Processes
	Temporal Difference Learning
	Q-Learning
	Exploration Policies
	Approximate Q-Learning and Deep Q-Learning

	Implementing Deep Q-Learning
	Deep Q-Learning Variants
	Fixed Q-value Targets
	Double DQN
	Prioritized Experience Replay
	Dueling DQN

	Overview of Some Popular RL Algorithms
	Exercises

	Chapter 19. Training and Deploying TensorFlow Models at Scale
	Serving a TensorFlow Model
	Using TensorFlow Serving
	Creating a Prediction Service on Vertex AI
	Running Batch Prediction Jobs on Vertex AI

	Deploying a Model to a Mobile or Embedded Device
	Running a Model in a Web Page
	Using GPUs to Speed Up Computations
	Getting Your Own GPU
	Managing the GPU RAM
	Placing Operations and Variables on Devices
	Parallel Execution Across Multiple Devices

	Training Models Across Multiple Devices
	Model Parallelism
	Data Parallelism
	Training at Scale Using the Distribution Strategies API
	Training a Model on a TensorFlow Cluster
	Running Large Training Jobs on Vertex AI
	Hyperparameter Tuning on Vertex AI

	Exercises
	Thank You!

	Appendix A. Machine Learning Project Checklist
	Frame the Problem and Look at the Big Picture
	Get the Data
	Explore the Data
	Prepare the Data
	Shortlist Promising Models
	Fine-Tune the System
	Present Your Solution
	Launch!

	Appendix B. Autodiff
	Manual Differentiation
	Finite Difference Approximation
	Forward-Mode Autodiff
	Reverse-Mode Autodiff

	Appendix C. Special Data Structures
	Strings
	Ragged Tensors
	Sparse Tensors
	Tensor Arrays
	Sets
	Queues

	Appendix D. TensorFlow Graphs
	TF Functions and Concrete Functions
	Exploring Function Definitions and Graphs
	A Closer Look at Tracing
	Using AutoGraph to Capture Control Flow
	Handling Variables and Other Resources in TF Functions
	Using TF Functions with Keras (or Not)

	Index
	About the Author
	Colophon

